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Almost ASAP Semantics: from Timed Models

to Timed Implementations?

Martin De Wulf, Laurent Doyen??, and Jean-François Raskin

Computer Science Departement, Université Libre de Bruxelles, Belgium

Abstract. In this paper, we introduce a parametric semantics for timed controllers called
the Almost ASAP semantics. This semantics is a relaxation of the usual ASAP semantics (also
called the maximal progress semantics) which is a mathematical idealization that can not be
implemented by any physical device no matter how fast it is. On the contrary, any correct
Almost ASAP controller can be implemented by a program on a hardware if this hardware is
fast enough. We study the properties of this semantics, show how it can be analyzed using the
tool HyTech, and illustrate its practical use on examples.

1 Introduction

Timed and hybrid systems are dynamical systems with both discrete and continuous components. A
paradigmatic example of a hybrid system is a digital embedded control program for an analog plant
environment, like a furnace or an airplane: the controller state moves discretely between control
modes, and in each control mode, the plant state evolves continuously according to physical laws.
A natural model for hybrid systems is the hybrid automaton, which represents discrete components
using finite-state machines and continuous components using real-numbered variables which evo-
lution is governed by differential equations or differential inclusions [ACH+95]. Several verification
and control problems have been studied for hybrid automata or interesting subclasses (see for exam-
ple [HKPV98]). Tools like HyTech [HHWT95], or Uppaal [PL00], have proven useful to analyze
high-level descriptions of embedded controllers in continuous environments.

When a high level description of a controller has been proven correct it would be valuable to
ensure that an implementation of that design can be obtained in a systematic way in order to ensure
the conservation of correctness. This is often called program refinement: given a high-level description
P1 of a program, refine that description into another description P2 such that the “important”
properties of P1 are maintained. Usually, P2 is obtained from P1 by reducing nondeterminism. To
reason about the correctness of P2 w.r.t. P1, we often use a notion of simulation [Mil80] which is
powerful enough to ensure conservation of LTL properties for example.

In this paper, we show how to adapt this elegant schema in the context of real-time embedded
controllers. To reach this goal, there are several difficulties to overcome. First, the notion of time used
by hybrid automata is based on a dense set of values (usually the real numbers). This is unarguably
an interesting notion of time at the modeling level but when implemented, a digital controller
manipulates timers that are digital clocks. Digital clocks have finite precision and take their values in
a discrete domain. As a consequence, any control strategy that requires clocks with infinite precision
can not be implemented. Second, hybrid automata can be called “instantaneous devices” in that they
are capable of instantaneously react to time-outs or incoming events by taking discrete transitions
without any delay. Again, while this is a convenient way to see reactivity and synchronization at the
modeling level, any control strategy that relies for its correctness on that instantaneity can not be
implemented by any physical device no matter how fast it is. Those problems are known and have
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already attracted some attention from our research community. For example, it is well-known that
timed automata may describe controllers that control their environment by playing a so called zeno
strategy, that is, by taking an infinite number of actions in a finite amount of time. This is widely
considered as unacceptable even by authors making the synchrony hypothesis [Yi03]. But even if
we prove our controller model non-zeno, that does not mean that it can be implemented. In fact,
we recently shown in [CHR02] that there are (very simple) timed automata respecting a syntactic
criterion that ensures nonzenoness (defined in [ABD+00]) but require faster and faster reactions,
say at times 0, 1

2 , 1, 1 1
4 , 2, 2 1

8 , 3, 3 1
16 , . . .. So, timed automata may model control strategies that can

not be implemented because the control strategy does not maintain a minimal bound between two
control actions. A direct consequence is that we can not hope to define for the entire class of timed
automata a notion of refinement such that if a model of a real-time controller has been proven correct
then it can be systematically implemented in a way that preserves its correctness.

The infinite precision and instantaneity characteristics of the traditional semantics given to timed
automata is very closely related to the synchrony hypothesis that is commonly adopted in the com-
munity of synchronous languages [Ber00]. Roughly speaking, the synchrony hypothesis can be stated
as follows: “the program reacts to inputs of the environment by emitting outputs instantaneously”.
The rationale behind the synchrony hypothesis is that the speed at which a digital controller reacts
is usually so high w.r.t. the speed of the environment that the reaction time of the controller can
be neglected and considered as nil. This hypothesis greatly simplify the work of the designer of an
embedded controller: he/she does not have to take into account the performances of the platform
on which the system will be implemented. We agree with this view at the modeling level. But as
any hypothesis, the synchrony hypothesis should be validated not only by informal arguments but
formally if we want to transfer correctness properties from models to implementations. We show in
this paper how this can be done formally and elegantly using a semantics called the Almost ASAP

semantics (AASAP-semantics).

The AASAP-semantics is a parametric semantics that leaves as a parameter the reaction time
of the controller. This semantics relaxes the synchrony hypothesis in that it does not impose the
controller to react instantaneously but imposes on the controller to react within ∆ time units when a
synchronization or a control action has to take place (is urgent). The designer acts as if the synchrony
hypothesis was true, i.e. he/she models the environment and the controller strategy without referring
to the reaction delay. This reaction delay is taken into account during the verification phase: we
compute the largest ∆ for which the controller is still receptive w.r.t. to the environment in which
it will be embedded and for which the controller is still correct w.r.t. to the properties that it has
to enforce (to avoid the environment to enter bad states for example).

We show that the AASAP semantics has several important and interesting properties. First, the
semantics is such that “faster is better”. That is, if the controller is correct for a reaction delay
bounded by ∆ then it is correct for any smaller ∆′. Second, any controller which is correct for a
reaction delay bounded by ∆ > 0 can be implemented by a program on a hardware provided that
the hardware is fast enough and provides sufficiently precise digital clocks. Third, the semantics can
be analyzed using existing tools like HyTech or Uppaal.

Structure of the paper. The paper is organized as follows. In section 2, we recall the notion of
timed transition systems. We extend them with a well-chosen notion of structured alphabet and
synchronization in order to formalize a notion of receptiveness and safety control. We also define a
notion of simulation that will ensure the conservation of receptiveness and safety properties imposed
by the controller. In section 3, we review the syntax and classical semantics of rectangular automata.
In section 4, we define formally the AASAP semantics and study some of its properties. In section
5, we introduce a very simple and naive notion of real-time program to make clear that any correct
real-time controller for the AASAP semantics can be implemented. In section 6, we explain how
the AASAP semantics can be analyzed and used in practice. All the non trivial proofs are given in
appendix as well as a larger example of the use of the AASAP-semantics in practice.



2 Preliminaries

In this section, we recall the definition of timed transition systems and extend them with structured
sets of labels. We define a notion of freedom of receptiveness problem and a compatible notion of
simulation. This notion of simulation will be the formal basis for our notion of refinement. Finally,
we introduce the problem of safety control and show how our notion of simulation can be used in
that context.

Definition 1 [TTS] A timed transition system T is a tuple 〈S, ι, Σ,→〉 where S is a (possibly
infinite) set of states, ι ∈ S is the initial state, Σ is a finite set of labels, and →⊆ S × Σ ∪ R≥0 × S
is the transition relation where R≥0 is the set of positive real numbers.

Definition 2 [Reachable States of TTS] A state s of a TTS T = 〈S, ι, Σ,→〉 is reachable if there
exists a finite sequence s0s1 . . . sn of states such that s0 = ι, sn = s and for any i, 0 ≤ i < n, there
exists σ ∈ Σ ∪R≥0 such that (si, σ, si+1) ∈→. The set of reachable states of T are noted Reach(T ).

We need to compose TTS. For that purpose, we need TTS with structured set of labels.

Definition 3 [Structured set of labels] We say that a finite set of labels Σ is structured if it is
partitioned into three subsets: Σin the set of input labels, Σout the set of output labels, and Στ the
set of internal labels.

In the sequel, we need some more notations. Let Σ be a structured alphabet and Σ ′ ⊆ Σ be a
subset of labels, then we note Σ ′ for the set {σ̄ | σ ∈ Σ′}, and assume this set is such that Σ ′∩Σ = ∅.

Definition 4 [STTS] A structured timed transition system T is a tuple 〈S, ι, Σin, Σout, Στ ,→〉, where
S is a (possibly infinite) set of states, ι ∈ S is the initial state, the set of labels is partitioned in
three subsets: Σin is the finite set of incoming labels, Σout is the finite set of outgoing labels, Στ is
the finite set of internal labels, and →⊆ S × Σin ∪ Σout ∪ Στ ∪ R≥0 × S is the transition relation.

The notion of reachability is extended to STTS as expected.
In the sequel, we use one STTS to model a timed controller and one to model the environment in

which the controller has to be embedded. We model the communication between the two STTS using
the mechanism of synchronization on common labels. This is a blocking communication mechanism.
But we want to verify that the controller does not control the environment by refusing to synchronize
on its output, and on the other hand, we do not want our controller to issue outputs that can not
be accepted by the environment. To verify the absence of those synchronization problems, we make
their potential presence explicit by introducing the notion of refusal function.

Definition 5 [Refusal function of a STTS] Given a STTS T = 〈S, ι, Σin, Σout, Στ ,→〉, we define its
refusal function RefT : S → 2Σin as follows :

RefT (s) = {σ ∈ Σin | ¬∃s′ ∈ S : (s, σ, s′) ∈→}

We now define when and how two STTS can be composed to define a timed transition system.

Definition 6 [Composition of STTS] Two STTS T 1 = 〈S1, ι1, Σ1
in, Σ

1
out, Σ

1
τ ,→1〉 and T 2 = 〈S2, ι2,

Σ2
in, Σ

2
out, Σ

2
τ ,→2〉 are composable if Σ1

in = Σ2
out and Σ2

in = Σ1
out. Their composition, noted T 1‖T 2

is the TTS T = 〈S, ι, Σ,→〉 such that S = {(s1, s2) | s1 ∈ S1 and s2 ∈ S2}, ι = (ι1, ι2), Σ =
Σ1

out∪Σ2
out∪Σ1

τ ∪Σ2
τ , and → is such that for any σ ∈ Σ∪R≥0, we have that ((s1

1, s
2
1), σ, (s1

2, s
2
2)) ∈→

iff one of the following three assertions holds:

(C1) σ ∈ Σ1
out ∪ Σ2

out ∪ R≥0 and (s1
1, σ, s1

2) ∈→
1 and (s2

1, σ, s2
2) ∈→

2

(C2) σ ∈ Σ1
τ and (s1

1, σ, s1
2) ∈→

1 and s2
1 = s2

2



(C3) σ ∈ Σ2
τ and (s2

1, σ, s2
2) ∈→

2 and s1
1 = s1

2

When composing two STTS, we say that the result is free of receptiveness problem if there is no
reachable state in the product where one STTSwant to issue an output that is not accepted by the
other one.

Definition 7 [Freedom of receptiveness problems] We say that the composition of two composable
STTS T 1 = 〈S1, ι1, Σ1

in, Σ
1
out, Σ

1
τ ,→1〉 and T 2 = 〈S2, ι2, Σ2

in, Σ
2
out, Σ

2
τ ,→2〉 is free of receptiveness

problems if their composition T 1‖T 2 = 〈S, ι, Σ,→〉 is such that there does not exist (s1
1, s

2
1) ∈

Reach(T 1‖T 2), such that either:

– there exist σ ∈ Σ1
out, s1

2 ∈ S1 such that (s1
1, σ, s1

2) ∈→
1 and σ ∈ RefT 2(s2

1)
– there exist σ ∈ Σ2

out, s2
2 ∈ S2 such that (s2

1, σ, s2
2) ∈→

2 and σ ∈ RefT 1(s1
1)

Implementations of controllers are also formalized using STTS. To reason about the correctness
of implementations w.r.t. higher level models, we use the notion of simulation. That notion of
simulation is classical but makes explicit the notion of refusal in order to preserve the potential
freedom of receptiveness problem property of the model.

Definition 8 [Simulation relation for STTS] Given two STTS T 1 = 〈S1, ι1, Σ1
in, Σ

1
out, Σ

1
τ ,→1〉 and

T 2 = 〈S2, ι2, Σ2
in, Σ

2
out, Σ

2
τ ,→2〉, let Σ = Σ1

out ∪ Σ1
in ∪ Σ1

τ , we say that T 1 is simulable by T 2 and
as receptive as T 2 , noted T 1 vr T 2, if there exists a relation R ⊆ S1 × S2 (called a simulation
relation) such that:

(S1) (ι1, ι2) ∈ R
(S2) for any (s1

1, s
2
1) ∈ R, we have that:

(S21) for any σ ∈ Σ ∪ R≥0, for any s1
2 such that (s1

1, σ, s1
2) ∈→1, there exists s2

2 ∈ S2 such that
(s2

1, σ, s2
2) ∈→

2 and (s1
2, s

2
2) ∈ R;

(S22) RefT 1(s1
1) = RefT 2(s2

1).

The notion of simulation we have defined can be used as usual to define a notion of refinement.
We say that the STTS T 2 refines the STTS T 1, if T 1 vr T 2. The following theorem shows that
our notion of refinement ensures that if a STTS T 1 is free of receptiveness problems when composed
with a STTS T 2, then we can conclude the same for any STTS T 3 that refines T 1.

Theorem 1 Let T 1 and T 2 be two composable STTS, let T 3 be a STTS such that T 3 vr T 1, if
T 1‖T 2 is free of receptiveness problems then T 3‖T 2 is free of receptiveness problems.

Proof. This proof is given in appendix.

We are now equipped to define the notion of safety control. This notion together with the notion
of refinement we have introduced above allow us to formalize in section 4 and 5, the notion of correct
implementation of an embedded timed controller.

Definition 9 [Safety Control] Let T 1 = 〈S1, ι1, Σ1
in, Σ

1
out, Σ

1
τ ,→1〉 and T 2 = 〈S2, ι2, Σ2

in, Σ
2
out, Σ

2
τ ,

→2〉 be two composable STTS. Let B ⊆ S2, we say that T 1 controls T 2 to avoid B if the following
two conditions hold:

(C1) T 1‖T 2 is free of receptiveness problems;
(C2) Reach(T 1‖T 2) ∩ {(s1, s2) | s1 ∈ S1 ∧ s2 ∈ B} is empty.

We can now state a theorem linking our notion of refinement with the notion of safety control.

Theorem 2 Let T 1 = 〈S1, ι1, Σ1
in, Σ

1
out, Σ

1
τ ,→1〉 and T 2 = 〈S2, ι2, Σ2

in, Σ
2
out, Σ

2
τ ,→2〉 be two com-

posable STTS, let T 3 be a STTS such that T 3 vr T 1, and let B ⊆ S2, if T 1 controls T 2 to avoid B
then T 3 controls T 2 to avoid B.

Proof. This proof is given in appendix.



3 Timed and rectangular automata

The STTS of previous section are specified using the formalism of rectangular automata. We recall
their definition in this section.

Let X be a finite set of positively real valued variables. A valuation for X is a function v :
X → R≥0. We write [Y → E] for the set of all valuations of set of variables Y to E. For a
set V ⊆ [X → R≥0] of valuations, and x ∈ X , define V (x) = {v(x) | v ∈ V }. A rectangular
constraint over X is a formula of the form x ∈ I where x belongs to X , and I is one of the intervals
(a, b), [a, b), (a, b] or [a, b] where a, b ∈ Q≥0 ∪ {+∞}, and a ≤ b. Q≥0 denotes the positive rational
numbers and, in the sequel, we also use Q>0 to denote the strictly positive rational numbers. A
rectangular predicate is a finite set of rectangular constraints. For a rectangular predicate p and a
valuation v, we write v |= p if v(x) ∈ I is true for all x ∈ I appearing in p. For a rectangular
predicate p, [[p]] denotes the set {v | v |= p}. We say that a rectangular predicate is in normal form
if it contains at most one rectangular constraint for any variable x ∈ X ; any rectangular predicate
can be put in that normal form. Let g be a rectangular predicate in normal form, then g(x) denotes
x ∈ I if x ∈ I is the constraint over x in g and true if there are no constraint over x in g. We
note Rect(X) the set of rectangular predicates built using variables in X . Rectc(X) is the subset
of rectangular predicates containing only closed rectangular constraints. Let g(x) denote the closed
rectangular constraints x ∈ [a, b], lb(g(x)) denotes the value a and rb(g(x)) denotes the value b. Let
v : E1 → E2 be a valuation, let E3 ⊆ E1, and c ∈ E2, then v[E3 := c] denotes the valuation v′ such
that

v′(e) =

{

c if e ∈ E3

v(e) if e 6∈ E3

In the sequel, we sometimes write v[e := c] instead of v[{e} := c]. Let v : X → R≥0 be a valuation,
for any t ∈ R≥0, v − t is a valuation in [X → R] such that for any x ∈ X v − t(x) = v(x) − t. We
define v + t in a similar way. We extend this definition to valuation v in [X → R≥0 ∪{⊥}] as follows:
(v + t)(x) = v(x) + tif v(x) ∈ R≥0 and (v + t)(x) = ⊥ otherwise.

We are now equipped to define rectangular automata and their classical semantics.

Definition 10 [Rectangular automata - syntax] A rectangular automaton is a tuple 〈Loc, l0, Var,
Inv, Flow, Lab, Edg〉 where

– Loc is a finite set of locations representing the discrete states of the automaton.
– l0 ∈ Loc is the initial location.
– Var = {x1, . . . , xn} is a finite set of real-valued variables, we write ˙Var = {ẋ | x ∈ Var} for the

set of corresponding dotted variables, which represent first derivatives.
– Inv : Loc → Rect(Var) is the invariant condition. The automaton can stay in location l as long

as each variable x has a value in the interval [[Inv(l)]] (x). We require that for any x ∈ Var,
0 ∈[[Inv(l0)]] (x), to ensure the existence of an initial state.

– Flow : Loc → Rect( ˙Var) is the flow condition. If the automaton is in location l, then each variable
x ∈ X can evolve nondeterministically with a derivative in the interval [[Flow(l)]] (ẋ).

– Lab = Labin ∪ Labout ∪ Labτ is a structured finite alphabet of labels, partitioned into input labels
Labin, output labels Labout, and internal labels Labτ .

– Edg ⊆ Loc× Loc×Rect(Var)× Lab× 2Var is a set of edges. Every edge (l, l′, g, σ, R) represents a
move from location l to location l′ with guard g, event σ and a subset R ⊆ Var of the variables
to be reset.

Definition 11 [Rectangular automata - semantics] Let A = 〈Loc, l0, Var, Inv, Flow, Lab, Edg〉 be a
rectangular automaton, the semantics of A, noted [[A]], is the STTS T = (S, ι, Σin, Σout, Στ ,→)
where:



– S = {(l, v) | l ∈ Loc ∧ v |= Inv(l)}.
– ι = (l0, v0) such that for any x ∈ Var : v0(x) = 0.

– Σin = Labin, Σout = Labout, and Στ = Labτ .
– the transition relation → is defined as follows:

• for the discrete transitions, ((l, v), σ, (l′, v′)) ∈→ iff there exists an edge (l, l′, g, σ, R) ∈ Edg

such that v |= g, v′ = v[R := 0].

• for the continuous transitions, ((l, v), t, (l′, v′)) ∈→ iff l = l′ and for each variable x ∈ Var

there exists a differentiable function fx : [0, t] →[[Inv(l)]] (x) such that (i) fx(0) = v(x),
(ii) fx(t) = v′(x) and (iii) ∀0 < t′ < t : ḟ(t′) ∈[[flow(l)]] (x).

In the sequel, we need to refer to the subclass of timed automata.

Definition 12 [Timed automata] A timed automaton is a rectangular automaton where continuous
variables are clocks, that is, for any x ∈ Var and any l ∈ Loc, [[flow(l)]] (x) = 1.

Running example. Consider Fig. 1. The product1 of rectangular automata of Fig.1(b) to 1(d) models
a moving belt on which luggages are conveyed (say to a plane). The moving belt is equipped with a
scanner and a motorized arm. The scanner is used to detect suspicious luggages and the arm is used
to remove those suspicious luggages from the moving belt. If a suspicious luggage is detected by the
scanner, the signal Lug is emitted.

In that case, the motorized arm has to remove the luggage when it passes in front of it (AtP2)
by pushing the luggage out of the moving belt. The arm can be controlled by issuing the order Fwd,
to move the arm forward, Bwd to move the arm backward, and Stop to bring it to an halt.

The role of the controller is to capture the events emitted by the scanner and to give orders to
the arm respecting a strict timing in order to properly remove suspicious luggages. An example of
such a controller is given in Fig. 1(a). An observer modeled by the timed automaton of Fig. 1(e)
ensures that whenever the event Lug is emitted then the events AtP2 and Hit are at most 2 time
units apart. As the luggage has some thickness, this ensures that they are properly removed from
the moving belt. If this is not the case, the observer enter the location Bad. The following additional
physical constraints are modeled by the product of automata: (i) any luggage takes between 9 and
10 time units to go from the scanner to the center of the arm, (ii) the arm takes between 1 and 2
time units to reach the center of the moving belt when it is launched forward from its idle position,
(iii) it takes at most 4 times units to come back to its idle position when launched backward. Given
a controller for this system, we must verify that the controller gives orders to the arm such that
any resulting behavior of the environment avoid to enter the bad state of the observer. We must
additionally verify that the controller is receptive to the event Lug from the environment (otherwise
it could simply control the environment to avoid bad by refusing to synchronize on Lug). We must
also verify that the arm is ready to receive the order the controller sent to him.

As we already pointed out in the introduction, the classical semantics given in definition 11 is
problematic for the controller part if our goal is to transfer the properties verified on the model
to an implementation. Consider the controller for the arm in Fig. 1(a). Below, we illustrate the
properties of the classical semantics that makes impossible to both implement the controller and
ensure formally that the properties of the model are preserved:

– First, note that invariants (grayed constraints in Fig. 1(a)) are used to force the controller to
take actions. Invariants can be removed if we assume a ASAP semantics for the controller: any
action is taken as soon as possible, this is also called the maximal progress assumption. So the
transition labeled with Fwd proceeds exactly when t = 8. Clearly, no hardware can guarantee
that the transition will always proceed when t = 8.

1 defined as usual [ACH+95]
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Fig. 1. Running example.



– Second, synchronizations between the environment and the controller (e.g. transition labeled
Lug) cannot be implemented as instantaneous: some time is needed by the hardware to detect
the incoming event Lug and for the software that implements the control strategy to take this
event into account.

– Third, the use of real-valued clocks is only possible in the model: implementations use digital
clocks with finite precision. It is then necessary to show that a digital clock can replace the
real-valued clocks while preserving the verified safety properties.

These three problems illustrates that even if we have formally verified our control strategy, we
can not conclude that an implementation will conserve any of the properties that we have proven
on the model. This is unfortunate. If we simplify, there are two options to get out of this situation:
(i) we ask the designer to give up the synchrony hypothesis and ask the designer to model the
platform on which the control strategy will be implemented, or (ii) we let the designer go on with
the synchrony hypothesis at the modeling level but relax the ASAP semantics during the verification
phase in order to formally validate the synchrony hypothesis.

We think that the second option is much more appealing and we propose in the next section
a framework that makes the second option possible theoretically but also feasible practically. The
framework we propose is centered on a relaxation of the ASAP semantics that we call the AASAP

semantics. The main characteristics of this semantics are summarized below:

– any transition that can be taken by the controller becomes urgent only after a small delay ∆
(which may be left as a parameter);

– a distinction is made between the occurrence of an event in the environment (sent) and in the
controller (received), however the time difference between the two events is bounded by ∆;

– guards are enlarged by some small amount depending on ∆.

We define formally this semantics in the next section and show in section 5 that it is robust in
the sense that it defines a tube of strategies (instead of a unique strategy as in the ASAP semantics)
which can be refined in a formal way into an implementation while preserving the safety properties
imposed by this tube of strategies.

4 Elastic Controllers and AASAP semantics

As explained in the previous section, invariants are useful when modeling controllers with the classical
semantics in order to force the controller to take actions but they are useless with a ASAP semantics.
This is also true with the semantics we define in this section. So, we restrict our attention to the
subclass of timed automata without invariants. In the rest of the paper, we call the controller specified
by this subclass Elastic2 controllers.

Definition 13 [Elastic Controllers] An Elastic controller A is a tuple 〈Loc, l0, Var, Lab, Edg〉
where Loc is a finite set of locations, l0 ∈ Loc is the initial location, Var = {x1, . . . , xn} is a finite
set of clocks, Lab is a finite structured alphabet of labels, partitioned into input labels Labin, output
labels Labout, and internal labels Labτ , Edg is a set of edges of the form (l, l′, σ, g, R) where l, l′ ∈ Loc

are locations, σ ∈ Lab is a label, g ∈ Rectc(Var) is a guard and R ⊆ Var is a set of clocks to be reset.

Before defining the AASAP semantics we need some more notations:

Definition 14 [True Since] We define the function “True Since”, noted TS : [Var → R≥0] ×
Rectc(Var) → R≥0 ∪ {−∞}, as follows:

2
Elastic stands for Event-based LAnguage for Simple TImed Controllers; we also give to those timed
controllers a semantics which is elastic in a sense that will be clear to the reader soon.



TS(v, g) =

{

t if v |= g ∧ v − t |= g ∧ ∀t′ > t : v − t′ 6|= g
−∞ otherwise

.

Definition 15 [Guard Enlargement] Let g(x) be the rectangular constraint x ∈ [a, b], the rectangu-
lar constraint ∆g(x)∆ with ∆ ∈ Q≥0 is the formula x ∈ [a−∆, b+∆] if a−∆ ≥ 0 and x ∈ [0, b+∆]
otherwise. If g is a closed rectangular predicate then ∆g∆ is the set of closed rectangular constraints
{∆g(x)∆ | g(x) ∈ g}.

We are now ready to define the AASAP semantics.

Definition 16 [AASAP semantics] Given an Elastic controller

A = 〈Loc, l0, Var, Lab, Edg〉

and ∆ ∈ Q≥0, the AASAP semantics of A, noted [[A]]AAsap
∆ is the STTS

T = (S, ι, Σin, Σout, Στ ,→)

where:

(A1) S is the set of tuples (l, v, I, d) where l ∈ Loc, v ∈ [Var → R≥0], I ∈ [Σin → R≥0 ∪ {⊥}] and
d ∈ R≥0;

(A2) ι = (l0, v, I, 0) where v is such that for any x ∈ Var : v(x) = 0, and I is such that for any σ ∈ Σin,
I(σ) = ⊥;

(A3) Σin = Labin, Σout = Labout, and Στ = Labτ ∪ Labin ∪ {ε};
(A4) The transition relation is defined as follows:

• for the discrete transitions, we distinguish five cases:
(A4.1) let σ ∈ Labout. We have ((l, v, I, d), σ, (l′, v′, I, 0)) ∈→ iff there exists (l, l′, g, σ, R) ∈ Edg

such that v |= ∆g∆ and v′ = v[R := 0] ;
(A4.2) let σ ∈ Labin. We have ((l, v, I, d), σ, (l, v, I ′, d)) ∈→ iff I(σ) = ⊥ and I ′ = I [σ := 0] ;
(A4.3) let σ̄ ∈ Labin. We have ((l, v, I, d), σ̄, (l′, v′, I ′, 0)) ∈→ iff there exists (l, l′, σ, g, R) ∈ Edg,

v |= ∆g∆, I(σ) 6= ⊥, v′ = v[R := 0] and I ′ = I [σ := ⊥] ;
(A4.4) let σ ∈ Labτ . We have ((l, v, I, d), σ, (l′, v′, I, 0)) ∈→ iff there exists (l, l′, σ, g, R) ∈ Edg,

v |= ∆g∆, and v′ = v[R := 0] ;
(A4.5) let σ = ε. We have for any (l, v, I, d) ∈ S : ((l, v, I, d), ε, (l, v, I, d)) ∈→.
• for the continuous transitions:

(A4.6) for any t ∈ R≥0, we have ((l, v, I, d), t, (l, v + t, I + t, d + t)) ∈→ iff the two following
conditions are satisfied:
· for any edge (l, l′, σ, g, R) ∈ Edg with σ ∈ Labout ∪ Labτ , we have that:

∀t′ : 0 ≤ t′ ≤ t : (d + t′ ≤ ∆ ∨ TS(v + t′, g) ≤ ∆)
· for any edge (l, l′, σ, g, R) ∈ Edg with σ ∈ Labin, we have that:

∀t′ : 0 ≤ t′ ≤ t : (d + t′ ≤ ∆ ∨ TS(v + t′, g) ≤ ∆ ∨ (I + t′)(σ) ≤ ∆)

Comments on the AASAP semantics. Rule (A1) defines the states that are tuples of the form
〈l, v, I, d〉. The first two components, location l and valuation v, are the same as in the classical
semantics; I and d are new. The function I records, for each input event σ, the time elapsed since
its last occurrence if this occurrence has not been “treated” yet otherwise the function returns the
special value ⊥. d records the time elapsed since the last location change in the controller. Rule
(A2) and (A3) are straightforward. Rules (A4.1− 6) require more explanations. Rule (A4.1) defines
when it is allowed for the controller to emit an output event. The only difference with the classical
semantics is that we enlarge the guard by the parameter ∆. Rules (A4.2 − 3) defines how inputs
from the environment are received (A4.2) and treated (A4.3) by the controller. First, the controller
maintains, through the function I , a list of events that have occurred and are not yet treated. An
input event σ can be received by the controller if no occurrence of σ is already present. An input



event σ can be treated if I(σ) is different of ⊥. Once treated, the value of I for that event goes back
to ⊥. Rule (A4.4) is similar to (A4.1). Rule (A4.5) expresses that the ε event can always be emitted.
Rule (A4.6) specifies how much time can elapse. Intuitively, time can pass as long as no transition
starting from the current location is urgent. A transition labeled with an output or an internal event
is urgent in a location l when the control has been in l for more than ∆ time units (d + t′ > ∆)
and the guard of the transition has been true for more that ∆ time units (TS(v + t′, g) > ∆). A
transition labeled with an input event σ is urgent in a location l when the control has been in l
for more that ∆ time units (d + t′ > ∆), the guard of the transition has been true for more that
∆ time units(TS(v + t′, g) > ∆), and the last occurrence of σ event has not been treated yet but
has been emitted by the environment at least ∆ time units ago(I + t′(σ) > ∆). This notion of
urgency parameterized by ∆ is the main difference between the AASAP semantics and the usual
ASAP semantics.

We now state a first property of the AASAP semantics. The following theorem and corollary state
formally the informal statement “faster is better”, that is if an environment is controllable with an
Elastic controller reacting within the bound ∆1 then this environment is controllable by the same
controller for any reaction time ∆2 ≤ ∆1. This is clearly a desirable property.

Theorem 3 Let A be an Elastic controller, for any ∆1, ∆2 ∈ Q≥0 such that ∆1 ≥ ∆2 we have
that [[A]]AAsap

∆2
vr[[A]]AAsap

∆1
.

Proof It is clear that the identity between the set of states of the two STTS [[A]]AAsap
∆2

and [[A]]AAsap
∆1

is a simulation relation between them.
Theorem 2 and theorem 3 allow us to state the following corollary:

Corollary 1 Let E be a rectangular automaton, [[E]] be an STTS with set of states SE, B ⊆ SE be
a set of bad states, and A be an Elastic controller. For any ∆1, ∆2 ∈ Q≥0, such that ∆1 ≥ ∆2, if
[[A]]AAsap

∆1
controls [[E]] to avoid B then [[A]]AAsap

∆2
controls [[E]] to avoid B.

We say that an Elastic controller is able to control an environment modeled as a rectangular
automaton E for a safety property modeled by a set of bad states B if there exists ∆ > 0 such that
[[A]]AAsap

∆ controls [[E]] to avoid B.

5 Implementability of the AASAP semantics

In this section, we show that any Elastic controller which controls an environment E for a safety
property modeled by a set of bad states B can be implemented provided there exists a hardware
sufficiently fast and providing sufficiently precise digital clocks.

To establish this result, we proceed as follows. First, we define what we call the program semantics
of an Elastic controller. The so-called program semantics can be seen as a formal semantics for
the following procedure interpreting Elastic controllers. This procedure repeatedly executes what
we call execution rounds. An execution round is defined as follows:

– first, the current time is read in the clock register of the CPU and stored in a variable, say T;
– the list of input events to treat is updated: the input sensors are checked for new events issued

by the environment;
– guards of the edges of the current locations are evaluated with the value stored in T. If at least

one guard evaluates to true then take nondeterministically one of the enabled transitions;
– the next round is started.

All we require from the hardware is to respect the following two requirements: (i) the clock
register of the CPU is incremented every ∆P time units and (ii) the time spent in one loop is
bounded by a certain fixed value ∆L. We choose this semantics for its simplicity and also because



it is obviously implementable. There are more efficient ways to interpret Elastic controllers but as
the Asap semantics is such that “faster is better”, this semantics is good enough for our purpose. In
section 6, we show how to use this semantics in the context of the Lego MindstormsTM platform.

We proceed now with the definition of the program semantics. This semantics manipulates digital
clocks, so we need the following definition:

Definition 17 [Clock Rounding] Let T ∈ R, ∆ ∈ Q>0, bT c∆ = b T
∆
c × ∆.

Lemma 1 follows directly from the definition above.

Lemma 1 For any T ∈ R≥0, any ∆ ∈ Q>0, T − ∆ ≤ bT c∆ ≤ T + ∆.

We are now ready to define the program semantics:

Definition 18 [Program Semantics] Let A be an Elastic controller and ∆L, ∆P ∈ Q>0. We define

∆S = ∆L + 2∆P . The (∆L, ∆P ) program semantics of A, noted [[A]]Prg
∆L ,∆P

is the structured timed
transition system T = (S, ι, Σin, Σout, Στ ,→) where:

(P1) S is the set of tuples (l, r, T, I, u, d, f) such that l ∈ Loc, r is a function from Var into R≥0,
T ∈ R≥0, I is a function from Labin into R≥0 ∪ {⊥}, u ∈ R≥0, d ∈ R≥0, and f ∈ {>,⊥};

(P2) ι = (l0, r, 0, I, 0, 0,⊥) where r is such that for any x ∈ Var, r(x) = 0, I is such that for any
σ ∈ Labin, I(σ) = ⊥;

(P3) Σin = Labin, Σout = Labout, Στ = Labτ ∪ Labin ∪ {ε};
(P4) the transition relation → is defined as follows:

• for the discrete transitions:
(P4.1) let σ ∈ Labout. ((l, r, T, I, u, d,⊥), σ, (l′, r′, T, I, u, 0,>)) ∈→ iff there exists (l, l′, σ, g, R) ∈

Edg such that bT c∆P
− r |= ∆S

g∆S
and r′ = r[R := bT c∆P

].
(P4.2) let σ ∈ Labin. ((l, r, T, I, u, d, f), σ, (l, r, T, I ′, u, d, f)) ∈→ iff I(σ) = ⊥ and I ′ = I [σ := 0];
(P4.3) let σ̄ ∈ Labin. ((l, r, T, I, u, d,⊥), σ̄, (l′, r′, T, I ′, u, 0,>)) ∈→ iff there exists (l, l′, σ, g, R) ∈

Edg such that bT c∆P
− r |= ∆S

g∆S
, I(σ) > u, r′ = r[R := bT c∆P

] and I ′ = I [σ := ⊥];
(P4.4) let σ ∈ Labτ . ((l, r, T, I, u, d,⊥), σ, (l′, r′, T, I, u, 0,>)) ∈→ iff there exists (l, l′, σ, g, R) ∈

Edg such that bT c∆P
− r |= ∆S

g∆S
and r′ = r[R := bT c∆P

].
(P4.5) let σ = ε. ((l, r, T, I, u, d, f), σ, (l, r, T + u, I, 0, d,⊥)) ∈→ iff either f = > or the two

following conditions hold:
· for any σ̄ such that σ ∈ Labin, for any (l, l′, σ, g, R) ∈ Edg, we have that either
bT c∆P

− r 6|= ∆S
g∆S

or I(σ) ≤ u
· for any σ ∈ Labout ∪ Labτ , for any (l, l′, σ, g, R) ∈ Edg, we have that bT c∆P

− r 6|=

∆S
g∆S

• for the continuous transitions:
(P4.6) ((l, r, T, I, u, d, f), t, (l, r, T, I + t, u + t, d + t, f)) ∈→ iff u + t ≤ ∆L.

Comments on the program semantics. Rule (P1) defines the states which are tuples (l, r, T, I, u, d, f),
where l is the current location, r maps each clock to the digital time when it has last been reset, T
records the (exact) time at which the last round has started; I , as in the AASAP semantics, records
the time elapsed since the last arrival of each input event not yet treated, u records the time elapsed
since the last round was started (so that T +u is the exact current time), d records the time elapsed
since the last location change, and f is a flag which is set to > if a location change has occurred in
the current round. Rules (P2) and (P3) should be clear. We comment rules (P4.1 − 6). First, we
make some general comments on digital clocks and guards of discrete transitions of the controller.
Note that in those rules, we evaluate the guards with the valuation bT c∆P

− r for the clocks, that
is, for variable x, the difference between the digital value of the variable T at the beginning of the
current round and the digital value of x at the beginning of the round when x was last reset. This
value approximates the real time difference between the exact time at which the guard is evaluated



and the exact time at which the clock x has been reset. Let t be this exact time difference, then we
know that: bT c∆P

− r(x) − ∆L − ∆P ≤ t ≤ bT c∆P
− r(x) + ∆L + ∆P . Also note that the guard

g has been enlarged by the value ∆S = ∆L + 2∆P , this ensures that any event enabled at some
point will be enabled sufficiently long so that the change can be detected by the procedure. Rule
(P4.1) expresses when transitions labeled with output events can be taken. Note that variables are
reset to the digital time of the current round. Rule (P4.2) simply records the exact time at which
input event from the environment occurred. This rule simply ensures that the function I is updated
when a new event is issued by the environment. Rule (P4.3) says when an input of the environment
can be treated by the controller: it has to be present at the beginning of the current round and the
enlargement of the guard labelling the transition has to be true for digital values of the clocks at
the beginning of the round, and no other discrete transitions should have been taken in the current
round. Rule (P4.4) is similar to rule (P4.1) but applies to internal events. Rule (P4.5) expresses
that the event ε is issued when the current round is finished and the system starts a new round. Note
that this is only possible if the program has taken a discrete transition or there were no discrete
transition to take. This ensures that the program always takes discrete transitions when possible.
Rule (P4.6) expresses that the program can always let time elapse unless it violates the maximal
time spent in one round.

The following simulation theorem expresses formally that if the hardware on which the program
is implemented is fast enough (parameter ∆L) and precise enough (parameter ∆P ) then the program
semantics can be simulated by the AASAP semantics.

Theorem 4 (Simulation) Let A be an Elastic controller, for any ∆, ∆L, ∆P ∈ Q≥0 be such that

∆ > 3∆L + 4∆P , we have [[A]]Prg
∆L,∆P

vr[[A]]AAsap
∆ .

Proof. Let [[A]]Prg
∆L ,∆P

= (S1, ι1, Σ1
in, Σ

1
out, Σ

1
τ ,→1) and [[A]]AAsap

∆ = (S2, ι2, Σ2
in, Σ

2
out, Σ

2
τ ,→2). Consider

the relation R ⊆ S1 × S2 that contains the pairs:

(s1, s2) = ((l1, r1, T 1, I1, u1, d1, f1), (l2, v2, I2, d2))

such that the following conditions hold:

(R1) l1 = l2;
(R2) for any x ∈ Var, |v2(x) − (T 1 − r1(x) + u1)| ≤ ∆L + ∆P

(R3) for any σ ∈ Labin, I1(σ) = I2(σ);
(R4) d1 = d2;
(R5) there exists (l3, v3, I3, d3) such that: ((l2, v2, I2, d2), ∆L − u1, (l3, v3, I3, d3)) ∈→2.

We have now to prove that R is a simulation relation in the precise sense of definition 8. This is
done in the appendix.

Theorem 5 (Simulability) For any Elastic controller A, for any ∆ ∈ Q>0, there exists ∆L, ∆P ∈

Q>0 such that [[A]]Prg
∆L,∆P

vr[[A]]AAsap
∆ .

Proof For any ∆, as parameters ∆L and ∆P are in the rational numbers,they can always be chosen
such that ∆ > 3∆L + 4∆P .

And so, given a sufficiently fast hardware with a sufficiently precise digital clock, we can imple-
ment any controller that have been proved correct. This is expressed by the following corollary:

Corollary 2 (Implementability) Let E be a rectangular automaton , let [[E]] be a STTSwith set
of states SE, B ⊆ SE be a set of bad states. For any Elastic controller A, for any ∆ ∈ Q>0, such
that [[A]]AAsap

∆ controls [[E]] to avoid B, there exist ∆L, ∆P ∈ Q>0 such that [[A]]Prg
∆L,∆P

controls [[E]]
to avoid B.



6 In practice

In this section, we show that the AASAP semantics can be analyzed automatically using the tool
HyTech [HHWT95]. This is a direct corollary of the next theorem: the AASAP semantics of any
Elastic controller can be encoded using the classical semantics of a timed automaton. The proof
of this result is constructive for any ∆.

Theorem 6 For any Elastic controller A, for any ∆ ∈ Q>0, we can construct effectively a timed
automaton A∆ = F(A, ∆) such that [[A]]AAsap

∆ vr[[A∆]] and [[A∆]]vr[[A]]AAsap
∆ .

Proof. We give the construction of F(A, ∆). Let A be the tuple 〈Loc1, l10, Var1, Lab1, Edg1〉 and let
F(A, ∆) = 〈Loc2, l20, Var2, Inv2, Flow2, Lab2, Edg2〉 be the timed automaton such that:

– Loc2 = {(l, b) | l ∈ Loc1 ∧ b ∈ [Σin → {>,⊥}]};
– l20 = (l10, b⊥) where b⊥ is such that b⊥(σ) = ⊥ for any σ ∈ Σin;
– Var2 = Var1 ∪ {yσ | σ ∈ Σin} ∪ {d};
– Flow2 is such that for any x ∈ Var2, for any l ∈ Loc2 :[[Flow2(l)]] (x) = 1;

– Lab2 = Lab1
out ∪ Lab1

int ∪ Lab1
in ∪ Lab1

in;
– Edg2 is defined as follows.

((l, b), (l′, b′), σ, ∆g∆, R′) ∈ Edg2 iff one of the following condition holds:
• σ ∈ Lab1

out and
1. there exists (l, l′, σ, g, R) ∈ Edg1

2. b′ = b
3. R′ = R ∪ {d}

• σ = ᾱ ∈ Lab1
in and

1. there exists (l, l′, α, g, R) ∈ Edg1

2. b(α) = >
3. b′ = b[α := ⊥]
4. R′ = R ∪ {d}

• σ ∈ Lab1
int and

1. there exists (l, l′, σ, g, R) ∈ Edg1

2. b′ = b
3. R′ = R ∪ {d}

• σ ∈ Lab1
in and

1. l′ = l
2. b(σ) = ⊥
3. b′ = b[σ := >]
4. g = true

5. R′ = {yσ}
• σ = ε and

1. l′ = l
2. b = b′

3. g = true

4. R′ = ∅

– The function Inv2 is defined as follows. Let EV T (l) = {(l, l′, σ, g, R) ∈ Edg2 | σ ∈ Lab1
in}. Let

ACT (l) = {(l, l′, σ, g, R) ∈ Edg2 | σ ∈ Lab1
out ∪ Lab1

int}.

Inv2(l) =
(

∧

(l,l′,σ,g,R)∈EV T (l)

(

d ≤ ∆ ∨ ¬(∆g) ∨ yσ ≤ ∆
)

)

∧
(

∧

(l,l′,σ,g,R)∈ACT (l)

(

d ≤ ∆ ∨ ¬(∆g)
)

)

where ∆g(x) is the expression x ∈ [a + ∆, b] if g(x) is the expression x ∈ [a, b]3.

The proof that this construction is correct is given in appendix.

Corollary 3 For any Elastic controller A, for any ∆ ∈ Q>0, for any rectangular automaton E
with state space SE, for any set of states B ⊆ SE, we have that [[A]]AAsap

∆ controls [[E]] to avoid B iff
[[F(A, ∆)]] controls [[E]] to avoid B.

In practice, we use theorem 6 to reduce the controllability problem to a reachability problem:

– we construct F(A, ∆) (where we can leave ∆ as parameter);

3 However disjunctions are not allowed in invariants of timed automata, they can be easily modeled by
splitting locations.



– we construct a HyTech file with a description of F(A, ∆) and E;
– we ask for which parameter value reach([[F(A, ∆)]] ‖ [[E]])∩Bad = ∅ (where Bad is a set of bad

states) and the system is free of receptiveness problems.

If we apply that construction to our running example, HyTech establishes that the tube of
control strategies defined by the timed automaton of obtained by the construction of theorem 6 (see
Fig. 2) is valid for any ∆ ≤ 1

4 . If we assume that the unit of time is the second, theorem 4 then tells us
that, to preserve the desired property, with a systematic implementation of the Elastic controller,
we should have a platform with loop time ∆L and clock precision ∆P such that 3∆L+4∆P < 250ms.
We implemented the procedure of section 5 on the Lego MindstormsTM platform, using a slightly
modified version of the open-source operating system brickOSTM. We then ran this implementation
using the Elastic controller of figure 1(a). The platform allows ∆L to be as low as 6ms and offers
a digital clock with ∆P = 1ms which is thus ample enough.

(1,⊥⊥)

d ≤ ∆
∨

yLug ≤ ∆

(1,>>)

d ≤ ∆
∨

t ≤ 8 + ∆

(2,⊥⊥)

d ≤ ∆∨
t ≤ 8 + ∆∨
yLug ≤ ∆

(2,>>)

d ≤ ∆
∨

t ≤ 6 + ∆

(3,⊥⊥)

d ≤ ∆∨
t ≤ 6 + ∆∨
yLug ≤ ∆

(3,>>)

d ≤ ∆
∨

t ≤ 4 + ∆

(4,⊥⊥)

d ≤ ∆∨
t ≤ 4 + ∆∨
yLug ≤ ∆

(4,>>)

Lug

yLug := 0

Lug

t := 0
d := 0

t ≥ 8−∆
t := 0
d := 0

Fwd

t ≥ 8−∆
t := 0
d := 0

Fwd

t ≥ 6−∆
t := 0
d := 0

Bwd

t ≥ 6−∆
t := 0
d := 0

Bwdt ≥ 4−∆
d := 0

Stop

t ≥ 4−∆
d := 0

Stop
yLug := 0

Lug

yLug := 0

Lug

yLug := 0

Lug

Fig. 2. Semantic timed automaton for the Elastic of figure 1(a).

7 Related and future works

In this section, we compare our work with some recent related works. We also point out several
future research directions.

Related works In [AFM+02,Yi03], Wang Yi et al present a tool called Times that generates exe-
cutable code (C code for the Lego MindstormsTM platform) from timed automata models. The
code is generated with the synchrony hypothesis. This work does not tackle the problem on which we



concentrate in this paper. The properties proved on the models are not guaranteed to be preserved
by their code generation. On the other hand, this work also integrate interesting schedulability anal-
ysis. In our paper, we have only concentrated on simple control centered programs. In our approach,
tasks that are computing expensive, should be modeled explicitly (with their worst-case execution
time for example). This is coherent with the approach they propose.

In [AFILS03], Rajeev Alur et al introduce a methodology to generate code from hybrid automata.
The class of models they consider is larger than the class we consider here, i.e. the Elastic con-
trollers. As, in the work of Yi et al, they adopt the synchrony hypothesis. Nevertheless, they plan to
explore further this translation in order to see how to achieve the translation without the synchrony
hypothesis. The work in this paper should be useful in that context.

In [HKSP03], Tom Henzinger et al introduce a programming model for real-time embedded
controllers called Giotto. Giotto is an embedded software model that can be used to specify a
solution to a given control problem independently of an execution platform but which is closer to
executable code than a mathematical model. So, Giotto can be seen an intermediary step between
mathematical models like hybrid automata and real execution platform.

In [IKL+], Kim Larsen et al show how to model code for real-time controllers using Uppaal

models in order to formally verify the code behavior. Usually, they encounter the problem that the
obtained description is difficult to analyze because the time unit at the controller level (time slice
of the real-time OS for example) is much smaller than the natural time unit of the environment.
This leads to what they call symbolic state space fragmentation. They proposed in [HL02] a partial
solution to that problem. In our framework, we do not encounter that problem. In fact, the larger
reaction delay computed during the analysis phase of the AASAP semantics is usually close to the
time unit of the environment to control, and usually, at least, much larger than the time unit of the
hardware on which the control program is executed. The program is generated automatically from
the Elastic model and is guaranteed to be correct by construction (no need to verify it).

Future works As future works, we plan to:

– study in details the parameter synthesis problem defined by the AASAP semantics. Currently, we
analyze the semantics with HyTech using the standard fixpoint algorithm with no guarantee of
termination. We do not know if the synthesis problem is decidable or not. If the problem turns
out to be undecidable, we will look for heuristics.

– study Giotto as a possible intermediary step for code generation in the setting of our method.
This intermediary step may allow us to simplify parts of our construction.

– compare more extensively the practicability of our approach compared to the approach consisting
in verifying code.
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A Proof of theorems from section 2

To structure the proof, we need some more notations and lemmas. We refine the definition of reach-
able states of a TTS.

Definition 19 [n-Reachable States of TTS] A state s of a TTS T = 〈S, ι, Σ,→〉 is n-reachable if
there exists a finite sequence s0s1 . . . sn of states such that s0 = ι, sn = s and for any i, 0 ≤ i < n,
there exists σ ∈ Σ ∪ R≥0 such that (si, σ, si+1) ∈→.

This definition is extended to STTS as expected. Let us introduce an intermediate lemma.

Lemma 2 Let T 1 = 〈S1, ι1, Σ1
in, Σ

1
out, Σ

1
τ ,→1〉 and T 2 = 〈S2, ι2, Σ2

in, Σ
2
out, Σ

2
τ ,→2〉 be two com-

posable STTS, let T 3 = 〈S3, ι3, Σ3
in, Σ

3
out, Σ

3
τ ,→3〉 be a STTS such that T 3 vr T 1 (with simulation

relation R). If (s3
n, s2

n) is n-reachable (in T 3‖T 2) then there exists s1
n such that (s1

n, s2
n) is n-reachable

(in T 1‖T 2) and (s3
n, s1

n) ∈ R.

Proof of lemma 2
We show this by induction on n.

– Case n = 0
It is clearly true since (s3

0, s
2
0) = (ι3, ι2), (ι1, ι2) is 0-reachable and (ι3, ι1) ∈ R.

– Case n = k + 1
(H0) Assume it is true for n = k, and let show it remains true for n = k + 1.
Let T 3‖T 2 = 〈S3,2, ι3,2, Σ3,2,→3,2〉 and T 1‖T 2 = 〈S1,2, ι1,2, Σ1,2,→1,2〉.
Let (s3

k+1, s
2
k+1) be (k + 1)-reachable (in T 3‖T 2). Then there exists (s3

k, s2
k) k-reachable (in

T 3‖T 2) such that ((s3
k, s2

k), σ, (s3
k+1, s

2
k+1)) ∈→

3,2 for some σ ∈ Σ3,2 ∪ R≥0. (H1)

By (H0), there exists s1
k such that

(H2) (s1
k, s2

k) is k-reachable (in T 1‖T 2) and
(H3) (s3

k, s1
k) ∈ R

We consider the 3 possible cases for (H1):

1. σ ∈ Σ3
out ∪ Σ2

out ∪ R≥0 and then

{

(s3
k, σ, s3

k+1) ∈→
3

(s2
k, σ, s2

k+1) ∈→
2

As (s3
k, s1

k) ∈ R (H3), we know that there exists s1
k+1 such that (s1

k, σ, s1
k+1) ∈→1 and

(s3
k+1, s

1
k+1) ∈ R (see (S21) in definition 8?). So that ((s1

k , s2
k), σ, (s1

k+1, s
2
k+1)) ∈→1,2 since

σ ∈ Σ3
out ∪ Σ2

out ∪ R≥0 and Σ3
out = Σ2

in = Σ1
out. Finally, (s1

k+1, s
2
k+1) is (k + 1)-reachable (in

T 1‖T 2) (by (H2)).

2. σ ∈ Σ3
τ and then

{

(s3
k, σ, s3

k+1) ∈→
3

s2
k = s2

k+1

As (s3
k, s1

k) ∈ R (H3), we know that there exists s1
k+1 such that (s1

k, σ, s1
k+1) ∈→1 and

(s3
k+1, s

1
k+1) ∈ R (see1 (S21) in definition 8?) So that ((s1

k, s2
k), σ, (s1

k+1, s
2
k+1)) ∈→

1,2 since
σ ∈ Σ3

τ and Σ3
τ ⊆ Σ1

τ . Finally, (s1
k+1, s

2
k+1) is (k + 1)-reachable (in T 1‖T 2) (by (H2)).

3. σ ∈ Σ2
τ and then

{

s3
k = s3

k+1

(s2
k, σ, s2

k+1) ∈→
2

We have directly ((s1
k, s2

k), σ, (s1
k+1, s

2
k+1)) ∈→1,2 and (s3

k+1, s
1
k+1) ∈ R (take s1

k+1 = s1
k).

Finally, (s1
k+1, s

2
k+1) is (k + 1)-reachable (in T 1‖T 2) (by (H2)).

Theorem 1 Let T 1 and T 2 be two composable STTS, let T 3 be a STTS such that T 3 vr T 1, if
T 1‖T 2 is free of receptiveness problems then T 3‖T 2 is free of receptiveness problems.

Proof. (ad absurdum). We have T 3 vr T 1 so that there exists R ⊆ S3×S2 such that (S1) and (S2)
are satisfied.



(H1) Assume there exists (s3
1, s

2
1) ∈ Reach(T 3‖T 2) such that:

∃σ ∈ Σ3
out, s3

2 ∈ S3 : (s3
1, σ, s3

2) ∈→
3 (J1)

∧ σ ∈ RefT 2(s2
1) (J2)

Then, by lemma 2, there exists s1
1 such that : (s1

1, s
2
1) ∈ Reach(T 1‖T 2) (J3)

∧ (s3
1, s

1
1) ∈ R (J4)

(since s ∈ Reach(T ) iff s is n-reachable in T for some n)
By (J1) and (J4), there exists s1

2 : (s1
1, σ, s1

2) ∈→1. Moreover σ ∈ RefT 2(s2
1) by (J2) and

Σ3
out = Σ2

in = Σ1
out. In summary, we have (s1

1, s
2
1) ∈ Reach(T 1‖T 2), σ ∈ Σ1

out, and s1
2 ∈ S1 such

that (s1
1, σ, s1

2) ∈→
1 and σ ∈ RefT 2(s2

1).
This is in contradiction with the fact that T 1‖T 2 is free of receptiveness problems. This means
that the assumption (H1) above is false.
(H2) Assume there exists (s3

1, s
2
1) ∈ Reach(T 3‖T 2) such that:

∃σ ∈ Σ2
out, s2

2 ∈ S3 : (s2
1, σ, s2

2) ∈→
2 (J1)

∧ σ ∈ RefT 3(s3
1) (J2)

Then, by lemma 2, there exists s1
1 such that : (s1

1, s
2
1) ∈ Reach(T 1‖T 2) (J3)

∧ (s3
1, s

1
1) ∈ R (J4)

(since s ∈ Reach(T ) iff s is n-reachable in T for some n)
By (J2) and (J4), RefT 3(s3

1) = RefT 1(s1
1) and σ ∈ RefT 1(s1

1). In summary, we have (s1
1, s

2
1) ∈

Reach(T 1‖T 2), σ ∈ Σ2
out, and s2

2 ∈ S2 such that (s2
1, σ, s2

2) ∈→
2 and σ ∈ RefT 2(s2

1).
This is in contradiction with the fact that T 1‖T 2 is free of receptiveness problems. This means
that the assumption (H2) above is false.

Since (H1) and (H2) are false, it must be that T 3‖T 2 is free of receptiveness problems.

Theorem 2 Let T 1 = 〈S1, ι1, Σ1
in, Σ

1
out, Σ

1
τ ,→1〉 and T 2 = 〈S2, ι2, Σ2

in, Σ
2
out, Σ

2
τ ,→2〉 be two com-

posable STTS, let T 3 be a STTS such that T 3 vr T 1, and let B ⊆ S2, if T 1 controls T 2 to avoid B
then T 3 controls T 2 to avoid B.

Proof. We must show that

1. T 3‖T 1 is free of receptiveness problems. This is a corollary of theorem 1 since T 1 and T 2 are
composable and T 3 vr T 1.

2. Reach(T 3‖T 2) ∩ {(s3, s2) | s3 ∈ S3 ∧ s2 ∈ B} is empty.
(H1) Assume there exists (s3

1, s
2
1) ∈ Reach(T 3‖T 2) ∩ {(s3, s2) | s3 ∈ S3 ∧ s2 ∈ B}.

Then s2
1 ∈ B. By lemma 2, there exists s1

1 such that (s1
1, s

2
1) ∈ Reach(T 1‖T 2) ((since

s ∈ Reach(T ) iff s is n-reachable in T for some n)). So that (s1
1, s

2
1) ∈ Reach(T 1‖T 2) ∩

{(s1, s2) | s1 ∈ S1 ∧ s2 ∈ B}.
This is in contradiction with the fact that T 1 controls T 2 to avoid B. This means that the
assumption (H1) above is false, that is Reach(T 3‖T 2) ∩ {(s3, s2) | s3 ∈ S3 ∧ s2 ∈ B} = ∅.

B Proof of theorem of section 5

Theorem 4 [Simulation]
Let A be an Elastic controller, for any ∆, ∆L, ∆P ∈ Q≥0 be such that ∆ > 3∆L + 4∆P , we

have [[A]]Prg
∆L ,∆P

vr[[A]]AAsap
∆ .

Proof. Let [[A]]Prg
∆L ,∆P

= (S1, ι1, Σ1
in, Σ

1
out, Σ

1
τ ,→1) and [[A]]AAsap

∆ = (S2, ι2, Σ2
in, Σ

2
out, Σ

2
τ ,→2). Consider

the relation R ⊆ S1 × S2 that contains the pairs:



(s1, s2) = ((l1, r1, T 1, I1, u1, d1, f1), (l2, v2, I2, d2))

such that the following conditions hold:

(R1) l1 = l2;
(R2) for any x ∈ Var, |v2(x) − (T 1 − r1(x) + u1)| ≤ ∆L + ∆P

(R3) for any σ ∈ Labin, I1(σ) = I2(σ);
(R4) d1 = d2;
(R5) there exists (l3, v3, I3, d3) such that: ((l2, v2, I2, d2), ∆L − u1, (l3, v3, I3, d3)) ∈→2.

Let us prove that R is a simulation relation:

(S1) (ι1, ι2) ∈ R. We have to check the 5 rules of the simulation relation.
(R1), (R2), (R3) and (R4) are clearly true.
(R5) To establish this property, we first note that d2 = 0 and so d2 + ∆L < ∆ which implies
∀t′ ≤ ∆L : d2 + t′ < ∆. Hence the two conditions of rule (A4.6) are verified.

(S2) Let us assume that (s1
1, s

2
1) = ((l11, r

1
1 , T

1
1 , I1

1 , u1
1, d

1
1, f

1
1 ), (l21, v

2
1 , I2

1 , d2
1)) ∈ R and that (s1

1, σ, s1
2)

∈→1 (with s1
2 = (l12, r

1
2 , T

1
2 , I1

2 , u1
2, d

1
2, f

1
2 )). We must prove the two following conditions:

(S21) For each possible value for σ, we must establish the existence of a state s2
2 ∈ S2 such that

(s2
1, σ, s2

2) ∈→
2 and (s1

2, s
2
2) ∈ R.

(S22) RefT 1(s1
1) = RefT 2(s2

1).
We start with (S21): Since (s1

1, s
2
1) ∈ R we know that:

(H0) s2
1 = (l11, v

2
1 , I

1
1 , d1

1)
(H1) ∀x ∈ Var : T 1

1 − r1
1(x) + u1

1 − ∆L − ∆P ≤ v2
1(x) ≤ T 1

1 − r1
1(x) + u1

1 + ∆L + ∆P

(H2) there exists s3 = (l3, v3, I3, d3) ∈ S2 such that: ((l21, v
2
1 , I2

1 , d2
1), ∆L −u1

1, (l
3, v3, I3, d3)) ∈→2.

The rest of the proof works case by case on the different possible values for σ:
1. let σ ∈ Σin

Since (s1
1, σ, s1

2) ∈→
1 we know that:

(H3) I1
1 (σ) = ⊥

(H4) s1
2 = (l11, r

1
1 , T

1
1 , I1

1 [{σ} := 0], u1
1, d

1
1, f

1
1 )

• Let us first prove that ∃s2
2 ∈ S2 : (s2

1, σ, s2
2) ∈→2. It amounts to prove that I1

1 (σ) = ⊥
which is true by (H3). Now that we know s2

2 exists we can say that:
(H5) s2

2 = (l11, v
2
1 , I1

1 [{σ} := 0], d1
1)

• It is now easy to prove that (s1
2, s

2
2) ∈ R. Indeed, it is obvious that s2

2 fulfills the five
conditions of the simulation relation if (s1

1, s
2
1) ∈ R .

2. let σ ∈ Σout

Since (s1
1, σ, s1

2) ∈→
1 we know that:

(H3) ∃(l11, l
1
2, g, σ, R) ∈ Edg : bT 1

1 c∆P
− r1

1 |= ∆S
g∆S

(H4) s1
2 = (l12, r

1
1 [R := bT 1

1 c∆P
], T 1

1 , I1
1 , u1

1, 0,>)

• Let us first prove that ∃s2
2 ∈ S2 : (s2

1, σ, s2
2) ∈→2. We use the same edge as in the

implementation semantics (see (H3)). This amounts to prove that: ∀x ∈ Var : v2
1(x) |=

∆g∆(x). Now we know that ∀x ∈ Var:

lb(g(x)) − ∆S ≤ bT 1
1 c∆P

− r1
1(x) ≤ rb(g(x)) + ∆S (H3)

→ lb(g(x)) − ∆S − ∆P ≤ T 1
1 − r1

1(x) ≤ rb(g(x)) + ∆S + ∆P ( lemma 1)
→ lb(g(x)) − ∆L − 3∆P ≤ T 1

1 − r1
1(x) ≤ rb(g(x)) + ∆L + 3∆P (∆S = ∆L + 2∆P )

→ lb(g(x)) − 2∆L − 4∆P + u1
1 ≤ T 1

1 − r1
1(x) + u1

1 − ∆L − ∆P∧
T 1

1 − r1
1(x) + u1

1 + ∆L + ∆P ≤ rb(g(x)) + 2∆L + 4∆P + u1
1

→ lb(g(x)) − 2∆L − 4∆P + u1
1 ≤ v2

1(x) ≤ rb(g(x)) + 2∆L + 4∆P + u1
1 (H1)

→ lb(g(x)) − 2∆L − 4∆P ≤ v2
1(x) ≤ rb(g(x)) + 3∆L + 4∆P (0 ≤ u1

1 ≤ ∆L)
→ lb(g(x)) − ∆ ≤ v2

1(x) ≤ rb(g(x)) + ∆ (3∆L + 4∆P < ∆)
→ v2

1(x) |= ∆g∆

Now that it is established that ∃s2
2 ∈ S2 : (s1

2, σ, s2
2) ∈→

2 we know that:



(H5) s2
2 = (l12, v

2
1 [R := 0], I1

1 , 0)

• It remains to prove that (s1
2, s

2
2) ∈ R which means we must check the five rules of the

simulation relation. (R1), (R3) and (R4) are clearly true.
To prove (R2) we have to prove that ∀x ∈ Var :
{

T 1
1 − r1

1 [R := bT 1
1 c∆P

](x) + u1
1 − ∆L − ∆P ≤ v2

1 [R := 0](x)
v2
1 [R := 0](x) ≤ T 1

1 − r1
1 [R := bT 1

1 c∆P
](x) + u1

1 + ∆L + ∆P

This proposition is the same as H1 for any x /∈ R. For x ∈ R, this amounts to prove:

T 1
1 − bT 1

1 c∆P
+ u1

1 − ∆L − ∆P ≤ 0 ≤ T 1
1 − bT 1

1 c∆P
+ u1

1 + ∆L + ∆P .

We first instantiate lemma 1:
T 1

1 − ∆P ≤ bT 1
1 c∆P

≤ T 1
1 + ∆P

→ T 1
1 − ∆P − bT 1

1 c∆P
≤ 0 ≤ T 1

1 + ∆P − bT 1
1 c∆P

→ T 1
1 − bT 1

1 c∆P
+ u1

1 − ∆L − ∆P ≤ 0 ≤ T 1
1 − bT 1

1 c∆P
+ u1

1 + ∆L + ∆P (u1
1 − ∆L ≤ 0)

This establishes (R2).
To prove (R5) we can intuitively state that at a discrete transition, the deadline of the
next possible discrete transition can only stay still or move away but certainly not be
earlier than before. As before, a time step of length ∆L−u1

1 was possible, so must it still
be the case now.

3. let σ ∈ Στ .Στ = Labτ ∪ Labin ∪{ε}. The proof for the first two sets is similar to the previous
case. Let σ = ε

Since (s1
1, ε, s

1
2) ∈→

1 we know by (P4.5) that

(H3) s1
2 = (l11, r

1
1 , T

1
1 + u1

1, I
1
1 , 0, d1

1,⊥)
(H4) f1

1 = ⊥ or

∗ for any σ̄ such that σ ∈ Labin, for any (l11, l
′, σ, g, R) ∈ Edg, we have that either

bT 1
1 c∆P

− r1
1 6|= ∆S

g∆S
or I1

1 (σ) ≤ u1
1

∗ for any σ ∈ Labout, for any (l11, l
′, σ, g, R) ∈ Edg, we have that bT 1

1 c∆P
− r1

1 6|= ∆S
g∆S

By rule (A4.5) of the AAsap-semantics, we know that there exists s2
2 ∈ S2 such that (s2

1, ε, s
2
2)

and

(H5) s2
2 = s2

1 = (l11, v
2
1 , I

1
1 , d1

1).

Now we have to prove that (s1
2, s

2
2) ∈ R. (R1), (R3) and (R4) are clearly true. Proving (R2)

amounts to prove that

∀x ∈ Var : T 1
1 + u1

1 − r1
1(x) + 0− ∆L − ∆P ≤ v2

1(x) ≤ T 1
1 + u1

1 − r1
1(x) + 0 + ∆L + ∆P

which turns out to be equivalent to (H1).

Let us now prover that there exists s3 s.t. ((l11, v
2
1 , I1

1 , d1
1), ∆L, s3) ∈→2. According to rule

(A4.6), it amounts to prove that

(T1) for any edge (l11, l
′, σ, g, R) ∈ Edg with σ ∈ Labout ∪ Labτ , we have that:

∀t′ : 0 ≤ t′ ≤ ∆L : (d1
1 + t′ ≤ ∆ ∨ TS(v2

1 + t′, g) ≤ ∆)

(T2) for any edge (l11, l
′, σ, g, R) ∈ Edg with σ ∈ Labin, we have that:

∀t′ : 0 ≤ t′ ≤ ∆L : (d1
1 + t′ ≤ ∆ ∨ TS(v2

1 + t′, g) ≤ ∆ ∨ (I1
1 + t′)(σ) ≤ ∆)

If f1
1 = > it implies that the program has made a discrete transition during the last loop,

which means that d1
1 ≤ ∆L and thus that d1

1 + ∆L ≤ 2∆L ≤ ∆ because we know that, by
hypothesis, ∆ > 2∆L + 4∆P , which makes (T1) and (T2) true for any t′.

If f1
1 6= >, the proof is less trivial. We first make a proof for labels of (T1).

∀(l11, l
′, σ, g, R) ∈ Edg with σ ∈ Labout we have bT 1

1 c∆P
6|= ∆S

g∆S
by (H4). There are two

possible cases:

(a) ∃x ∈ Var such that



bT 1
1 c∆P

− r1
1(x) < lb(g(x)) − ∆S

→ bT 1
1 c∆P

− r1
1(x) < lb(g(x)) − ∆L − 2∆P (∆S = ∆L + 2∆P )

→ T 1
1 − r1

1(x) < lb(g(x)) − ∆L − ∆P (lemma 1)
→ T 1

1 − r1
1(x) + u1

1 + ∆L + ∆P < lb(g(x)) + u1
1

→ v2
1(x) < lb(g(x)) + u1

1 (H1)
→ v2

1(x) < lb(g(x)) + ∆L (u1
1 ≤ ∆L)

→ ∀t′ : 0 ≤ t′ ≤ ∆L : v2
1(x) + t′ ≤ lb(g(x)) + 2∆L

→ ∀t′ : 0 ≤ t′ ≤ ∆L : TS(v2
1(x) + t′, g(x)) ≤ 2∆L

→ ∀t′ : 0 ≤ t′ ≤ ∆L : TS(v2
1(x) + t′, g(x)) ≤ ∆ (2∆L < ∆)

→ ∀t′ : 0 ≤ t′ ≤ ∆L : TS(v2
1 + t′, g) ≤ ∆

(b) ∃x ∈ V ar such that
bT 1

1 c∆P
− r1

1(x) > rb(g(x)) + ∆S

→ bT 1
1 c∆P

− r1
1(x) > rb(g(x)) + ∆L + 2∆P (∆S = ∆L + 2∆P )

→ T 1
1 − r1

1(x) > rb(g(x)) + ∆L + ∆P (lemma 1)
→ T 1

1 − r1
1(x) + u1

1 − ∆L − ∆P > rb(g(x)) + u1
1

→ v2
1(x) > rb(g(x)) + u1

1 (H1)
→ v2

1(x) > rb(g(x))
→ ∀t′ : 0 ≤ t′ ≤ ∆L : v2

1(x) + t′ > rb(g(x))
→ ∀t′ : 0 ≤ t′ ≤ ∆L : TS(v2

1(x) + t′, g(x)) ≤ ∆ (v2
1(x) + t′ 6|= g(x))

→ ∀t′ : 0 ≤ t′ ≤ ∆L : TS(v2
1 + t′, g) ≤ ∆

Thus, both case implies that (T1) is true.
The proof for (T2) is the same if we have, by (H4), bT 1

1 c∆P
6|= ∆S

g∆S
. If not, we have

I1
1 (σ) < u1

1 which also allows to prove (T2). Indeed
I1
1 (σ) < u1

1

→ ∀t′ : 0 ≤ t′ ≤ ∆L : I1
1 (σ) + t′ < ∆L

→ ∀t′ : 0 ≤ t′ ≤ ∆L : I1
1 (σ) + t′ < ∆ (∆L ≤ ∆)

4. let σ ∈ R≥0. For the sake of clarity let us consider that σ = t.
Since (s1

1, t, s
1
2) ∈→

1 we know by (P4.6) that
(H3) s1

2 = (l11, r
1
1 , t

1
1, I

1
1 + t, u1

1 + t, d1
1 + t, f1

1 );
(H4) u1

1 + t ≤ ∆L.
With those facts, we know that there exists s2

2 = (l22, v
2
2 , I2

2 , d2
2, d

2
2) ∈ S2 such that (s2

1, t, s
2
2)

∈→2 because (s2
1, ∆L, s3) ∈→2 (H2) and t ≤ ∆L − u1

1 (H4).
Now that we have (s2

1, t, s
2
2) ∈→

2, we know that:
(H5) s2

2 = (l11, v
2
1 + t, I1

1 + t, d1
1 + t)

We can now prove that (s1
2, s

2
2) ∈ R. We have to check the five points of the simulation

relation: (R1), (R2), (R3) and (R4) are easy to prove using hypotheses (H1) to (H5).
For (R5), since by (H2), there exists s3 = (l3, v3, I3, d3) ∈ S2 such that: ((l21 , v

2
1 , I

2
1 , d2

1), ∆L−
u1

1, (l
3, v3, I3, d3)) ∈→2. We have ((l11, v

2
1 + t, I1

1 + t, d1
1 + t), (∆L−u1

1− t), (l3, v3, I3, d3) ∈ S2.
The proof for (S22) is trivial since the refusal function for a state s can be calculated in both of
our semantics from the component I of the state s:
• ∀s = (l, r, T, I, u, d, f) ∈ S1 : Ref [[A]]Prg

∆L,∆P

(s) = {σ ∈ Labin | I(σ) 6= ⊥}

• ∀s = (l, v, I, d) ∈ S2 : Ref[[A]]AAsap

∆

(s) = {σ ∈ Labin | I(σ) 6= ⊥}

This fact and the condition (R3) of the simulation R relation implies (S22).

C Proof of theorem of the section 6

Theorem 6 For any Elastic controller A, for any ∆ ∈ Q>0, we can construct effectively a timed
automaton A∆ = F(A, ∆) such that [[A]]AAsap

∆ vr[[A∆]] and [[A∆]]vr[[A]]AAsap
∆ .



Proof. We give the construction of F(A, ∆). Let A be the tuple 〈Loc1, l10, Var1, Lab1, Edg1〉 and
let F(A, ∆) = 〈Loc2, l20, Var2, Inv2, Flow2, Lab2, Edg2〉 be the timed automaton such that:

– Loc2 = {(l, b) | l ∈ Loc1 ∧ b ∈ [Σin → {>,⊥}]};
– l20 = (l10, b⊥) where b⊥ is such that b⊥(σ) = ⊥ for any σ ∈ Σin;
– Var2 = Var1 ∪ {yσ | σ ∈ Σin} ∪ {d};
– Flow2 is such that for any x ∈ Var2, for any l ∈ Loc2 :[[Flow2(l)]] (x) = 1;

– Lab2 = Lab1
out ∪ Lab1

int ∪ Lab1
in ∪ Lab1

in;
– Edg2 is defined as follows.

((l, b), (l′, b′), σ, ∆g∆, R′) ∈ Edg2 iff one of the following condition holds:
• σ ∈ Lab1

out and
1. there exists (l, l′, σ, g, R) ∈ Edg1

2. b′ = b
3. R′ = R ∪ {d}

• σ = ᾱ ∈ Lab1
in and

1. there exists (l, l′, α, g, R) ∈ Edg1

2. b(α) = >
3. b′ = b[α := ⊥]
4. R′ = R ∪ {d}

• σ ∈ Lab1
int and

1. there exists (l, l′, σ, g, R) ∈ Edg1

2. b′ = b
3. R′ = R ∪ {d}

• σ ∈ Lab1
in and

1. l′ = l
2. b(σ) = ⊥
3. b′ = b[σ := >]
4. g = true

5. R′ = {yσ}
• σ = ε and

1. l′ = l
2. b = b′

3. g = true

4. R′ = ∅

– The function Inv2 is defined as follows. Let EV T (l) = {(l, l′, σ, g, R) ∈ Edg2 | σ ∈ Lab1
in}. Let

ACT (l) = {(l, l′, σ, g, R) ∈ Edg2 | σ ∈ Lab1
out ∪ Lab1

int}.

Inv2(l) =
(

∧

(l,l′,σ,g,R)∈EV T (l)

(

d ≤ ∆ ∨ ¬(∆g) ∨ yσ ≤ ∆
)

)

∧
(

∧

(l,l′,σ,g,R)∈ACT (l)

(

d ≤ ∆ ∨ ¬(∆g)
)

)

where ∆g(x) is the expression x ∈ [a + ∆, b] if g(x) is the expression x ∈ [a, b]

To establish that the construction above is correct, we proceed as follows. We show that:

(1) [[A]]AAsap
∆ vr[[F(A, ∆)]]

(2) [[F(A, ∆)]]vr[[A]]AAsap
∆

Let [[A]]AAsap
∆ = (S1, ι1, Σ1

in, Σ
1
out, Σ

1
τ ,→1) and [[F(A, ∆)]]= (S2, ι2, Σ2

in, Σ
2
out, Σ

2
τ ,→2).

To prove (1) we can use the simulation relation R ⊆ S1×S2 such that ((l1, v1, I1, d1), ((l2, b2), v2))
∈ R iff:

1. l1 = l2

2. for any σ ∈ Labin,

{

b2(σ) = ⊥ iff I1(σ) = ⊥
b2(σ) = > ∧ v2(yσ) = I1(σ) iff I1(σ) 6= ⊥

3. v2
|Var1

= v1 ( v|X is the restriction of v to X)

4. v2(d) = d1

Let us prove that R is a simulation relation:

(S1) (ι1, ι2) ∈ R. We have to check the 4 rules (R1 − 4) of the simulation relation, which are clearly
true.

(S2) Let us assume that (s1
1, s

2
1) = ((l11, v

1
1 , I

1
1 , d1

1), ((l
2
1, b

2
1), v

2
1)) ∈ R and that (s1

1, σ, s1
2) ∈→1 (with

s1
2 = (l12, v

1
2 , I

1
2 , d1

2)).
We must prove the two following conditions:



(S21) For each possible value of σ, we must establish the existence of a state s2
2 ∈ S2 such that

(s2
1, σ, s2

2) ∈→
2 and (s1

2, s
2
2) ∈ R.

(S22) RefT 1(s1
1) = RefT 2(s2

1).
We start with (S21): Since (s1

1, s
2
1) ∈ R we know that:

(H0) s2
1 = ((l11, b

2
1), v

2
1)

(H1) v2
1|Var1

= v1
1 , v2

1(d) = d1
1, and v2

1(yσ) = I1
1 (σ) iff I1

1 (σ) 6= ⊥.

Let σ ∈ R≥0 (other cases are straightforward and left to the reader). For the sake of clarity
let us consider that σ = t.
Since (s1

1, t, s
1
2) ∈→

1 we know by (A4.6) that
(H2) for any edge (l11, l

′, σ, g, R) ∈ Edg with σ ∈ Lab1
out ∪ Lab1

int, we have that:
∀t′ : 0 ≤ t′ ≤ t : (d1

1 + t′ ≤ ∆ ∨ TS(v1
1 + t′, g) ≤ ∆)

(H3) for any edge (l11, l
′, σ, g, R) ∈ Edg with σ ∈ Lab1

in, we have that:
∀t′ : 0 ≤ t′ ≤ t : (d1

1 + t′ ≤ ∆ ∨ (TS(v1
1 + t′, g) ≤ ∆ ∨ (I1

1 + t′)(σ) ≤ ∆)
It is easy to prove by (H1) that:
∗ d1

1 + t′ ≤ ∆ ↔ v2
1(d) + t′ ≤ ∆

∗ (I1
1 + t′)(σ) ≤ ∆ ↔ v2

1(yσ) + t′ ≤ ∆
∗ TS(v1

1 + t′, g) ≤ ∆ ↔ v2
1 + t′ |= ¬(∆g)

The third proposition can be proved as follows:
TS(v1

1 + t′, g) ≤ ∆

↔ (v1
1 + t′ |= g) → (∃x ∈ Var1 : v1

1(x) + t′ − ∆ ≤ lb(g(x)) ∨ v1
1(x) + t′ − ∆ > rb(g(x)))

↔ (v1
1 + t′ |= g) → (∃x ∈ Var1 : lb(g(x)) ≤ v1

1(x) + t′ ≤ rb(g(x)) ∧
(v1

1(x) + t′ − ∆ ≤ lb(g(x)) ∨ v1
1(x) + t′ − ∆ > rb(g(x))))

↔ (v1
1 + t′ |= g) → (∃x ∈ Var1 : lb(g(x)) ≤ v1

1(x) + t′ ≤ rb(g(x)) ∧ v1
1(x) + t′ − ∆ ≤ lb(g(x))

↔ (v1
1 + t′ 6|= g) ∨ (∃x ∈ Var1 : lb(g(x)) ≤ v1

1(x) + t′ ≤ min(rb(g(x)), lb(g(x)) + ∆

↔ (∃x ∈ Var1 : v1
1(x) + t′ < lb(g(x)) ∨ v1

1(x) + t′ > rb(g(x)))

∨(∃x ∈ Var1 : lb(g(x)) ≤ v1
1(x) + t′ ≤ min(rb(g(x)), lb(g(x)) + ∆))

↔ ∃x ∈ Var1 : v1
1(x) + t′ < lb(g(x)) + ∆ ∨ v1

1(x) + t′ > rb(g(x))

↔ ∃x ∈ Var1 : v1
1(x) + t′ /∈ [lb(g(x)) + ∆, rb(g(x))]

↔ v1
1 + t′ 6|= ∆g

↔ v1
1 + t′ |= ¬(∆g)

↔ v2
1 + t′ |= ¬(∆g)

In summary, we showed that (H2) and (H3) implies ∀0 ≤ t′ ≤ t : v2
1 + t′ |= Inv2(l21). Thus,

the state s2
2 = ((l21, b

2
1), v

2
2) where v2

2 = v2
1 + t is such that (s2

1, t, s
2
2) ∈→

2 (for each x ∈ Var2,
we define the function fx by fx(t) = v2

1(x) + t. It is easy to check that (i)fx(0) = v2
1(x),

(ii)fx(t) = v2
2(x) and (iii)∀0 < t′ < t : ḟ(t′) = 1).

The reader can easily check that (s1
2, s

2
2) ∈ R.

The proof for (S22) is obvious since the refusal function for s1
1 and s2

1 can be computed as:
• Ref [[A]]AAsap

∆

(s1
1) = {σ ∈ Labin | I1

1 (σ) 6= ⊥}

• Ref [[F(A,∆)]](s
2
1) = {σ ∈ Labin | b2

1(σ) 6= ⊥}
This fact and the condition (R2) of the definition of the simulation relation R implies (S22).

To prove (2) we can use the simulation relation R′ such that R′(s2, s1) iff R(s1, s2). The proof is
similar since we only used equivalence in our reasonings.

D Example: The two tanks controller

This example is inspired by the water-level monitor described in [ACH+95]. The version we present
here is sensibly complexified.

The system to control is a set of two tanks (Fig. 3) with a valve: a pump which can be turned
on and off, and can change its position between tank 1 and tank 2 (only when it is turned off). We



Valve

Left Right

y1

y2

Tank 1 Tank 2

Fig. 3. Two tanks and a valve.
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Off1
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v := 0

Openv := 0
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Close

v := 0

Off2
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v := 0

Openv := 0

On2

Fig. 4. Rectangular automaton specifying the behavior of the valve.



want to maintain the water level of both tanks between 0 and 15 units of length. When the valve
is turned on and it is in left (or right) position, the water level of the corresponding tank 1 (or 2
respectively) rises by 2 units of length per time unit. In other cases (e.g. when the valve is turned
off) the water level falls by 0.5 units of length per time unit.

The Fig. 4 shows the rectangular automaton for the valve; essentially, a received order (Open,
Close, Right or Left) is followed by its execution which takes time: 15 units to turn the valve
on/off, and 30 to change its position.

The rectangular automaton for the tank 1 is depicted in Fig. 5 (tank 2 is similar). Its water level
(denoted by the variable y1) has a derivative of 2 when the valve is on and a derivative of −0.5 when
it is off. A signal (Low1 or High1) is emitted whenever the water level falls to 5 or rises to 10. At
such moment it can be considered as urgent to turn the valve on (or off) and maybe to change its
position before. Sometimes, the valve is turned off before the level reached 5 (or, conversely, it is
turned on while the level is still above 10): in those cases, the corresponding signal (Low1 or High1)
is emitted. If the level reaches 15 or goes below 0, then an error state (Err) is reached.

The Elastic controller is depicted in Fig. 6. When it receives a low-level or high-level signal
from one of the tanks, it tries as quickly as possible to turn the valve on or off (with position change
if required). In order to avoid oscillations between turning the valve on and off, and changing its
position (which can damage the motor of the valve), we specify a delay of at least 1 time unit
betweens two switching on/off and at least 2 time units between two position changes. The clock
xvalve is reset whenever such an operation is done, so that a simple condition x ≥ 1 or x ≥ 2 has to
be checked.

The analysis of this model by HyTech is possible with the construction of theorem 6. Even
though this example is quite big, we found that the error states can be avoided with ∆ = 1

10 ,
and subsequently for any lower value (corollary 2). We can use a Lego MindstormsTM platform
to implement this model, if the hardware satisfy the condition 3∆L + 4∆P < 100ms given by
theorem 4. The safety property (the level in both tanks remains between 0 and 15 units of length)
will automatically be true. In practice, it is thus implementable since the platform allows ∆L to be
as low as 6ms and offers a digital clock with ∆P = 1ms.



Tank #1y1 = water-level1y1 ≤ 10

ẏ1 = 2

y1 ≤ 15

ẏ1 = 2 Err

x1 ≤ 0 ẏ1 = 2

y1 ≥ 5

ẏ1 = − 1

2

y1 ≥ 0

ẏ1 = − 1

2
Err

x1 ≤ 0ẏ1 = − 1

2

y1 ∈ [5, 10]

y1 = 10

High1

Off1

y1 = 5

Low1

On1

On1

Off1

y1 < 5

Off1

x1 := 0

Low1

y1 > 10

On1

x1 := 0

High1

y1 ≥ 15

y1 ≤ 0

Fig. 5. Rectangular automaton specifying the behavior of one of the two tanks.
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Off1

On2

Off2

xvalve := 1

High2

High1

Low2

xvalve ≥ 1

Close

xvalve := 0

Low1

Low2

xvalve ≥ 1
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xvalve := 0

xvalve ≥ 2

Close

xvalve := 0

xvalve ≥ 1
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xvalve := 0
xvalve ≥ 1

Open

xvalve := 0

High1

High2

Low1

xvalve ≥ 1

Close

xvalve := 0
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Fig. 6. Elastic controller for two tanks.


