
���������	�
��������� ��� � �������������������

 "!$#&%('*)+#-,(.0/0!2143(5768'(9(:<;*!&5>=*?*?4@BAC=*D

E FHG�I<JLKNMPOQISR<T<UWVYX Z[F�\^] IQU7X_OS`>IYG abUdceISG fhgi`�Fjclkm`nk

 S%o3[:8,oprqN5s)t%&,vu-!xwny25z3{'*)}|[9o!�qN5�9~uv�25z!<�~!$,('$���(5�,('&�v3�)+pQ/",op��&)t'

%~6�6�1��C�*�o�����8AL9(.C;�AC,A�;*!$�4�{)��&p�p����4#����
 i%*)+p���3(5��r��,opx1&,25�6d)},(.t. u�p�9(1(1*3(576�!-�j;�u�,H��/��(���[5z,�'~6���=BA}@*�(D4?BAC?4=

Model-Checking for Weighted Timed Automata?

Thomas Brihaye1, Véronique Bruyère1, and Jean-François Raskin2

1 Institut d’Informatique, Université de Mons-Hainaut,
Avenue du Champ de Mars 6, B-7000 Mons, Belgium

2 Département d’Informatique, Université Libre de Bruxelles,
Boulevard du Triomphe CP 212, B-1050-Bruxelles, Belgium

Abstract. We study the model-checking problem for weighted timed automata and the
weighted CTL logic by the bisimulation approach. Weighted timed automata are timed au-
tomata extended with costs on both edges and locations. When the costs act as stopwatches,
we get stopwatch automata with the restriction that the stopwatches cannot be reset and
tested. The weighted CTL logic is an extension of TCTL that allow to reset and test the cost
variables. Our main results are (i) the undecidability of the proposed model-checking problem
for discrete and dense time, (ii) its PSpace-Completeness in the discrete case for a slight
restriction of the logic, (iii) the precise frontier between finite and infinite bisimulations in the
dense case for the subclass of stopwatch automata.

1 Introduction

During the last decade, hybrid automata have been widely studied and especially the reachability
problem for hybrid automata. In this article, we study a model-checking problem for a particular
class of hybrid automata. Our motivation is the important open problem of model-checking timed
automata extended with stopwatches used as observers [1].

We consider the model of weighted timed automata, which is an extension of timed automata
with tuples of costs on both edges and locations. This model has been independently introduced in
[6] and [7] (with single costs instead of tuples of costs).

The properties of weighted timed automata that we want to check are formalized by formulas of
the weighted CTL logic, WCTL for short. This logic is close to the DTL logic of [8] and the ICTL
logic of [2].

Our approach is a systematic study of the tool bisimulation as done in the works [10] and [11].
Indeed when the transition system of an hybrid automaton has a finite bisimulation that can be
constructed effectively, the reachability problem and the model-checking problem are decidable. For
instance this technique has been successfully applied to timed automata thanks to the region graph.
However the converse does not hold in general.

Related works. There are few results on the model-checking of hybrid automata. Indeed the wide
study of the particular case of the reachability problem has identified a frontier between decidability
and undecidability. Among the numerous results about this problem, let us mention the following
ones. The important class of initialized rectangular automata has a decidable reachability problem;
however several slight generalizations of these automata lead to an undecidable reachability problem,
in particular for timed automata augmented with one stopwatch [14]. The reachability problem is
already undecidable for the simple class of constant slope hybrid systems which are timed automata
augmented with integrators; the reachability problem becomes decidable when the integrators are
used as observers (they are neither reset nor tested) [15]. The latter case has also been studied in [1].

? Supported by the FRFC project “Centre Fédéré en Vérification” funded by the Belgian National Science
Foundation (FNRS) under grant nr 2.4530.02

Of course the well-known class of timed automata has a decidable reachability problem [5]. Recently
the minimum-cost reachability problem has been introduced, that is, determine the minimum cost
of runs of a weighted timed automaton from an initial location to a target location. This problem
has been proved decidable independently in [6] and [7].

Concerning the model-checking problem of hybrid systems, let us mention two references. In [2], a
model-checking procedure and its implementation in the HyTech tool are proposed for linear hybrid
automata and the ICTL logic. This procedure is not guaranteed to terminate. In [8], the model-
checking problem is proved to be decidable for some fragments of the DTL logic and a restrictive
class of weighted timed automata.

Our contribution. In this paper, we investigate the WCTL model-checking problem for weighted
timed automata. The weighted timed automata can be seen as constant slope hybrid systems where
the integrators are used as observers and the edges have been enriched with costs. We have chosen
this class of hybrid automata since they have a decidable reachability problem, even in the case
of minimum cost. We also focus on the subclass of automata with stopwatch observers, which are
weighted timed automata such that every integrator is a stopwatch. The WCTL logic is similar
to the ICTL logic. Formulas allow the two actions forbidden in the weighted timed automata : to
reset integrators and to test them. This logic is a natural extension of the TCTL logic to formulate
properties about integrators instead of the total elapsed time.

Our first result is the undecidability of the model-checking problem. This proves that there are
situations where the model-checking procedure of [2] will never terminate, even for classes of hybrid
automata with a decidable reachability problem. What is surprising is that the undecidability holds
even for the discrete time, a case where positive results usually happen. The proof is based on the
halting problem for 2-counter machines, with its reduction distributed to both a weighted timed
automaton and a WCTL formula. To the best of our knowledge, this approach is new1. This proof
works for automata with stopwatch observers equipped with 1 clock and 3 integrators and for WCTL
formulas where two integrators are compared.

In the sequel of the paper, we limit our study to the WCTLr logic, that is, WCTL where
integrators can only be compared with constants. One way to prove that the model-checking problem
is decidable is the effective construction of a finite bisimulation for weighted timed automata. This
is the approach already proposed in [10] and [11]. The effectiveness is always guaranteed as our
automata are particular linear hybrid automata.

For discrete time, when working with the WCTLr logic, we show that the bisimulations are
always finite. It follows that the WCTLr model checking problem for weighted timed automata is
PSpace-Complete.

However for dense time, the panorama completely changes. In this case, we identify the precise
frontier between finite and infinite bisimulations for automata with stopwatch observers. Our results
are the following. There exist automata with stopwatch observers that have no finite bisimulations
already with 2 clocks and 1 integrator, or with 1 clock and 2 integrators. This is no longer true
with 1 clock and 1 integrator. It was a difficult task to find automata with stopwatch observers
with a small number of clocks and integrators for which no finite bisimulation exists; our proofs are
involved. The reason is that stopwatches cannot be reset and tested in these automata.

2 Weighted Timed Automata

In this section, we introduce the notion of weighted timed automaton, which is an extension of
timed automata with costs on both locations and edges. We begin with the usual notations on timed
automata.

1 with the exception of reference [9] where we have followed the same approach.

Notations. Let X = {x1, . . . , xn} be a set of n clocks. The same notation x = (x1, . . . , xn) is used
for the clock variables and for an assignment of values to these variables. Depending on whether
the time is dense or discrete, the values are taken in domain T equal to the set R+ of nonnegative
reals or to the set N of natural numbers. Given a clock assignment x and τ ∈ T, x + τ is the clock
assignment (x1 + τ, . . . , xn + τ). The set G denotes the set of guards which are finite conjunctions of
atomic guards of the form xi ∼ c where xi is a clock, c ∈ N is an integer constant, and ∼ is one of
the symbols {<,≤,=, >,≥}. Notation x |= g means that the clock assignment x satisfies the guard
g. A reset r ∈ 2X indicates which clocks are reset to 0, that is, x′ = [xi := 0]xi∈rx. We use notation
Σ for the set of atomic propositions.

Definition 1. A weighted timed automaton A = (L,E, I,L, C) has the following components: (i) L
is a finite set of locations, (ii) E ⊆ L×G×P(X)×L is a finite set of edges, (iii) I : L→ G assigns
an invariant to each location, (iv) L : L → 2Σ is the labeling function and (v) C : L ∪ E → Nm

assigns a m-uple of costs to both locations and edges.
An automaton with stopwatch observers is a weighted timed automaton such that for every location
l, C(l) ∈ {0, 1}m (instead of Nm).

The concept of weighted timed automata has been independently introduced in [6] and [7] (with
single costs instead of m-uples of costs). In the previous definition, we say that C(l) (resp. C(e)) is
the cost of location l (resp. edge e). We will sometimes use the notation ż1 = d1, . . . , żm = dm at
location l instead of C(l) = (d1, . . . , dm); the variables z = (z1, . . . , zm) are called cost variables2.
Note that the variables z1, . . . , zm cannot be reset and not tested in weighted timed automata, they
are just observers. When an edge e or a location l has null costs, that is, C(e) = 0 or C(l) = 0, we
say that it has no cost. When an edge has no cost, nor reset and a guard that is always true, it is
called an empty edge.

Definition 2. The semantics of a weighted timed automaton A is defined as a transition system
TA = (Q,→) with a set of states Q equal to {(l, x, z) | l ∈ L, x ∈ Tn, x |= I(l), z ∈ Tm} and a

transition relation → =
⋃

τ∈T

τ
→ defined as follows

(l, x, z)
τ
→ (l′, x′, z′)

– case τ > 0 (elapse of time at location l) : l = l′, x′ = x+ τ and z′ = z + C(l) · τ ,
– case τ = 0 (instantaneous switch) : (l, g, r, l′) ∈ E, x |= g, x′ = [xi := 0]xi∈rx and z′ = z+C(e).

In the previous definition, note that the value of τ (strictly positive, or null) indicates an elapse
of time or an instantaneous switch. The m-tuple z of a state (l, x, z) indicates global costs that
accumulate the individual costs described by the function C : either the cost rate of staying in a
location (per time unit), or the cost of an edge. A transition (l, x, z)

τ
→ (l′, x′, z′) is shortly denoted

by q → q′ (it is easy to compute the unique τ such that q
τ
→ q′). When τ > 0, we also shortly denote

by q + τ the state q′ of the transition q
τ
→ q′.

Definition 3. Given a transition system TA, a run ρ = (qi)i≥0 is an infinite path in TA

ρ = q0
τ0→ q1

τ1→ q2 · · · qi
τi→ qi+1 · · ·

such that Σi≥0τi = ∞ (divergence of time). A finite run ρ = (qi)0≤i≤j is any finite path in TA. A
position in ρ is any state qi or qi +τ with 0 < τ < τi. The set of positions in ρ can be totally ordered.

We illustrate the definitions with the classical example of the gaz burner system.

2 This notation comes from automata with integrators, the variables z1, . . . , zm being the integrators, see
for instance [15].

Example 1. The weighted timed automaton of Figure 1 represents a gaz burner system with two
locations l and l′, one where the system is leaking and the other where it is not leaking. There
is 1 clock variable x to express that a continuous leaking period cannot exceed 1 time unit and
two consecutive leaking periods are separated by at least 30 time units. There are 3 costs variables
z1, z2, z3 such that z1 describes the total elapsed time, z2 the accumulated leaking time and z3 the
number of leaks.

l l′

leak

(1, 1, 0)
x ≤ 1

(1, 0, 0)

x ≤ 1 x := 0

(0, 0, 1)

x ≥ 30 x := 0

(0, 0, 0)

Fig. 1. The gaz burner system.

3 Weighted CTL Logic and Model-Checking

In this section, we introduce the weighted CTL logic, WCTL logic for short (close to the ICTL logic
of [2]). Two logics, discrete and dense, are proposed according to discrete or dense time.

Notations. As done previously for clocks, the same notation z = (z1, . . . , zm) is used for the cost
variables and for an assignment of values to these variables. A cost constraint π is of the form zi ∼ c

or zi − zj ∼ c where zi, zj are cost variables and c ∈ N is an integer constant. Notation z |= π means
that the cost assignment z satisfies the cost constraint π. Notation σ means any atomic proposition
σ ∈ Σ.

Definition 4. The syntax of the discrete WCTL logic is given by the following grammar

ϕ ::= σ | π | ¬ϕ | ϕ ∨ ϕ | ∃© ϕ | ϕ∃Uϕ | ϕ∀Uϕ | zi · ϕ

Dense WCTL formulae are defined in the same way, except that operator ∃© is forbidden.

The WCTL logic uses freeze quantifiers “zi ·” on the cost variables zi, 1 ≤ i ≤ m. This logic allows
to reset such variables and to test them. These actions are forbidden in weighted timed automata,
where the cost variables are only observers. Note that the TCTL logic [4] is a particular case of
WCTL when each cost variable zi describes the total elapsed time.

We restrict ourselves to closed WCTL formulas ϕ such that every occurrence in ϕ of a cost
variable zi is bound by a freeze quantifier. We also impose that different freeze quantifiers bind
different cost variables. Typical abbreviations for WCTL formulas include the standard operations
∃�, ∀�, ∃♦ and ∀♦.

We now give the semantics of WCTL.

Definition 5. Suppose T = N. Let A be a weighted timed automaton and q = (l, x, z) be a state of
the transition system TA of A. Let ϕ be a discrete WCTL formula. Then the satisfaction relation
q |= ϕ is defined inductively as indicated below. In case T = R+ and ϕ is a dense WCTL formula,
the satisfaction relation is defined in the same way, except that q |= ∃© ϕ does not exist.

– q |= σ iff σ ∈ L(l);
– q |= π iff z |= π;
– q |= ¬ϕ iff q 6|= ϕ;

– q |= ϕ ∨ ψ iff q |= ϕ or q |= ψ;

– q |= ∃© ϕ iff there exists a run ρ = (qi)i≥0 in TA with q = q0 and q0
τ
→ q1 satisfying τ = 0 or

τ = 1, such that q1 |= ϕ;
– q |= ϕ∃Uψ iff there exists a run ρ = (qi)i≥0 in TA with q = q0, there exists a position p in ρ such

that p |= ψ and p′ |= ϕ for all p′ < p;
– q |= ϕ∀Uψ iff for any run ρ = (qi)i≥0 in TA with q = q0, there exists a position p in ρ such that
p |= ψ and p′ |= ϕ for all p′ < p;

– q |= zi · ϕ iff (l, x, [zi := 0]z) |= ϕ.

Let us come back to the gaz burner system of Example 1 and formalize some properties by
WCTL formulas.

Example 2. Consider the first property “there exists a run with an average leaking time always
bounded by 0.5” (in other words, 2z2 ≤ z3). Since the cost constraints π allowed in WCTL are of
the form zi ∼ c or zi − zj ∼ c, we replace the cost C(l) = (1, 1, 0) by (1, 2, 0) in the automaton of
Figure 1. The WCTL formula for the given property is therefore

z2 · z3 · (∃�z2 ≤ z3).

The next property we want to formalize is “in any time interval longer than 60 time units, the
accumulated leaking time is at most 5% of the interval length” (that is, z1 ≥ 60 ⇒ 20z2 ≤ z1).
Again we have to modify the automaton by replacing C(l) by (1, 20, 0). The related WCTL formula
is

z1 · z2 · (∀�z1 ≥ 60 ⇒ z2 ≤ z1).

Finally, the property “there exists a run such that the accumulated leaking time is at most 5% of the
time interval length and the average leaking time is bounded by 0.5, until the system never leaks”
is formalized as

z1 · z2 · z3 · ((z2 ≤ z1 ∧ z2 ≤ z3) ∃U (∀�¬leak))

if C(l) is replaced by (1, 20, 0) and C(l, x ≤ 1, x := 0, l′) by (0, 0, 10).

The problem that we want to study in this article is the following model-checking problem, for
discrete and dense time.

Problem 1. Given a weighted timed automaton A and a state q of TA, given a WCTL formula ϕ,
does q |= ϕ hold ? (T = N or T = R+)

The next theorem states that this problem is undecidable, already for automata with stopwatch
observers.

Theorem 1. In both cases of discrete and dense time, the WCTL model-checking problem for au-
tomata with stopwatch observers is undecidable.

Corollary 1. Problem 1 is undecidable.

Proof. (of Theorem 1) The proof is based on a reduction of the halting problem for a 2-counter
machine. We recall that a machine with 2 counters C1 and C2 can be described by a linear labeled
program allowing the following basic instructions :

– k : goto k′ ;
– k : if Ci > 0 then goto k′ else goto k′′ ;
– k : Ci := Ci + 1 ;
– k : Ci := Ci − 1 (this operation is not defined if Ci = 0) ;
– k : stop .

The emulation of the 2-counter machine is done partly by an automaton with stopwtach observers
A and partly by a WCTL formula ϕ. Suppose that the first label of the program is k0 and the last
instruction is a stop instruction labeled by kt. The 2 counters are encoded by 3 cost variables as
follows

C1 = z1 − z2, C2 = z1 − z3.

The automaton A = (L,E, I,L, C) has 1 clock x and no cost on its edges. The set Σ of atomic
propositions labeling L contains an atomic proposition σk for each label k of the program and 4
additional atomic propositions ρ1, ρ

′
1, ρ2 and ρ′2. The set L contains a location for each label k of

the program, which is labeled by σk; it contains additional locations.
The goto and stop instructions are easily encoded in A. The instruction for incrementing counter

C1 is encoded by the subautomaton given in Figure 2. The subautomaton for incrementing C2 is
similar except that the cost of the central state is (1, 1, 0).

σk

(0, 0, 0) (1, 0, 1)
x ≤ 1

σk+1

(0, 0, 0)
x := 0 x = 1

Fig. 2. Incrementing counter C1.

σk

(0, 0, 0)

(0, 1, 0)

ρ1

x ≤ 1

(0, 0, 0)

ρ′

1

σk+1

(0, 0, 0)

x := 0 x = 1

Fig. 3. Decrementing counter C1.

The instruction for decrementing counter C1 is encoded in Figure 3. The atomic proposition ρ1

is a witness that C1 > 0 while ρ′1 is a witness that C1 = 0. Since the automaton A is not allowed to
test its cost variables, the formula ϕ will check if C1 = 0 or C1 > 0 depending on the values of z1
and z2. A similar subautomaton is given for counter C2 with atomic propositions ρ2 and ρ′2.

The if instruction is encoded similarly to the decrementation instruction, see Figure 4. Again ϕ
will check which case occurs.

σk

(0, 0, 0)

ρ1

(0, 0, 0)

ρ′

1

(0, 0, 0)

σk′

(0, 0, 0)

σk′′

(0, 0, 0)

Fig. 4. If instruction with test on C1.

σk

(0, 0, 0)

(1, 0, 1) σk+1

(0, 0, 0)

Fig. 5. Incrementing counter C1 with
no cost in the locations.

Let us now give formula ϕ :

σk0
∧ z1 · z2 · z3 ·

((

ρ1 ⇒ z1 − z2 > 0 ∧ ρ′1 ⇒ z1 − z2 = 0
∧ ρ2 ⇒ z1 − z3 > 0 ∧ ρ′2 ⇒ z1 − z3 = 0

)

∃U σkt

)

.

Clearly, the 2-counter machine halts on the instruction stop labeled by kt iff q |= ϕ for the state
q equal to (l0, 0, 0, 0, 0) where l0 is the location labeled by k0. It follows that the model-checking
problem is undecidable.

Comments. The previous proof works for discrete or dense time. The automaton A is an automaton
with stopwatch observers using 1 clock x and 3 cost variables z1, z2, z3. All its edges have no cost.
The formula ϕ uses cost constraints of the form zi − zj ∼ 0.

The proof can be easily adapted if one prefers an automaton with all its locations having no cost.
In this case, A has no clock and again 3 cost variables. In Figure 5 an incrementation of counter
C1 is depicted. The formula ϕ remains identical. One can imagine a third proof with 1 clock and 3
cost variables, as a mix of both previous approaches, such that there exist non null costs on certain
locations and on certain edges.

In the sequel of the article, we will work with the WCTL logic restricted to cost constraints π of
the form zi ∼ c. It is denoted WCTLr. The related model-checking problem is the following one.

Problem 2. Given a weighted timed automaton A and a state q of TA, given a WCTLr formula ϕ,
does q |= ϕ hold ? (T = N or T = R+)

4 Bisimulations

In the sequel of the article, we want to study Problem 2 thanks to bisimulations. We recall in this
section useful notions on bisimulations (see [10] or [3]).

Definition 6. Let A be a weighted timed automaton and TA = (Q,→) its transition system. A
bisimulation of A is an equivalence relation ≈ ⊆ Q×Q such that for all q1, q2 ∈ Q, q1 ≈ q2,

– whenever q1
0
→ q′1 with q′1 ∈ Q, there exists q′2 ∈ Q such that q2

0
→ q′2 and q′1 ≈ q′2 ;

– whenever q1
τ
→ q′1 with τ > 0 and q′1 ∈ Q, there exist τ ′ > 0 and q′2 ∈ Q such that q2

τ ′

→ q′2 and
q′1 ≈ q′2.

A bisimulation ≈ is finite if it has a finite number of equivalence classes. It is said to respect a
partition P of the set Q if any P ∈ P is a union of equivalence classes of ≈. A set P ⊆ Q will be
sometimes called a region.

Given a region P ⊆ Q, the set Pre(P) of predecessor states of P is defined as Pre0 or Pre>0

according to both kinds of transitions : instantaneous switch or elapse of time, by

Pre0(P) = {q ∈ Q | ∃q′ ∈ P q
0
→ q′};

Pre>0(P) = {q ∈ Q | ∃q′ ∈ P ∃τ > 0 q
τ
→ q′}.

A crucial property of a bisimulation ≈ is that for every equivalence class P of ≈, the predecessor
Pre(P) is a union of equivalence classes. It follows that the coarsest bisimulation respecting a
partition P0 can be computed by the next procedure.

Procedure Bisim.
Initially P := P0 ;
While there exist P, P ′ ∈ P such that ∅ (P ∩ Pre(P ′) (P , do

P1 := P ∩ Pre(P ′), P2 := P \ Pre(P ′)
P := (P \ {P}) ∪ {P1, P2} ;

Return P .

Proposition 1. Let A be a weighted timed-automaton. The procedure Bisim terminates iff the coars-
est bisimulation of A that respects a partition P is finite.

An important property of bisimulations is that they preserve WCTLr formulas if they respect a
well-chosen initial partition. We omit the proof since it is similar to the proof given in [4] for timed
automata and the TCTL logic.

Proposition 2. Let A be a weigthed timed automaton and ϕ be a WCTLr formula. If A has a
bisimulation that respects the partition P induced by

1. the atomic propositions σ labeling the locations of A,
2. the cost constraints π appearing in ϕ,
3. the reset of the cost variables in ϕ (operator z·),

then for any states q, q′ of TA such that q ≈ q′, we have q |= ϕ iff q′ |= ϕ.

As a consequence of this proposition, it can be proved that if each step of Procedure Bisim is
effective and if this procedure terminates, then Problem 2 is decidable. Note that the effectiveness
hypothesis is not necessary since weighted timed automata are linear hybrid automata for which the
effectiveness of Procedure Bisim is known [10].

Corollary 2. If a weighted timed automaton A has a finite bisimulation respecting the partition of
Proposition 2, then the WCTLr model-checking problem is decidable.3

To conclude this section, let us recall the classical bisimulation ≈t for timed automata [5]. Let
TA be the transition system of a timed automaton A. Let C ∈ N be the supremum of all constants
c used in guards of A. For τ ∈ T, τ denotes its fractional part and bτc its integral part.

Definition 7. Two states q = (l, x), q′ = (l′, x′) of TA are equivalent, q ≈t q
′, iff the following

conditions hold

– l = l′ ;
– For any i, 1 ≤ i ≤ n, either bxic = bx′ic or xi, x

′
i > C ;

– For any i 6= j, 1 ≤ i, j ≤ n such that xi, xj ≤ C, xi ≤ xj iff x′i ≤ x′j ;
– For any i, 1 ≤ i ≤ n such that xi ≤ C, xi = 0 iff x′i = 0.

Note that for discrete time, only the first two conditions have to be considered in this definition.
Thus given a clock xi, its possible values in an equivalence class are 1, 2, . . ., C and C+ = {n ∈
N | n > C}.

5 Frontier between Finite and Infinite Bisimulations

In this section, we study Problem 2 with the approach of Corollary 2. We begin with the simple case
of discrete time before studying the more complex case of dense time.

5.1 Discrete Time

Theorem 2. Let T = N. Any weigthed timed automaton has a finite bisimulation respecting the
partition P of Proposition 2.

Proof. (Sketch) This result is proved in [13] for more general automata which are the discrete-time
rectangular automata, but without costs on the edges. However, the proposed bisimulation remains
valid for weighted timed automata. It is the usual bisimulation of timed automata (see Definition 7)
adapted as follows : the cost variables are treated as clock variables, and constant C is the supremum
of the constants used in the guards of A and in the cost constraints of ϕ.

3 The same result holds for WCTL (instead of WCTLr) if the cost constraints in Condition 2 of Proposition 2
are general constraints zi ∼ c or zi − zj ∼ c.

Corollary 3. Let T = N. The WCTLr model-checking problem for weigthed timed automata is
PSpace-Complete.

Proof. (Sketch). The PSpace-Hardness is a direct consequence of the fact that TCTL model-
checking on timed automata is PSpace-Complete [4]. The PSpace-Easiness is established using
classical arguments, see [4]. First note that the number of equivalence classes of the bisimulation
given in the proof of Theorem 2 is bounded by an exponential in the size of the input of the model-
checking problem (sum of the sizes of the automaton and the formula). We can turn the usual
labeling algorithm used for CTL-like logics into a nondeterministic algorithm that uses polynomial
space and computes the labels of regions as they are required. By Savitch’s theorem, we know that
there also exists a deterministic version of this algorithm that uses polynomial space.

5.2 Dense Time

For dense time, the panorama is completely different. We will identify the precise frontier between
finite and infinite bisimulations for the subclass of automata with stopwatch observers.

By Theorem 1, for WCTL, we know that there exist automata with stopwatch observers using
1 clock and 3 cost variables for which any bisimulation respecting the partition P of Proposition 2
is infinite. The next theorem states that, for WCTLr, it is already the case with 1 clock and 2 cost
variables, as well as with 2 clock and 1 cost variables4.

Theorem 3. Let T = R+. There exists an automaton with stopwatch observers A using either 1
clock and 2 cost variables, or 2 clock and 1 cost variables, such that no bisimulation respecting the
partition P of Proposition 2 is finite.

Proof. The two automata that we are going to consider are given in Figures 6 and 7. Note that these

x := 0

ż1 = 0

ż2 = 0

ż1 = 1

ż2 = 0

ż1 = 0
ż2 = 1

ż1 = 1
ż2 = 1

Fig. 6. 1 clock and 2 cost variables.

x1 := 0

x2 := 0

ż = 0 ż = 1

Fig. 7. 2 clocks and 1 cost variables.

automata have empty edges and no labeling of the locations by atomic propositions.
The proof is based on Procedure Bisim and Proposition 1 with the initial partition P given in

Proposition 2. Note that Condition 1 of Proposition 2 is trivially satisfied.
Due to the form of the two automata, instead of P , we use the partition of Definition 7 such

that the cost variables are treated as clock variables. Let us motivate this choice for the automaton
of Figure 6. We limit ourselves to x, z1, z2 ∈ [0, 1]3 instead of (R+)3 for the needs of the proof. At
location where ż1 = ż2 = 1, the behavior of z1, z2 is the one of a clock. It follows that Procedure
Bisim leads to the partition of Definition 7 [5]. Now, again by Procedure Bisim, this partition is
transfered to the other locations, by applying Pre0 on the empty edges of the automaton.

4 We were able to establish this result partly with the help of the HyTech tool [12].

(1) 1 clock variable x and 2 cost variables z1, z2.
Let us show that Procedure Bisim does not terminate because it generates an infinite number

of regions Rn, n ≥ 1, each containing exactly one triple (x, z1, z2) such that5

(x, z1, z2) = (0,
1

3n
,
3n + 1

2 · 3n
).

(a) We need to work with a particular region generated by the procedure (see Figure 8)

S : 0 = x < z1 < z2 < 1, 2z2 − z1 = 1.

It is constructed as (see Figure 9)

– S′ = Pre>0(P1) ∩ P2 with P1 : 0 < z1 = z2 < x = 1, P2 : 0 < z1 < z2 = x < 1, and ż1 = 1,
ż2 = 0,

– S = Pre>0(S
′) ∩ P3 with P3 : 0 = x < z1 < z2 < 1, and ż1 = ż2 = 0.

0

1

2

1
z2

z1

Fig. 8. Region S (x = 0).

z1 = z2 x P1

z2 = xz1 S′

x z1 z2 S
0 1

Fig. 9. Its construction.

Looking at the bold intervals in Figure 9, we see that on line S, we have z2 − z1 = 1− z2. It follows
that 2z2 − z1 = 1 must be satisfied in S.
(b) The first region R1 = {0, 1

3
, 2

3
} is then constructed as (see Figures 10 and 11)

– R′
1 = Pre>0(P1) ∩ P2 with P1 : 0 < x = z1 < z2 = 1, P2 : 0 = x < z1 < z2 < 1, and ż1 = 0,

ż2 = 1,
– R1 = Pre0(R

′
1) ∩ S.

0

1

2

1

2

1

z2

z1

R1

R′

1

Fig. 10. Region R1.

z2x = z1 P1

x z1 z2 R′

1

0 1

Fig. 11. Its construction.

5 When speaking about the constructed regions, we can omit the locations since the empty edges transfer
the information to each location.

Looking at the bold intervals in Figure 11, one verifies that R′
1 is the region

R′
1 : 0 = x < z1 < z2 < 1, z1 + z2 = 1.

In Figure 10, the intersection of R′
1 and S, which is nothing else than R1 = Pre0(R

′
1) ∩ S, is the

point (0, 1

3
, 2

3
).

(c) It remains to explain how to construct Rn+1 from Rn. It is done as follows (see Figures 12 and 13)

– S′
1 = Pre0(Rn) ∩ P1 with P1 : 0 < z1 < z2 < x = 1,

– S′
2 = Pre>0(S

′
1) ∩ P2 with P2 : 0 < x = z1 < z2 < 1, and ż1 = 0, ż2 = 0,

– S′
3 = Pre>0(S

′
2) ∩ P3 with P3 : 0 < x < z1 < z2 < 1, and ż1 = 0, ż2 = 1,

– R′
n+1 = Pre>0(S

′
3) ∩ P4 with P4 : 0 = x < z1 < z2 < 1, and ż1 = 1, ż2 = 0,

– Rn+1 = Pre0(R
′
n+1) ∩ S.

0

1

2

1

2

1

z2

z1

R1

Rn+1

R′

1
R′

n+1

Fig. 12. Region Rn+1.

z2z1x Rn

z2z1 x
S′

1

z2x = z1
S′

2

z2z1x
S′

3

z2z1x
R′

n+1

0 1

Fig. 13. Its construction from Rn.

Recall that Rn = (0, 1

3n ,
3

n
+1

2·3n). Thus looking at the bold intervals of Figure 13 (in particular at lines
R′

n+1, S
′
3 and Rn)), the next equality must hold on R′

n+1

z1 + z2 =
3n + 1

2 · 3n
.

On Figure 12, the intersection of R′
n+1 and S, which is Rn+1, is therefore the point (0, 1

3n+1 ,
3

n+1
+1

2·3n+1).

(2) 2 clock variables x1, x2 and 1 cost variable z.
The proof for this second case is in the same vein as before; it will be less detailed. Procedure

Bisim here generates the regions Rn, n ≥ 1, each formed by the unique triple

(x1, x2, z) = (0, 1−
1

2n
,

1

2n
).

(a) We first consider the particular region

S : 0 = x1 < z < x2 < 1, x2 + z = 1

constructed as R = Pre>0(P1) ∩ P2 with P1 : 0 < x1 = z < x2 = 1, P2 : 0 = x1 < z < x2 < 1,
and ż = 0. This construction is the same as in Figure 11 except that x1, z, x2 respectively replace
x, z1, z2.
(b) The first regionR1 = {0, 1

2
, 1

2
} is then constructed as S except that P2 equals 0 = x1 < z = x2 < 1

(instead of z < x2).
(c) The construction of Rn+1 from Rn is performed as follows (see Figures 14 and 15)

– S′
1 = Pre0(Rn) ∩ P1 with P1 : 0 < z < x2 < x1 < 1,

– S′
2 = Pre>0(S

′
1) ∩ P2 with P2 : 0 = x2 < x1 < z < 1, and ż = 0,

– S′
3 = Pre0(S

′
2) ∩ P3 with P3 : 0 < x1 < z < x2 = 1,

– R′
n+1 = Pre>0(S

′
3) ∩ P4 with P4 : 0 = x1 < z < x2 < 1, and ż = 1,

– Rn+1 = Pre0(R
′
n+1) ∩ S.

R1

R2

Rn+1

R′

2

R′

n+1

Fig. 14. Region Rn+1.

x2zx1 Rn

x2z x1 S′

1

zx1x2
S′

2

zx1 x2
S′

3

x2zx1 R′

n+1

0 1

Fig. 15. Its construction from Rn.

From the bold and dashed intervals of Figure 15, we see that on R′
n+1, we must have z+(1−x2) = 1

2n .
Thus on Rn+1, the intersection of this equality with S is the point (0, 1− 1

2n+1 ,
1

2n+1).

Any timed automaton has a finite bisimulation respecting the partition P of Proposition 2 (see
Definition 7). Thus the remaining case to establish a precise frontier between finite and infinite
bisimulations is the case of automata with stopwatch observers using 1 clock and 1 cost variables.

Theorem 4. Let T = R+. Let A be an automaton with stopwatch observers using 1 clock and 1
cost variables x and z. Then A has a finite bisimulation respecting the partition P of Proposition 2.

Proof. (Sketch) The proposed bisimulation is the one of Definition 7, where z is treated as a clock.

Corollary 4. The WCTLr model-checking problem for automata with stopwatch observers using 1
clock and 1 cost variables is decidable.

Comments. All the results of this subsection are concerned with automata with stopwatch observers.
In we consider weighted timed automata, the frontier between finite and infinite bisimulations is
easily established. There exist weighted timed automata with 1 clock and 1 cost variables x and z

such that ż = d1, ż = d2, d1, d2 > 0, for which no finite bisimulation exists [11] (see Figure 16). If for
automata with 1 clock and 1 cost variables x and z, we impose that there exists an integer constant
d > 0 such that ż ∈ {0, d} in each location, then a finite bisimulation exists. It is the bisimulation
of Definition 7, where z is treated as a clock and each diagonal z − x = c is replaced by z − dx = c

(see Figure 17). Note that a finite bisimulation still exists if we allow to add to the variables x and z
additional cost variables z2, . . . , zm having a null cost on the locations and an arbitrary cost on the
edges. In Example 1, z3 is such a variable. The required finite bisimulation is a direct product of the
bisimulation given before for x and z with the bisimulation of Definition 7 applied to the variables
z2, . . . , zm treated as clocks.

x

z

Fig. 16. Infinite bisimulation when d1 = 1, d2 = 3.

x

z

Fig. 17. Finite bisimula-
tion when d = 3.

References

1. R. Alur, C. Courcoubetis, and T.A. Henzinger. Computing accumulated delays in real-time systems. In
CAV 93: Computer-Aided Verification, Lecture Notes in Computer Science 697, pages 181–193. Springer-
Verlag, 1993.

2. R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded systems. IEEE
Transactions on Software Engineering, 22:181–201, 1996.

3. R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas. Discrete abstractions of hybrid systems.
Proceedings of the IEEE, 88:971–984, 2000.

4. Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in dense real-time. Information
and Computation, 104(1):2–34, 1993.

5. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–
235, 1994.

6. Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted timed automata. In
Proceedings of the 4th International Workshop on Hybrid Systems:Computation and Control (HSCC’01),
volume 2034 of Lecture Notes in Computer Science, pages 49–62. Springer-Verlag, 2001.

7. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Larsen, Paul Pettersson, Judi Romijn, and Frits
Vaandrager. Minimum-cost reachability for priced timed automata. In Proceedings of the 4th Inter-
national Workshop on Hybrid Systems:Computation and Control (HSCC’01), volume 2034 of Lecture
Notes in Computer Science, pages 147–161. Springer-Verlag, 2001.

8. Ahmed Bouajjani, Rachid Echahed, and Joseph Sifakis. On model checking for real-time properties with
durations. In Logic in Computer Science, pages 147–159, 1993.

9. Véronique Bruyère and Jean-François Raskin. Real-time model-checking: Parameters everywhere. In
Paritosh K. Pandya and Jaikumar Radhakrishnan, editors, FST TCS 2003: Foundations of Software
Technology and Theoretical Computer Science, 23rd Conference, Mumbai, India, Proceedings, number
2914 in Lecture Notes in Computer Science, pages 100–111. Springer, 2003.

10. T.A. Henzinger. Hybrid automata with finite bisimulations. In ICALP 95: Automata, Languages, and
Programming, Lecture Notes in Computer Science 944, pages 324–335. Springer-Verlag, 1995.

11. T.A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual Symposium on Logic
in Computer Science, pages 278–292. IEEE Computer Society Press, 1996.

12. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HyTech. In TACAS 95: Tools and
Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer Science 1019,
pages 41–71. Springer-Verlag, 1995.

13. T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hybrid automata. In ICALP
97: Automata, Languages, and Programming, Lecture Notes in Computer Science 1256, pages 582–593.
Springer-Verlag, 1997.

14. T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid automata? In
Proceedings of the 27th Annual Symposium on Theory of Computing, pages 373–382. ACM Press, 1995.

15. Yonit Kesten, Amir Pnueli, Joseph Sifakis, and Sergio Yovine. Decidable integration graphs. Information
and Computation, 150(2):209–243, 1999.

