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Abstract

In this paper, we present a general algorithmic schema called “Ex-
pand, Enlarge and Check” from which new efficient algorithms for the
coverability problem of WSTS can be constructed. We show here that our
schema, allows us to define forward algorithms that decide the coverabil-
ity problem for several classes of systems for which the Karp and Miller
procedure cannot be generalized, and for which no complete forward al-
gorithms were known. Our results have important applications for the
verification of parameterized systems and communication protocols.

1 Introduction

Model-checking is nowadays widely accepted as a powerful technique for the
automatic verification of reactive systems that have natural finite state abstrac-
tions. However, many reactive systems are only naturally modeled as infinite-
state systems. Consequently, a large (and successful) research effort has recently
focused on the direct application of model-checking techniques to infinite-state
models such as timed automata [5], hybrid automata [19], FIFO channel sys-
tems [3, 2, 4], Petri nets [10, 7], broadcast protocols [14], etc.

One of the positive results is the decidability of the coverability problem® for
well-structured transition systems (WSTS for short). WSTS enjoy an infinite
set of states that is well-quasi ordered by < and their transition relation is
monotonic w.r.t <. Examples of such systems are Petri nets and their monotonic
extensions [23, 9, 11], broadcast protocols [13], lossy channel systems [3]. The
coverability problem asks, given two states ¢; and ¢z, whether there is c¢3 > ¢,
(cs covers cp) that is reachable from ¢;.

A general algorithm (i.e. a procedure that always terminates) is known to
solve the coverability problem for WSTS [1, 17]. It symbolically manipulates
upward-closed sets of states, obtained by unrolling the transition relation in a
backward fashion. Unfortunately, backward search is seldom efficient in practice

LA large class of safety verification problems can be reduced to the coverability problem.
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[20], and the only complete forward approach known so far is the Karp and
Miller algorithm that can only be applied to a small subclass of WSTS: Petri
nets.

The Karp and Miller procedure computes, through a combination of a for-
ward exploration strategy and a simple acceleration technique, the so-called
covering set of the net, which is known to be well-suited to decide the cover-
ability problem. After several attempts to generalize this procedure to WSTS
(which have all produced incomplete approaches [15, 13, 16]), it has been shown
in [12] that Petri nets form the sole class (among the examples cited above)
for which the covering set is constructible in general. However, this set always
exists and is usually finitely representable. Our main contribution is to make
the best of this fact and devise a forward technique that is complete to decide
the coverability problem for a large class of WSTS. This class includes, among
others, all the monotonic extensions of Petri nets defined in the literature, as
well as lossy channel systems.

We present a new schema of algorithm: “Expand, Enlarge and Check” that
works by iteratively constructing more and more precise abstractions of the
system. These abstractions (made up of reachable states and limit elements)
are guaranteed to become precise enough to decide the coverability problem after
a finite number of steps. We show how to apply the schema on two classes of
WSTS of practical interest: monotonic extensions of Petri nets (that are useful
to model parameterized systems [18, 11]) and lossy channels systems (that are
useful to model communication protocols [2]). Besides giving the opportunity
to define efficient and complete forward algorithms for a large class of WSTS,
the abstractions that we define in this paper can also be used to obtain semi-
decision procedures for checking more complex properties, like model-checking
of LTL formulas.

2 Preliminaries

In this section, we recall some fundamental results about well-quasi orderings
and well-structured transition systems (the systems we analyze here). We show
how to finitely represent upward- and downward-closed sets of states (which will
allow us to devise symbolic algorithms), and discuss And-Or graphs (useful to
represent abstractions of systems).

Well quasi-orderings and adequate domains of limits A well quasi or-
dering < on the elements of a set C' (wqo for short) is a reflexive and transitive
relation such that for any infinite sequence coc; - .. ¢y, - . . of elements in C, there
exist two indices 4 and j, such that ¢ < j and ¢; < ¢;. In the following, we note
ci <cjife; <e¢jbut e £

Let (C, <) be a well-quasi ordered set. A <-upward closed set U C C is such
that for any ¢ € U, for any ¢’ € C such that ¢ < ¢/, ¢ € U. A <-downward
closed set D C C is such that for any ¢ € D, for any ¢’ € C such that ¢’ < ¢,
¢ € D. Tt is well-known that any <-upward closed set U C C is uniquely
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determined by its finite sets of minimal elements. Formally, a set of <-minimal
elements Min(U) of a set U C C is a minimal set such that Min(U) C U
and Vs' € U : 3s € Min(U) : s < s'. The following proposition is a direct
consequence of wqo:

Proposition 1 Let (C, <) be a wqgo set and U C C be an <-upward closed set,
then: Min(U) is finite and U = {c | 3¢’ € Min(U) : ¢/ < ¢}.

Thus, any <-upward closed set can be effectively represented by its finite
set of minimal elements. Downward-closed sets are more difficult to represent
effectively. To obtain a finite representation of those sets, we must use well-
chosen limit elements ¢ ¢ C' to represent downward closures of infinite increasing
chains of elements. Thus, we introduce the notion of adequate domain of limits.

Definition 1 Let (C, <) be a well-quasi ordered set and L be a set of elements
disjoint from C, the tuple (L,C,~) is called an adequate domain of limits for
(C, <) if the following conditions are satisfied: (L;: representation mapping)
v : LUC — 2¢ associates to each element in L U C' a <-downward closed set
D C C, furthermore, for any ¢ € C, we impose that y(c) = {¢' | ¢ < ¢}. In
the following, 7 is extended to sets S C L U C in the natural way: v(S) =
Uees(c); (La: top element) There exists a special element T € L such that
¥(T) = C; (Ls: precision order) The elements of C U L are ordered by the
complete quasi order C, defined as follows: d; C d» if and only if y(d1) C v(d>);
(Ls4: completeness) for any downward closed set D C C, there exists a finite set
D' C CU L such that v(D'") = D.

Well-structured transition systems and coverability problem A tran-
sition system is a tuple S = (C,cp, —) where C is a (possibly infinite) set of
states, cg € C is the initial state, -C C' x C is a transition relation. In the
following, ¢ — ¢ will denote that (c,c’) €é—. For any state ¢, Post(c) denotes
the set of one-step successors of ¢, i.e. Post(c) = {¢'|c = ¢'}. This operator is
extended to sets of states C' C C as follows: Post(C') = {c|3c' € C" : ¢! = ¢}.
A path of S is a sequence of states ¢1,¢a, ..., ¢ such thatc; = co = -+ = ¢. A
state ¢’ is reachable from a state ¢, noted ¢ —* ¢, if we have a path ¢1,¢a,...cg
in § with ¢y = ¢ and ¢ = ¢. Given a transition system S = (C,cp,—),
Reach(S) denotes the set {¢ € C | ¢¢ —=* c¢}. Finally, we require a transition
system to be without deadlock states?. That is, for any state ¢ € C, there exists
¢’ € C such that ¢ — (.

Definition 2 A transition system S = (C, cg, —) is a well-structured transition
system for the quasi order <C C' x C' if the two following properties hold:

(W1) well-ordering: < is a well-quasi ordering and

(W3) monotonicity: for all ¢, ¢a,c3 € C such that ¢; < ¢z and ¢; — ¢3, there
exists ¢4 € C such that ¢35 < ¢4 and ¢3 — ¢4.

?Note that this condition is not restrictive since we can always add a transition to a dummy
state.



Submitted for publication to FSTTCS’04
Accepted for presentation to Journées Montoises d’Informatique
Théoriques 2004

From now on, S = (C, ¢y, —, <) will denote the well-structured transition
system (C,co,—) for <. In the sequel, we need to manipulate WSTS and
adequate domain of limits. In particular, we need the following effectiveness
properties:

Definition 3 A WSTS S = (C,¢p,—, <) and an adequate domain of limits
(L,C,~) are effective if the following conditions are satisfied:

(E1) C and L are recursively enumerable;
(Ey) for any c¢1,co € C, we can decide whether ¢; — co;

(E3) for any two finite subsets C' C C and L' C L, for any d € C' U L' and
D C C'U L', we can decide whether Post(y(d)) C v(D);

(E4) For any subsets D1, Dy C C U L, we can decide whether v(D1) C v(D2).

Problem 1 The coverability problem for well-structured transition systems is
defined as follows: “Given a well-structured transition system S and the <-
upward closed set U C C, determine whether Reach(S)NU =0 ?”

To solve the coverability problem, we use covering sets, defined as follows:

Definition 4 Let S = (C,cg, =, <) be a WSTS. The covering set of S, noted
Cover(S), is the (unique) smallest subset of C' which (CSy) is <-downward closed
and (CSz) contains Reach(S).

Property For any WSTS S = (C, ¢p, —, <) with an adequate domain of limits
(L,C,~) for (C, <), by property Ly of Definition 1, there exists a finite subset
CS(S) C LUC such that v(CS(S)) = Cover(S). In the following, CS(S) is called
a coverability set of the covering set Cover(S) and it is a finite representation of
that set.

Proposition 2 ([15]) For any WSTS S = (C,co,—, <), the covering set of
S is such that for any <-upward closed set U C C: Reach(S)NU = 0 iff
Cover(S)NU = 0.

And-Or graph and its avoidability problem An And-Or graph is a tuple
G = (Va,Vo,v;,=) where V = V4 U Vp is the set of nodes (V4 is the set of
“And” nodes and Vp is the set of “Or” nodes), Va N Vo = 0, v; € Vo is the
initial node, and =C (V4 X Vo) U (Vo x Va4) is the transition relation such that
for any v € V4 U Vo, there exists v’ € V4 U Vp such that (v,v') €=.

Definition 5 A compatible unfolding of an And-Or graph G = (Va,Vo,v;, =)
is an infinite labelled tree T = (N, root, B, A) where: (i) N is the set of nodes
of Tg, (ii) root € N is the root of T, (#i4) B C N x N is the transition relation
of Tg, (iv) A : N = V4 UV, is the labelling function of the nodes of T by nodes
of G that respects the three following compatibility conditions (A is extended
to sets of nodes in the usual way):
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(C1) A(root) = v;;

(Co) for all n € N such that A(n) € V4, we have that: (a) for all nodes v’ € Vp
such that A(n) = o', there exists one and only one n' € N such that
B(n,n') and A(n') = v', and conversely (b) for all nodes n' € N such that
B(n,n'), there exists v’ € Vp such that A(n) = v and A(n') = '

(C3) for all n € N such that A(n) € Vo, we have that: there exists one and
only one n' € N such that B(n,n'), and A(n) = A(n');

Problem 2 The And-Or Graph Avoidability Problem is defined as follows: “Given
an And-Or graph G = (V4,Vo,v;,=) and a set E C V4 U Vp, does there exist
T = (N, root, A, B), a compatible unfolding of G such that A(N)NE =0 ?”.
When the answer is positive, we say that E is avoidable in G.

It is well-known that this problem is complete for PTIME [21].

3 A new schema of algorithms

In this section, we introduce our new schema of algorithms to decide the cov-
erability problem for WSTS. We first explain, in subsection 3.1, how to build
an abstraction of a given WSTS, w.r.t. a given finite set of reachable states
C'" C C and a given finite set of limit elements L' C L. These abstractions are
And-Or graphs whose nodes are annotated by downward-closed sets of states of
a WSTS. We show in subsection 3.2 that any unfolding of this And-Or graph is
able to simulate the behaviours of its associated WSTS (Proposition 3). More-
over, if the downward-closed sets that are used to annotate the And-Or graph
are precise enough (in a sense that we make clear in Theorem 2), then the And-
Or graph can be used to decide negative instances of the coverability problem.
Based on those results, we propose a new algorithmic schema, to decide the cov-
erability problem of WSTS. It works by iteratively constructing abstractions of
the WSTS which become more and more precise. In parallel, it also explores,
in a breadth-first fashion, the set of reachable states of the system (to be able
to decide the positive instances of the problem). Thus, after a finite number of
steps either a concrete trace to a covered state will be found, or precise enough
abstraction will be computed to prove that no covered state can ever be reached.
This informal statement is formalized in Theorem 3. The algorithm by itself is
presented in subsection 3.3.

3.1 The And-Or Graph Abs(S,C’, L)

Definition 6 Given a WSTS S = (C, ¢g, =, <), an adequate domain of limits
(L, C,~) for {C, <), a finite subset C' C C with ¢y € C', and a finite subset L' C
L with T € L', the And-Or graph G = (V4, Vo, v;, =), noted Abs(S,C’, L"), is
defined as follows:

(A) Vo =C'U L,
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Va={S €2\ {0} | Pdy #ds € S : dy T da};

(A2

(A3) v; = co;

S

A4,1) (nl,ng) €= withn; € Vyu,ne € Vp if and only if ny € ni;

Ay5) for any ny € Vo,n2 € V4 : (n1,ns) €= if and only if (i) suc-
cessor covering: Post(y(ny)) C v(ny), (ii) preciseness: fn € Vy :
Post(v(n1)) € 7(n) C v(n2).

The following lemma states that the And-Or graph can be constructed for
any WSTS and adequate domain of limits that are effective.

)
)
(
(

Lemma 1 Given a WSTS S = {(C, o, =, <) and an adequate domain of limits
(L,C,7) for {C,<) that are effective, a finite subset C' C C' with cg € C', and
a finite subset L' C L with T € L', Abs(S,C", L") is effectively constructible.

Notice that in Abs(S, C’, L") all the nodes have at least one successor. Indeed,
for all n € Vy, since n # @ (following point A4; and point Ay of Definition 6),
n has at least one successor. Since And-nodes are subsets of limits that may
contain the T element, with v(T) = C (following point Ly of Definition 1), we
can always approximate for any n € Vp the (non-empty) set of successors of
~v(n), hence we are guaranteed to have at least one successor of n (point Az of
Definition 6).

Given a WSTS S = (C, ¢g, —, <), an associated And-Or graph Abs(S, L', C")
(Va,Vo,v;, =), and an <-upward-closed set of states U C C, we note Abs(U)
the set of nodes v € V4 U Vp such that y(v) NU # 0, that is, the set of nodes
whose associated downward-closed set of states intersects with U. It is easy
to show that this subset of nodes can be effectively computed for any effective
WSTS with adequate domain of limits.

Degenerated case If an And-Or graph is such that any Or-node has exactly
one successor, the And-Or graph is said to be degenerated. In that case, the
avoidability problem is equivalent to the (un)reachability problem in a plain
graph. From the definition of Abs(S,C", L'), we can easily see that the And-Or
graph will be degenerated if for any d € C' U L', there exists a unigue minimal
set v(D) such that D € V4 and Succ(y(d)) C (D). This motivates the next
definition:

Definition 7 Given a WSTS S = (C, ¢, =, <) and an adequate domain of
limits (L,C,v) for (C,<), we say that a pair (C',L'), where C' C C with
co € Cand L' C L with T € L', is perfect if for any d € C' U L', there exists a
unique minimal set D C C' U L' such that (i) Post(y(d)) C (D) and (i¢) there
isno D' C C" U L' with Post(y(d)) C v(D') C v(D).

Lemma 2 Given a WSTS S = (C,cp,—,<), an adequate domain of limits
(L,C,7) for (C, <), a finite subset C' C C with cog € C', and a finite subset L' C
L with T € L' such that (C',L') is perfect, then Abs(S,C', L") is a degenerated
And-Or graph.



Submitted for publication to FSTTCS’04
Accepted for presentation to Journées Montoises d’Informatique
Théoriques 2004

3.2 Properties of Abs(S,C’, L")

In this section, we prove important properties of Abs(S, C’, L'). Roughly speak-
ing, we prove now that the abstraction we have defined above is adequate for
any pair {C', L") such that ¢y € C' and T € L' (Theorem 1) and complete (The-
orem 2) for some pair (C',L'). To establish those results, we first show that
Abs(S,C", L") can simulate for any (C',L') such that ¢ € C' and T € L' its
underlying WSTS:

Proposition 3 (Simulation) Given a WSTS S = (C, ¢y, —, <) with an ade-
quate domain of limits (L,C,~) for (C, <), the following holds for any C' C C
with cg € C' and L' C L with T € L': for any path cocy ...cx of S and any
unfolding T = (N,root, B,A) of Abs(S,C', L") there exists a path ngny .. .nay
of T with ng = root and such that ¢; € y(A(ngy;)) for 0 <i < k.

Proof. Let cp,...,cr be a path of S. For any unfolding, we will show, by
induction on the length k of the path in S, that there exists a path ngny ...nog
of the unfolding such that ¢; € v(A(ng;)) for all 7 such that 0 < i < k.

Base case: The base case is trivial since A(root) = ¢o following Az and C;.
Induction step: Suppose that there exists a path P = ng,...,n2; (i < k) of
the unfolding, such that ¢; € y(A(ng;)) for all j such that 1 < j <. Let us show
that there exists a path ng ...7ny(;11) of the unfolding, where ¢; € y(A(nz;)) for
all j such that 1 < 57 < i+ 1. Since ¢; = ¢;41, from point A4 5 of Definition 6 we
have that all the And-nodes v = {d1,...,d¢} in Abs(S,C’, L") with A(ng;) = v
are such that ¢;41 € y(d;) for some j such that 1 < j < £. Hence, following C3,
all the successors of ny; in the unfolding are nodes n with A(n) = {d;,...,d¢}
such that c¢;41 € 7(d;) for some j. Moreover, following A4 1 and Cy, n has a
successor n' such that A(n') = dj, i.e. ¢iy1 € y(A(n')). We conclude that the
path P extended with the nodes n and n' is such that the 441 Or-nodes n; are
such that ¢; € v(A(n;)). d

Theorem 1 states the adequacy of the And-Or graph to decide the coverability
problem.

Theorem 1 (Adequacy) Given a WSTS S = (C, ¢, =, <), an adequate do-
main of limits (L,C,v) for (C,<), and an upward-closed set U C C, the fol-
lowing holds for any C' C C with ¢g € C' and L' C L with T € L': if Abs(U) is
avoidable in Abs(S,C’, L"), then Reach(S)NU = 0.

Proof. Suppose that it is not the case, that is Abs(U) is avoidable in Abs(S, C', L")
but Reach(S) NU # 0. Hence, there exists a path cg,...,c, in S with ¢, € U.
From Proposition 3, we have that for any unfolding T' = (N, root, B,A) of
Abs(S,C", L"), there exists a path mg...ng in T with ng = root such that
¢i € vY(A(ny;)) for all ¢ such that 0 < i < k. Hence, A(N) N Abs(U) # 0 and we
obtain a contradiction. O
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Finally, we prove the completeness of our approach. Intuitively, the next the-
orem puts forward that, when the pair (C’, L'} is precise enough, Abs(S,C’,L")
allows us to decide negative instances of the coverability problem.

Theorem 2 (Completeness) Given a WSTS S = (C, ¢, —, <), an adequate
domain of limits {L,C,v) for {(C,<) and an upward closed set U C C, the
following holds for any C' C C with ¢o € C' and L' C L with T € L' such that
CS(S) C C'"UL': if Reach(S)NU = () then Abs(U) is avoidable in Abs(S,C",L").

Proof. Suppose that it is not the case, i.e. there exists CS(S) C C' U L/,
Reach(S) N U = 0 and Abs(U) is not avoidable in Abs(S, C’, L'). We will show
by induction that in that case we can construct an unfolding having every node
n such that v(A(n)) C v(CS(S)). Since v(CS(S)) NU = 0, we conclude that
Abs(U) is avoidable and we obtain a contradiction.

Base case: Notice that root = ¢y following C; and Az, and ¢o € v(CS(S5))
following condition CS; of Definition 4. Moreover, by CS; we also conclude that
Post(cg) C v(CS(S)). Hence, following A4, there exists v € V4 (the set of
And-nodes) with v; = v and y(v) C v(CS(S)) since v satisfies the preciseness
property of Az and CS(S) covers the successors of v;. We choose such an
And-node v and add one successor node n to root such that A(n) = v.

Induction step: Suppose that we can construct 2k layers of the unfolding
such that for all the nodes n of the 2k first layers we have that y(n) C y(CS(S)).
Let us show that we can construct 2k + 2 layers such that for all the nodes n of
the 2k + 2 first layers we have that y(n) C v(CS(S)).

By induction hypothesis, all the And-nodes n in the 2k-th layer are such
that A(n) = {di,...,ds} and v(A(n)) C v(CS(S)). Since, following A4 1, all the
successors nodes v of A(n) in Abs(S,C’,L') are such that v € A(n), we have
that v(v) C v(CS(S)). We conclude, following C,, that all the Or-nodes n' of
the 2k + 1-th layer are such that y(A(n')) C v(CS(S5)).

Since following W, S is monotonic, if ¢ = ¢" with ¢ C ¢/, then there exists
c" such that ¢’ C ¢" and ¢’ — ¢"". Moreover, all the nodes n of the 2k + 1-th
layer are such that if ¢ € y(A(n)), then there exists ¢’ € Reach(S) with ¢ C ¢'.
Indeed, if it is not the case, since v(A(n)) C y(CS(S)), CS(S) is not the minimal
downward closed set that contains Reach(S). But following Definition 4 it is
not the case and we obtain a contradiction.

Hence, for all the nodes n of the 2k + 1-th layer we have Post(y(A(n))) C
~v(CS(S)) and there exists following A4 an And-node v with v(v) C (CS(S))
and A(n) = v since v satisfies the preciseness property of Ay > and CS(S) covers
the successors of v(A(n)). So, we choose such a node v and add one successor
n' to n such that A(n') = v. That allows us to conclude that we can construct
the 2k + 2-th first layers of the unfolding such that all the nodes n are such that
Y(A(n)) C CS(S). O
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3.3 The new algorithmic schema

We have now at our disposal all the necessary results to propose a new schema
of algorithms that decide the coverability problem on effective WSTS (in the
sense of Definition 3). Let Sg,S1,...,S, ... be an infinite sequence of finite sets
of reachable states of S such that (i) Vi > 0:S; C Sit1, (i7) Ve € Reach(S) :
3 >0:c€S;, and (i4i) ¢g € So. Let Lo, Ly,...,L,,... be ainfinite sequence of
finite sets of limits such that (i) Vi >0: L; C Liy1, (i) Vle L:3i >0:L € L;
and (#43) T € Lo. The schema is given at Figure 1 and its proof of correctness
is stated in Theorem 3.

Data : a finite representation of a WSTS S = (C, ¢y, —, <) with the ade-
quate limit domain (L, C,~) for (C, <)
Data : a finite representation of upward-closed set of states U C C
begin
1 :=0;
while (true) do
“Expand” Compute S;;
“Enlarge” Compute L;;
“Check” if 3e¢i,...,cr 10 = ... > cp withc; € S; for all0 < j <k
and ¢ € U then return “Reachable”;
else if Abs(U) is avoidable in Abs(S,S;, L;) then return
“Unreachable”;

end

Figure 1: Abstract algorithm

Theorem 3 For any WSTS S with adequate domain of limits (L,C,v) that
are effective, for any upward-closed set U represented by Min(U), Algorithm
at Fig. 1 terminates after a finite amount of time and returns “Reachable” if
Reach(S)NU # (), “Unreachable” otherwise.

Proof. First, notice that S; is finite for all ¢ > 0 and the transition relation —
is decidable (following E,), hence we can decide if there exists a path leading to
U where only states in S; appear (this is also possible because < is decidable).
Moreover, the And-Or graph is constructible, following Lemma 1, and it is
easy to show that the set of Or-nodes Abs(U) is constructible. Hence, we can
effectively test whether Abs(U) is avoidable in Abs(S,S;,L;) (remember that
the avoidability problem is decidable, since it is PTIME-complete).

It remains to prove that the algorithm returns an answer after a finite number
of iterations of the loop.

If Reach(S) NU # @, we have from Theorem 1 that Abs(U) is not avoidable
in Abs(S,S;, L;) for all ¢ > 0. Moreover, since for all ¢ € Reach(S) there
exists j such that ¢ € Sj for all j' > j, there exists ¢ > 0 such that we have
o = ... = ¢ with ¢; € S; for all j such that 0 < j < k and ¢, € U. We
conclude that Algorithm 1 returns “Reachable” if Reach(S) N U # 0.
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If Reach(S)NU = 0, we know that there exists ¢ > 0 and a finite coverability
set CS(S) such that CS(S) C S; U L;. Hence, from Proposition 2 we have that
Abs(U) is avoidable in Abs(S, S;, L;) and we conclude that Algorithm 1 returns
“Unreachable” if Reach(S) N U = 0. O

Remark 1 Note that Theorem 3, that states the adequation and completeness
of our algorithmic schema for the coverability problem of effective WSTS, is
not in contradiction with the result of [12] which establishes that there does not
erist a procedure that always terminates and returns a coverability set for a
large class of WSTS, including ours. Indeed, to establish the correctness of our
algorithm, we only need to ensure that a coverability set will be included at some
point in the sequence of S;’s and L;’s. Nevertheless, given a pair (S;, L;), it
is not possible to establish algorithmically that this pair contains a coverability
set. Also, given a particular set upward-closed U, our algorithm may terminate
before reaching a pair (S;, L;) that contains a coverability set, because the set
U is reachable or because the abstraction constructed from a pair (S;j, L;), with
j <1, is sufficiently precise to prove that U is not reachable.

Remark 2 Note that the constraints on the sequence of L;’s computed by the
algorithm of Fig. 1 may be relared. Indeed, those constraints ensure that the
algorithm eventually considers a set of limits which allows to construct a graph
that is precise enough to decide negative instances of the coverability problem.
However, following Theorem 2, it is sufficient to ensure that there exists i >
0 such that S; U L; contains a coverability set. Hence, only the limits of a
coverability set must appear in the sequence of L;’s.

4 Application to Self-modifying Petri nets

Let us show how to apply the approach proposed in the previous section to
solve the coverability problem for a large subclass of Self-modifying Petri nets
[24] (SMPN), a general extension of Petri nets that includes almost all the
monotonic extensions of Petri nets defined in the literature and for which, so
far, there was no complete forward procedure.

In subsection 4.1, we present our subclass of SMPN, called strongly mono-
tonic self-modifying Petri nets. In subsection 4.2, we instantiate the schema of
algorithm presented in subsection 3.3 to the case of strongly monotonic SMPN.
We first define the set of limits we will consider and how to construct the se-
quences of S;’s and L;’s. Then, we show that in this particular case, the And-Or
graph one obtains is degenerated (Corollary 1). Finally, we deduce a simpler al-
gorithm, that contains a decision procedure for the classical graph reachability
problem instead of the avoidability problem in an And-Or graph.

10
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4.1 Self-modifying Petri nets

A Self-Modifying Petri net [24], SMPN for short, is a tuple (P,7, D™, D* my).
P ={p1,...,pkp} is a finite set of places. A marking is a function m : P - N
that assigns a natural value to each place. In the following, markings are also
seen as tuples in N¥7 where the ith dimension is the value assigned to place
pi- T = {t1,...,tk, } is a finite set of transitions. For any 1 < i < kr and
any 1 < j < kp, Dj; : N** — N and Df; : N** — N describe respectively the
input and output effect of transition ¢; on place p;. Namely, D;; and D;'; are
functions of the marking m of the form a+3),_, . Br-m(pr) where a €N and
BreN for all 1 < k < kp. my is the initial marking of the SMPN.

We define the quasi order xC NFP x N¥P on markings such that (ma,. ..,mg, ) <
(mi,. . ;my,) if mi <mj for all 1 <i < kp. It is well-known that < is a well-
quasi ordering.

A transition ¢; is firable from a marking m if m(p;) > D;;(m) for all p; € P.
Firing t; from m leads to a marking m’ € N¥?  noted m —;, m’, such that, for
any p; € P : m'(p;) = m(p;) + Df;(m) — D;;(m). Given a set S of markings
and a transition t;, Post(S,t;) = {m’' | Im € S : m —;, m'}.

A SMPN P defines a transition system Tp = (N¥? mg, —) where —C NF? x
NP is a transition relation and is such that we have (m, m’) €—, noted m —
m’, if and only if there exists ¢; € T such that ¢; is firable from m and m —;, m’.

A SMPN P is <-monotonic when the underlying transition system 7Tp sat-
isfies the monotonicity property for . A SMPN P is strongly monotonic when
for every transition ¢; and markings m;, my and mgs, the following holds: if
m; —;, mg and my < my, there exists my such that my —;, my and m3 < my.
Obviously, all the strongly monotonic SMPN are <-monotonic.

We say that a transition ¢ is unfirable, whenever there exists no marking m
such that ¢ is enabled in m. In the following, we assume that the SMPN’s we
consider do not contain unfirable transitions. The following lemma defines the
syntactical subclass of SMPN’s that are strongly monotonic.

Lemma 3 Given a SMPN P = (P,T,D~, D% myg) without unfirable transi-
tions, P 1is strongly monotonic if and only if for all't; € T,p; € P: D;; = «
with « € N or D;; = m(p;).

Proof. = Suppose that it is not the case, that is P is strongly monotonic and
there exist ¢; € T,p; € P such that D;; is not of the form a with & € N or

m(p;). Let D;; = 3" p Bk - m(px) + a. We consider two cases:

1.3 > 1or f;f =1and a > 0. In both cases, ¢; is unfirable, which
contradicts the hypothesis.

2. Bj=0o0r B; = Land a = 0. Since D;; is not of the form o or m(p;), there
is k' # j such that By > 0. By hypothesis, t; is firable from at least one
marking m. Let us construct the marking m' as follows: Vpy # pyr € P :
m'(p;) = m(pg), and m'(p) = m(py) + m(p;) + 1. By construction,
m < m' but ¢; is not firable from m’'. Indeed, for ¢; to be firable we

11
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should have m'(p;) = m(p;) > D;;(m') > By - (m(py) + m(p;) +1).
Since Brr > 0, this is not possible. We conclude that P is not strongly
monotonic.

In both cases, we obtain a contradiction.

< We proceed by contradiction. Suppose that P is not strongly monotonic
but for all ¢; € T,p; € P : D;; = a with a € N or D;; = p;. Hence there
exists three markings m;, my and m3 and a transition ¢; such that m; —¢, mg,
m; < my and there do not exist a marking my4 such that my —¢ my4 and
ms X my.

Since mi 5 my and my(p;) > D;; () for all p; € P, ma(p;) > D;;(m>) for
all p; € P. As a consequence, ; is firable from ms. Suppose that ms —;, my.

Let mj, (k € {1,2}) be such that my (p;) = m(p;) — D;;(my) for all p; € P.
Since m; < mo, mj] < mj. Moreover, we have that D;;(ml) < D;;(mg)
for all j such that 1 < j < |P|. Since mg(p;) = mj(p;) + D;;(m;) and
my(p;) = mb(p;) + Dif;(my) for all p; € P, we conclude that m3 < my and we
obtain a contradiction. O

Although strongly monotonic SMPN is a sub-class of SMPN, it remains a
general class of monotonic systems. Indeed, almost all the monotonic extensions
of Petri nets studied in the literature are syntactical sub-classes of strongly
monotonic SMPN, i.e. sub-classes defined by imposing constraints on the linear
expressions defining the effect of transitions. Examples of such extensions are
Petri nets with transfers [9], with reset [6] and Post self-modifying Petri nets
[24]. On the other hand, the other monotonic extensions of Petri nets are not
syntactical sub-classes of strongly monotonic SMPN, but we can construct (in
polynomial time) a strongly monotonic SMPN with the same set of places that is
equivalent to the original net with respect to the coverability problem. Examples
of such extensions are Petri nets with non-blocking arcs [22] and Lossy Petri
nets [8]. So the algorithm that we propose in the next section is a forward
algorithm that decides the coverability problem for all monotonic extensions of
Petri nets proposed in the literature.

4.2 A forward algorithm to decide the coverability prob-
lem for strongly monotonic SMPN

Domain of Limits We will consider the domain of limits (£, .,7(.)) where
L = (NU{+oo})* \ N¥, 5.C (NU {+00})* x (NU {+00})* is such that
(ma,...,mE) e (MY,...,m}) if and only if V1 < ¢ < k : m; < m} where
¢ < +oo for all ¢ € N. ~(.) is defined as: y(m) = {m’' € N¥ | m' 5, m}. In
the following, tuples in £ are called extended markings. It is well-known, see
for instance [25], that the following lemma holds.

Lemma 4 (£, <.,7(.)) is an adequate domain of limits for (N*, ).

Notice that in this case the T element such that v(T) = N is the marking
that assigns +oo to all the places.

12
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Given a strongly monotonic SMPN P, we extend the underlying transition
relation from markings to extended markings by assuming that +o0o + +o00 =
+00, ¢- 400 = +oo for all c € N\ {0}, 0-+00 =0, +oo+c = +oo for all ¢ € Z.
Let us show that the way we have extended the transition relation is well-suited
in the following sense. Let m and m' be two (extended) markings such that
m —; m' for some transition ¢. Then y(m') is the most precise downward
closed overapproximation for Post(y(m),t).

Lemma 5 Let P be a strongly monotonic SMPN with set of transitions T and
m, m’ be two (possibly extended) markings. If m —;, m' for some t; €T, then
v(m') has the two following properties: [covering] Post(y(m),t;) C v(m') and
[preciseness] there is no S C LU NP such that Post(y(m),t;) Cv(S) Cy(m’).

Proof. (Covering) Suppose that the covering property is not verified. In
this case, there exist four (possibly extended) markings m, m’,n and n’; and
a transition ¢; € T such that such that m —;, m', n — n', n € y(m) and
n' ¢ y(m’). Hence, there exists p; € P such that n'(p;) > m'(p;).

Following Lemma 3, the effect of transition ¢; on place p; for a marking 1,
ie. D;’; (1) — D;;(1), may be of two forms. Either D;; M) —-D;(M)=3,,epBk-
1(pi) + @ or D(1) = D5(1) = X, cp B - 1pi) + @ — L(p;) with B € N for
all k and o € Z. Hence, either n'(p;) = n(p;) + >°,, cpBr - n(pr) + @ and
m'(p;) =m(p;) + 3, cp B -nlpr) + o, orn'(p;) =3, pBr-n(pr) +aand
m'(p;) = >, cp Bk -m(pr) +a. In both cases, since n € y(m), n(px) < m(py)
forall p, € P, hence }° pBr-n(pr)+a <3 -pBr-m(py)+a. We conclude
that n'(p;) < m’'(p;) and we obtain a contradiction.

(Preciseness) In order to establish the preciseness property, we prove that
if m —4 m', then any marking n € ~(m’') is covered by a marking n' €
Post(y(m), ;). This clearly implies that the set v(m’) is the minimal downward
closed set that contains Post(y(m),t;), since for any downward closed set D C
~v(m'), there exists at least one marking n € Post(y(m),t;) that is not in D.
The proof is by contradiction. Suppose that it is not the case, thus there exists
n € y(m’) such that there is no n” € Post(y(m),t;) with n < n”.

Let ¢ be such that ¢ > max{|ay/|,...,|ar,|} where a; is the constant term
in D;". — D;.. We first construct the marking n' in the following manner:
n'(p;) = m(p;) if m(p;) € N; otherwise n'(p;) > max{n(px) | pr € P} +c
By construction, n’ € y(m) and t; is firable from n'. Let n’ -, n”. From the
covering property, n” € v(m'). Let us show that n g n".

For all p; € P, two cases hold following Lemma 3 again:

o Dj]_(m) - Dz_](m) = ZpkEP Br - m(pr) + a; — m(pj) with 8 € N for
all ¥ and a; € Z. Either §;, > 0 implies that m(p;) € N for all k.
In that case, n"(p;) = m'(p;). Hence, n(p;) < n"”(p;). Or there is
some pr € P such that 8y > 0 and m(py) = +ooc. By construction,

n"(p;) > max{n(py) | px € P}, hence n(p;) < n"(p;);

o D;;(m) — Di;(m) = 3 cpBr-m(pg) + a; with B € N for all k and
o € Z. By using a similar reasoning than in the previous case, we obtain
that n(p;) < n"(p;).

13
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We conclude that n < n” and we obtain a contradiction. O

Since our algorithm requires the WSTS and its associated domain of limits
to be effective (Definition 3), we state the following lemma, (proof omitted):

Lemma 6 Any strongly monotonic SMPN P with the adequate domain of limits
(L, <e,7(.)) are effective.

The following definition explains how we construct the S;’s and L;’s. Fol-
lowing Definition 6, this is sufficient to define the And-Or graphs built by our
verification algorithm.

Definition 8 The sequences of S;’s and L;’s are defined as follows:

(D1) S; ={0,...,i}*U{mg}, i.e. S; is the set of markings where each place is
bounded by i (plus the initial marking);

(D2) Li={m € {0,...i,+00}F | m ¢ N }.

It is easy to see that (i) for all 4 > 0 : S; C Si41 and L; C L;yq, (44) for
any m € N, there exists i € N such that for all j > i : m € S;, (i) for any
m € L, there exists ¢ € N such that for all j > ¢ :m € Lj, and (iv) mg € Sy
and T € L().

Degenerated And-Or graph Let us show that in the present case, one
obtains a degenerated And-Or graph. We establish this result by showing, fol-
lowing Lemma 2, that the pairs (S;, L;) are perfect pairs. For this purpose,
we first introduce the function Bound(m, k) and establish an auxiliary lemma.
Given a (possibly extended) marking m over set of places P and k € N, we
define Bound(m, k) : (NU {4+00})/¥l — (NU {+00})!¥! such that for any place
p; € P : Bound(m, k)(p;) = m(p;) if m(p;) < k, Bound(m, k)(p;) = +o0 oth-
erwise. The auxiliary lemma is as follows (its proof is trivial and therefore
omitted):

Lemma 7 Given any i € N, let S; and L; be constructed following Definition
8 and m € S; U L;. There does not exist a finite set S C S; U L; such that

7(m) € ¥(S) and y(Bound(m,i))  7(S).

We can now prove that the pairs (S;, L;) constructed according to Defini-
tion 8 are perfect pairs.

Lemma 8 Given a SMPN P = (P, T,D~,D%) with the adequate domain of
limits (L,<e,v(.)) and the sets S; C NF? and L; C L constructed following
Definition 8, any pair (S;, L;) is a perfect pair.

Proof. Let us first define Post(m,i) as the set of maximal elements of
UterBound(Post(m, ¢),i). Following the definition of a perfect pair (Defini-
tion 7), we show that for any (extended) marking m € S; U L;, Post(m, ) is
the unique, minimal and most precise subset of S; U L; to cover Post(y(m)).

14



Submitted for publication to FSTTCS’04
Accepted for presentation to Journées Montoises d’Informatique
Théoriques 2004

From Lemma 7 and Lemma, 5, we have that for any ¢ > 0and m € S; U L; :
Post(m, 7) is such that Post(y(m)) C y(Post(m,)). Moreover, for all m;, m, €
Post(m, 7) : my # my implies my £, my. Let us prove that there does not exist
L C L;US; such that L # Post(m, ), Post(y(m)) C v(L),Vm;,my € L : my #
m, implies m; £, my, and AL’ C S; U L; : Post(y(m)) C v(L') C y(L). If
such a set L does not exist, we conclude that there does not exist L' C S;UL; :
Post(y(m)) C L' C Post(m, ), hence y(Post(m, 7)) is a most precise downward-
closed overapproximation of Post(y(m)), and QPost(m,s) is the unique most
precise downward-closed overapproximation of Post(y(m)). Hence, we conclude
that any pair (S;, L;) is a perfect pair.

We exhibit a reasoning by contradiction. Suppose that there exists L C
S; U L; such that L # Post(m, i), Post(y(m)) C v(L),Vmy,my € L : m; #
m; implies m; £, my, AL’ C L; US; : Post(y(m)) C v(L') C y(L). From
Corollary 6 of [25], we have that for any downward-closed set D C N, there
exists an unique L' C (N U {+o0o})* such that for all m;,ms € L' : m; #
m; implies m; %, my, and y(L') = D. Since Post(m,i) # L, v(Post(m, 7)) #
~v(L). Hence, v(Post(m,i)) Z (L), since v(Post(m,i)) ¢ v(L) by hypothesis,
and there exists n € Post(m,:) such that for all n’ € L we have n %, n'.
Suppose that n = Bound(Post(y(m),;),i) for some ¢t; € T. From Lemma
5 and Lemma 7, we have that there does not exist S C S; U L; such that
Post(vy(m),;) C v(S) and v(n) Z v(S). Hence, since y(Post(y(m), ¢;)) C v(L),
we have that y(n) C y(L), i.e. there exists n' € L : n 5. n’ and we obtain a
contradiction. |

From Lemma 8 and Lemma 2, the following corollary holds.

Corollary 1 Given a strongly monotonic SMPN net P with the adequate do-
main of limits (L, <¢,7(.)) and the sets S; C N*? and L; C L constructed
following Definition 8, Abs(P, S;, L;) is a degenerated And-Or graph.

Algorithm for the coverability problem Let Abs(P,i) be the graph (de-
generated And-Or graph) Abs(P, S;, L;) constructed from P, S; and L;. We note
= its transition relation. We define Reachexact (Abs(P, %)) as the set {m|mg=>
m; =...=m, with V1 < j <n:m; € S;,m, = m} and Reach(Abs(P, 1)) as
the set {m | mg = m; = ... > m, withVl <j <n:m; € S;UL;, m, = m}.
By applying the schema presented in Section 3 to strongly monotonic self-
modifying Petri nets, we obtain the algorithm at Fig. 2. Remark that this
algorithm is incremental: one can compute Reacheyxact (Abs(P,i+1)) by extending
Reachexact (Abs(P, 1)) for all ¢ > 0. Similarly, one can construct Reach(Abs(P, 1))
from Reacheyact (Abs(P,1)).

Theorem 4 The algorithm of Fig. 2 returns “Reachable” if Reach(C)NU # 0,
“Unreachable” otherwise.

We built a first (naive) prototype that implements the algorithm at Fig.
2. We report on its performance in Section 6. Although rather rough, our
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Data : P, a strongly monotonic self-modifying Petri system
Data : Gy, the set of minimal element of the <-upward closed set U.
begin
1+ 1;
while (true) do

if 3m € Reacheyct (Abs(P,4)),m' € Gy : m X m’ then return
“Reachable”;
else
if 7m € Reach(Abs(P,i)),m’' € Gy : m <. m' then return
\; “Unreachable”;
else i+ i+1;

end

Figure 2: A forward algorithm to decide the coverability problem on SMPN.

prototype already performs better than its counterpart based on a backward
approach.

5 Application to Lossy Channel Systems

To show the generality of our new approach, we apply our schema of algorithm
to lossy channel systems, which are systems made up of automata extended
with FIFO channels that may lose messages. We recall the model, define an
adequate domain of limits, show how to construct the sets S;’s and L;’s and
discuss the construction of the And-Or graph.

A Lossy Channel System, LCS for short, is a tuple C = (Q, ¢;, F, %, T) where
@ is a finite set of locations, ¢; € @ is the initial location, F' is a finite set of
channels, ¥ is a finite alphabet, T C @ x Op x Q where Op : F' = |J cx1{%a,!a}.
A state is a pair (¢,W) where ¢ € S, W : F — ¥*. In the following, S¢
will denote the set of states of the LCS C. We define the order 3 on states in
Sc such that for any s = (¢, W),s' = (¢',W') : s 3 ¢ if and only if ¢ = ¢
and W (c) is a (not necessarily contiguous) subword of W'(c) for all c € F, i.e
W (c) is obtained from W'(c) by deleting characters. It is well-known that <
is a well-quasi order (see for instance [2]). A transition ¢ = {(¢1,0p,¢q) € T
is firable from state (q,W) if ¢ = ¢; and for all ¢ € F : Op(c) =?a implies
that W(c) = a - o where ¢ € ¥*. Given a transition ¢ = {¢;,0p, ¢o) firable
from state (g, W), 6({q,W),t) = {¢’,W) such that ¢' = ¢ and for all ¢ € F,
either Op(c) =7a, W(c) = a- o and W'(c) = o, or Op(c) =la, W(c) = o and
W'(c) = o - a. When t is firable from s, firing ¢ from s leads to any state s,
noted s »; &', such that s’ X d(s,t). Given a set S of states and a transition
t, Post(S,t) = {s' | 3s € S : s —; s'}. A LCS C = (Q,q;, F,X,—) defines a
transition system (Sc, sg, —) where sg = (g;, W;) such that W;(c) = ¢ for all
¢ € F and for all 51,80 € S¢ : 51 = so if and only if 3t € T : 53 »>¢ s2. It is
well-known that transition relations defined by LCS are 3-monotonic.
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In the following, we always consider a LCS C =(Q, q;, F, X, T').

Domain of limits Let L(X) be the set of downward closed regular expressions
(de-re) {(a1 + ...+ an)* | V1 < i <mn:a; € X,Ya;,a; : i # j implies that a; #
a;j}U{(a+¢)|aeX}U{e}. A simple regular expression (sre) is either a dc-re
or an expression ajp - ... - a, where V1 < i < n : a; is a dc-re. The size of a sre
is the number of dc-re that compose it. The set of limits is the set £(Z,Q) =
{{¢,E) | ¢ € Q,E : C — L(X)* assigns a sre to each channel®} U {T}. For
(¢, E) € L(E,Q): [{g, E)] denotes the set of pairs (g, W) € S¢ such that W(c)
is a word in the language generated by the regular expression E(c) for all ¢ € C.
We define the function v : S UL(E, Q) — 25¢ such that (i) for all (g, W) € S :
(g, W) = {a, W) | (@, W) 3 (@, W)}, (i) 7(T) = {{a, W) | g € QW (c) €
¥* for all ¢ € C} and (4i3) for all (¢, E) € L(Z,Q)\ {T} : v({q, E)) = [{g, E)]-
We define C : (S¢ U L(Z,Q)) x (Sc U L(E,Q)) as follows : ¢;Cey if and only if
~v(e1) € ¥(c2). The following theorem holds:

Theorem 5 (£(X,Q),C,~) is an adequate domain of limits for (Sc, 3).

Proof. (i) It is easy to show that for any (g,w) € S¢ U L(X), v(w) is 3-
downward closed (see [2]), (i) the element T is such that v(T) is the whole
set of states S¢, (#ii) by definition w; Cws if and only if y(w;) C y(ws) for all
wy,wy € S¢ UL(Y), and (iv) from Theorem 1 of [2] we deduce that if S C S¢ is
3-downward closed, then there exists S’ C S¢ U £(X) such that S’ is finite and
v(S") =S. O

Moreover, the following theorem says that any LCS C with the adequate
domain of limits (£(Z, Q),C,) are effective.

Theorem 6 Any LCS C with the adequate domain of limits (L(X),C,v) are
effective.

Proof. (i) it is easy to show that S¢ and £(X) are recursively enumerable, (i) it
is shown in [2] that the transition relation of LCS is decidable, (ii7) it is shown in
[2] how to compute an operator that returns, given w € ScUL(ZE), w' € ScUL(Y)
such that y(w') = Post(y(w)). By using that operator and since C is decidable
following [2], we conclude that we can decide whether Post(y(w)) C v(w') for
any w,w' € S¢ U L(X), (iv) as noticed in the previous point, an algorithm is
given in [2] to decide whether wCws for any wy, w2 € S¢ U L(X). Moreover,
for any S1,S2 C S¢ U L(X), v(S1) C v(S2) if and only if for all ¢ € Sy, there
exists ¢ € S2 such that ¢ X ¢ (see [2] for proofs). Hence, we can decide for any
finite sets S1, S2 C S¢ U L(X) whether v(S1) C v(S2). O

3We also require that E does not assign ¢ to all the channels because we require in Defi-
nition 1 that the set of limits is disjoint from S¢.
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Construction of the S;’s and the L;’s We construct the sequences of the
Si’s and L;’s as follows. S; = {{¢, W) € S¢c | ¢ € Q,Vec € C : W(c) =
eorW(c) =ar-...-ap,withVl < j < mn:a; € ¥,n < i}, ie. S;is the
set of states where the contents of the channels are words of size at most <.
Similarly, L; = {{¢, E) € L(Z,Q) | ¢ € Q,Vc € C : E(¢c) = eor E(c) =
e1-...-epwithVl<j<mn:e;j € L(X),n <i}U{T}, ie. L; is the set of limits
that assign sre of size of most ¢ to channels (plus the T element).

It is easy to see that (i) S; C Siy1 and L; C L;yq for all 4 > 0, (i) for all
¢ € 8¢ there exists i > 0 such that ¢ € S; and for all £ € L(T, Q) there exists
i > 0 such that £ € L;, (iii) {g;, W;) € So where Vc € C : Wi(c) = € and (iv),
by construction T € Lg.

Construction of the And-Or graph In order to construct the And-Or
graph, we need to construct the set of Or-nodes (point A;), the set of And-nodes
(point Ay) and the transition relation between nodes (points A4.1 and As3). The
two first points are obvious. Let us focus on the construction of the transition
relation. Given the two sets S; and L; as defined above, the successors of And-
nodes are computed as follows. For any And-node n € 25:“Li \ {}}, we have
(n,n'y €= if and only if n’ € n. In order to define the successors of an Or-node,
we need the following functions. Let Post(_,.) : (ScUL(S, Q))xT — ScUL(S, Q)
be the partial function defined in [2] such that Post(¢,t) = ¢’ and Post(y(£),t) =
~(¢) if t is firable from ~(£), otherwise Post(¢,t) is undefined. In other words,
F;c;;t(y(ﬁ),t) returns the element ¢’ in S¢ U L(X, Q) such that v(¢') is the set of
successors of y(£) by firing t. The partial function App(4,t,4) : (S¢c UL(E,Q)) x
T x N — 25¢UL(Q) i such that App(£,t,9) is defined if ¢ is firable from y(¢). In
that case, App({,t,i) = Post(ﬁ t) if Post(€ t) € S; U L;, otherwise App(¢,t,i) =

{¢' € S;UL; | Post(¢, )¢, —~3¢" € S; U L; : Post(¢, t)CO"EL'}. If t is unfirable
from ~y(¢), App(¢,t,4) is undefined for all 4 > 0. In other words, when App(¥,t,1)
is defined, it returns 56&(@, t) if it is in the set S; U L; of states and limits that
we consider during the construction of the graph, otherwise it returns the set of
elements £' € S;UL; such that y(¢') is a best overapproximation of v (Post(Z, t)).
Notice that we can always construct App(4,t,) since Iggs/t(ﬂ, t) is constructible
[2], S; and L; are finite and C is decidable. Let Firable(¢) = {t1,...,t, } be the
set of ky transitions that are firable from v(¢) and Post(¢,i) = {S C S; U L; |
deg,..ooch, € SiUL; VI < j < kp:tj € Firable(ﬁ),cj € App(ﬁ,tj,i),c €
Sifand only if 31 < j < k¢ : ¢ = ¢;}, i.e. Post(l,i) is the set of sets of
elements in S; U L; that represent an over-approximation of the successors of
~v(£). Sets in Post(£,4) satisfy the covering property of point Ag >, but they may
not be minimal, i.e. they could contain two elements that are ordered, and they
may not represent most precise overapproximations of the set of successors. For
any n € Vp, we define the set Succ(n,i) of successor And-nodes of n such that
Succ(n,i) = {S C S; U L; | 3S" € Post(n,i) : S C 5',v(S) = v(5'),VYe1,c2 €
S :¢1 # co implies ¢1Zco, BS" € Post(n,4) : v(S”) C y(S)}. That is Succ(n, )
is the set of most precise and minimal approximations of the set of successors

18



Submitted for publication to FSTTCS’04
Accepted for presentation to Journées Montoises d’Informatique
Théoriques 2004

| case study |P| T | Post | Pre |
Consprod 18 | 16 0.37s 30.75s
Consprod?2 18 | 16 0.36s 1.36s
delegate_notify All 50 | 54 1.82s >10h
example_lea 48 | 44 17.14s >10h

lea_basic_approach | 16 | 14 0.36s 0.35s
lea_conflict_set 30| 37 9.8s 121.45s
Queued_busy flag 82 | 105 | 10m23s | >10h
simple_Java_example | 30 | 37 | 38.87s 6.96s
transthesis 90 | 118 47m 37m

Table 1: Results obtained on a Pentium 4 3GHz with 4GB of memory. P :
number of places, T : number of transitions, Post : execution time of algorithm
at Figure 2, Pre : execution time of the classical backward approach [1].

of v(n). That set is constructible since Post(¢, ) is constructible and, following
Theorem 6 and so E4 of Definition 3, v(S) C ~(S’) is decidable for any finite
S,58"CScULKE, Q).

6 Practical results

We have built a (naive) prototype that implements the algorithm presented
at Fig. 2 and applied it to the verification of counting abstractions of multi-
threaded JAVA programs [11, 25]. We compare those results with the execution
times obtained by applying the standard backward algorithm for well-structured
transition systems [1]. The comparison is fair since we have built both proto-
types around the same data-structure called Covering Sharing Trees (see [25]).
The results are reported in Table 1.

7 Conclusion

In this paper, we have defined a new approach to solve the coverability problem
of WSTS, which we call “Expand, Enlarge and Check”. When applied to a
large class of monotonic counter systems (the strong monotonic Self-modifying
Petri nets), our approach produces an algorithm that uses forward analysis
to decide the coverability problem. Up to now, such a forward approach was
known only for Petri nets (the Karp and Miller algorithm), a restricted sub-
class of strong monotonic SMPN. We have demonstrated the generality of our
approach by showing how to apply the algorithmic schema to lossy channel
systems. Preliminary implementation results are encouraging and confirm that
forward verification algorithms are usually more efficient than backward verifi-
cation algorithms.
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Future works The most important future work will be to go on with the
implementation for SMPN. We also plan to build a prototype to verify LCS and
Timed Petri nets.
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