
���������	�
��������� ��� � �������������������

 "!$#&%('*)+#-,(.0/0!2143(5768'(9(:<;*!&5>=*?*?*@BADC$E

FHGJILKNM�OPGJIRQTSUMVILW OPXYO[Z]_^`X�a<bcMdOfe g<K4aJQUghK&G iYMVj a<k�^DIlI�X
g_O<g�^DmonpG

qr!-,s'$tvus5w,s'&xy3N)+zc/0,&z|{&)}'�,('&~H�2,s9(57!2'r6���,('��R!��N)�'

%r6�6v1����*�������8A�9(.�;�A�,A�;*!$�4~N)��&z�z�~s�4#y���
 �%*)+zJ�]3(5�{P��,�zo1&,25V6d)�,(.}. �hz|9(1(1*3(576�!-~Y;y��,�u�/�u(���B5w,s'r6y��=�A��*E(@4?�A�?4=

INFINITY 2003 Preliminary Version

Petri Nets with Non-blocking Arcs
are Difficult to Analyze

Jean-François Raskin 1,2 and Laurent Van Begin 3,4

Université Libre de Bruxelles
Blvd du Triomphe, 1050 Bruxelles, Belgium.

Abstract

In this paper, we study the decidability of five problems on a class of extended Petri
nets. The study of this class of extended Petri nets is motivated by the problem
of parametric verification of multiple copies of processes that can communicate
with a partially non-blocking rendez-vous. This kind of communications occurs in
abstractions of multi-threaded JAVA programs.

Key words: Monotonic Extensions of Petri Nets, Decidability/
Undecidability.

1 Introduction

In parametric verification, we want to verify at once an entire family of sys-
tems. For example, some mutual exclusion protocols have been designed to
work for any number of (identical) processes. The verification of such pro-
tocols for specific number of processes is not satisfactory. We want a proof
for any number of those processes. This problem of parametric verification is
difficult and has been shown undecidable [AK86] in general. To obtain partial
automatic methods, several abstractions have been shown useful. The work
in this paper is directly connected to the context of one of these abstractions,
the so-called counting abstraction [GS92].

When considering counting abstractions, (infinite) Petri nets and their ex-
tensions are particularly important. In that context, processes of a parametric
system are abstracted by tokens, places are used to count the number of pro-
cesses in each local state of the parametric system and transitions are used

1 Email: jraskin@ulb.ac.be
2 This author was partially supported by the FRFC grant 2.4530.02.
3 Email: lvbegin@ulb.ac.be
4 This author was supported by a ”First Europe” grant EPH3310300R0012 of the Walloon
Region.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Raskin and Van Begin

to model the dynamics of the processes. Sistla et al [GS92] have shown that
Petri nets are well suited to abstract parametric systems where rendez-vous
communications are used for synchronizations between processes. When the
underlying systems use more “exotic” communication mechanisms, like broad-
cast communications for example, the model of Petri nets has to be extended,
with transfer arcs for instance, see [DRVB02] for more details.

In this paper, we consider a very simple extension of Petri nets that is able
to model parametric systems that uses “partially non-blocking” rendez-vous
synchronizations in addition to classical (blocking) rendez-vous synchroniza-
tions. Partially non-blocking rendez-vous are asymmetric synchronizations
where the sending part is not blocking (contrary to the usual case) and the
receiving part is blocking (as in the usual case). To illustrate the notion of
partially non-blocking rendez-vous, consider Figure 1. This figure represents

l1 l2

a ↑ a ↓

l3 l4

Fig. 1. Example of partially non-blocking rendez-vous.

fragments of two processes. In location l1, the first process can emit a ↑, the
proposition of a rendez-vous on symbol a and moves to l2 even if the second
process is not present to synchronize on a by emitting a ↓. If the second
process can synchronize then it does. On the other hand, the second process
has to synchronize with the first process in order to emit a ↓ and move from
l3 to l4, it cannot move alone. So the emission a ↑ is non-blocking and can
occur without a reception part a ↓ while the reception is blocking and can only
occur in the presence of the emission. This is why we call such rendez-vous
“partially non-blocking rendez-vous”. In this paper, we will define a simple
extension of the basic Petri nets that is able to model this kind of communi-
cations between processes, we call this extension Petri nets with non-blocking

arcs.

The study of this simple extension of Petri nets is motivated by previous
works by the authors on extensions of Petri nets for modeling communications
in multi-threaded programs [DRVB02]. Multi-threaded JAVA programs use
instructions like notify and notifyAll for synchronizations. The instruction
notify can be modeled by an partially non-blocking rendez-vous and the
instruction notifyAll can be modeled by a broadcast communication. While
transfer nets, that are able to model broadcast communications, have been
studied from a theoretical point of view [EFM99,DFS98], this is not the case
for extensions of Petri nets modeling partially non-blocking rendez-vous. We
study here the decidability of five important problems in the context of Petri
nets extended with non-blocking arcs. While those five problems are decidable
for Petri nets, we show here that only two of them remain decidable in the
extended model.

The rest of the paper is organized as follows. In a second section, we
recall some basic notions and notations. In a third section, we introduce Petri

2

Raskin and Van Begin

nets extended with non-blocking arcs and the five problems that we study. In
a fourth section, we show that two of the problems remain decidable on the
extended model. In a fifth section, we establish the undecidability of the three
other problems.

Finally, a last section draws some conclusions.

2 Preliminaries

Multi-sets.

A multi-set B constructed from a set S of n elements is a function B :
S → N that assigns to each element s of S the number B(s) of occurrences
of s in the multi-set. To denote a multi-set S over S = {s1, . . . , sn}, we write
{(si, B(si))|B(si) > 0}. For example, let S be {s1, s2, s3} and let B be such
that B(s1) = 3, B(s2) = 0, B(s3) = 1, then B is denoted by {(s2, 3), (s3, 1)}.
Equivalently, B can be represented as a n-dimensional vector, denoted vec(B),
and defined as follows:

vec(B) =

B(s1)

B(s2)

. . .

B(sn)

Well quasi orderings, well structured transition systems.

A well quasi ordering 4 on the elements of a set S is a reflexive and
transitive relation such that for any infinite sequence s1s2 . . . where si ∈ S (i ≥
1) there is i < j such that si 4 sj. In the following we note si ≺ sj if si 4 sj

but sj 64 si. As an example, it is well know that the quasi order 4 on elements
in N

k defined as m 4 m′ if mi ≤ m′
i for any 1 ≤ i ≤ k is a well quasi ordering.

In the rest of this paper, we consider this quasi order on vectors of naturals.

A transition system is a tuple 〈L,→〉 where L is a set of states and →⊆
L × L. 〈l1, l2〉 ∈→ is noted l1 → l2. A transition system 〈L,→〉 is monotonic

according to the well quasi ordering 4 on the elements of L if for all l1, l2 in
L with l1 4 l2, if l1 → l′1 then there exists l′2<l′1 with l2 → l′2. A transition
system 〈L,→〉 is strictly monotonic according to the well quasi ordering 4 on
the elements of L if it is monotonic and for all l1, l2 in L with l1 ≺ l2, if l1 → l′1
then there exists l′2 � l′1 with l2 → l′2. Systems that are monotonic for a
well-quasy order 4 are called well structured transition systems in [FS01]. For
those systems, several general decidability results are known [ACJT96,FS01].
We will use those results in section 4 to derive the decidability of two problems
on our extended model of Petri nets.

A two-counter machine C, 2CM for short, is a tuple 〈c1, c2, L, Instr〉 where:

• c1, c2 are two counters taking their values in N;

3

Raskin and Van Begin

• L = {l1, l2, . . . , lu} is a finite non-empty set of u locations;

• Instr is a function that labels each location l ∈ L with an instruction that
has one of the three following forms:
· l : cj := cj + 1; goto l′;, where j ∈ {1, 2} and l′ ∈ L, this is called an

increment, and we define TypeInst(l) = incj;
· l : cj := cj − 1; goto l′;, where j ∈ {1, 2} and l′ ∈ L, this is called a

decrement, and we define TypeInst(l) = decj;
· l : if cj = 0 then goto l′ else goto l′′;, where j ∈ {1, 2} and l′, l′′ ∈ L,

this is called a zero-test, and we define TypeInst(l) = zerotestj.

Those instructions have their usual obvious semantics, in particular, decre-
ment can only be done if the value of the counter is strictly greater than zero.

A configuration of a 2CM 〈c1, c2, L, Instr〉 is a tuple 〈loc, v1, v2〉 where
loc ∈ L is the value of the program counter and v1, respectively v2, is a
natural number that gives the valuation of the counter c1, respectively c2. A
computation γ of a 2CM 〈c1, c2, L, Instr〉 is either a finite sequence of config-
urations 〈loc1, v

1
1, v

2
1〉, 〈loc2, v

1
2, v

2
2〉, . . . , 〈locr, v

1
r , v

2
r〉, or an infinite sequence of

configurations 〈loc1, v
1
1, v

2
1〉, 〈loc2, v

1
2, v

2
2〉 , . . . , 〈locr, v

1
r , v

2
r〉, . . . such that : (i)

“Initialization”: loc1 = l1, v1
1 = 0, and v2

1 = 0, i.e. a computation starts in l1
and the two counters have the value zero; (ii) “Consecution”: for each i ∈ N

such that 1 ≤ i ≤ |γ| we have that 〈loci+1, v
1
i+1, v

2
i+1〉 is the configuration ob-

tained from 〈loci, v
1
i , v

2
i 〉 by applying the instruction Instr(loci). In the finite

case, r is the length of the computation γ and we define final(γ) = 〈locr, v
1
r , v

2
r〉.

If γ is a computation, γi denotes the ith configuration of γ. A configuration
〈loc, v1, v2〉 is reachable in the 2CM 〈c1, c2, L, Instr〉, if there exists a finite com-
putation γ such that final(γ) = 〈loc, v1, v2〉.

The reachability problem for 2CM is defined as follows: “Given a 2CM C =
〈c1, c2, L, Instr〉 and a configuration 〈loc, v1, v2〉 of C, is 〈loc, v1, v2〉 reachable
from 〈l1, 0, 0〉 ?”. The boundedness problem for 2CM is defined as follows:
“Given a 2CM C = 〈c1, c2, L, Instr〉, is there c ∈ N such that for all reachable
configuration 〈loc, v1, v2〉 in C we have v1 + v2 ≤ c ?”

It is well-known that those two problems cannot be answered completely
with an algorithm.

Theorem 2.1 (From [Min67]) The reachability and boundedness problems

are undecidable for 2CM.

3 Petri nets extended with non-blocking arcs

In this section, we introduce formally the class of extended Petri nets that we
call Petri nets with non-blocking arcs.

Definition 3.1 A Petri Net with non-blocking arcs N , PN+NBA for short,
is defined by a pair N = 〈P, T 〉 where P = {p1, p2, . . . , pn} is a finite set of n

places and T = {tr1, tr2, . . . , trm} is a finite set of m transitions where each

4

Raskin and Van Begin

tri ∈ T is a tuple 〈I, O, A〉, where I is a multi-set of input places in P, O is a
multi-set of output places in P, and A the non-blocking part of the transition
is either the empty set or a singleton {〈p, q〉} with p, q ∈ P \ {r | (r, i) ∈
I or (r, i) ∈ O, and i ≥ 1}, p and q are called respectively the source and the
target of the non-blocking part.

A marking of a PN+NBA N = 〈P, T 〉 is a function m : P → N that
assigns to each place p ∈ P a natural number m(p). Equivalently, a marking
m can be seen as a n-dimensional vector of natural numbers. In the following,
for a marking m and a set of places S, we will write m(S) for

∑

p∈S m(p).

Figure 2 shows an example of PN+NBA. Circles represent places and filled
rectangles represent transitions. Plain edges from places p to transitions tr are
labeled by the number of occurrences of p in the input multi-set of tr and plain
edges from transitions tr to places p are labeled by the number of occurrences
of p in the output multi-set of tr. Absence of edge from (to) a place p to (from)
a transition tr means that there is no occurrence of p in the input (output)
multi-set of tr. In the following, when there is only one occurrence of a place
into a given multi-set of a transition we will only use edges without labels.
Pairs of dashed edges from a place to a transition and from this transition to
a place represent the non-blocking part of the transition. Tokens in the places
define markings in the usual way.

A transition tr = 〈I, O, A〉 is firable in a marking m iff m<vec(I). Note
that the non-blocking part is not taken into account to decide if a transition
tr is firable in a marking m or not. Given a marking m and a transition
tr = 〈I, O, A〉 that is firable in m, we say that m leads to m′ by firing tr,
noted m →tr m′ where m′ is defined as:

• if A = {〈p, q〉} and m(p) ≥ 1 : m′ = m−vec(I)+vec(O)−vec({(p, 1)})+
vec({(q, 1)}), that is the input places are decremented by their number
of occurrences in I, the output places are incremented by their number of
occurrences in O and one token moves from the source place to the target
place of the non-blocking part.

• otherwise: m′ = m− vec(I) + vec(O). In that case, either there is no non-
blocking part to the transition and the effect of the transition is as in the
usual Petri net case or the source of the non-blocking part p is not marked
and the non-blocking part has no effect.

A computation η of a PN+NBA N = 〈P, T 〉 is a sequence of markings al-
ternating with transitions η = m1tr1m2tr2 . . . trr−1mr where mi is a marking
for any i ∈ {1, 2, . . . , r}, trj ∈ T for any j ∈ {1, 2, . . . , r − 1} and we have
that m1 →tr1 m2 →tr2 . . . →trr−1 mr. This notion of computation is extended
to the infinite case as usual. A sequence of transitions σ = tr1tr2 . . . trr is
firable in a marking m1 if there exists a sequence of markings m1m2 . . .mr+1

such that m1tr1m2tr2 . . . trrmr+1 is a computation of N . We note m →σ m′

the fact that firing σ from m leads to m′. A marking m′ is reachable from a
marking m in N iff there exists a sequence of transitions σ of N such that

5

Raskin and Van Begin

m →σ m′. We note Reach(N , m) the set of markings that are reachable from
m in N , i.e. Reach(N , m) = {m′|∃σ ∈ T ∗ : m →σ m′}.

A labeled PN+NBA is a tuple 〈P, T ,L〉 where P and T are a set of places
and a set of transitions as before and L : T → Σ is a labeling function
that labels each transition tr ∈ T with the label L(tr) from a finite set of
labels Σ. The notion of computation is as before. To each of those com-
putations η = m1tr1m2tr2 . . .mrtrr . . . we associate the sequence of labels
L(η) = L(tr1)L(tr2) . . .L(trn) . . . For a PN+NBA N and a marking m, we
define L(N , m) = {L(η)|η is an infinite computation of N with initial mark-
ing m}. The formula of the logic LTL are evaluated over those sequences of
labels. Given a set of labels Σ, the formulas of the logic LTL are defined by
the following rule:

φ := λ|¬φ|φ1 ∨ φ2| © φ|2φ|3φ|φ1Uφ2

where λ ∈ Σ. We only give the semantics for the 2 and 3 operators because
they are the only ones that we need in this paper. For Λ ∈ Σω such that
Λ = λ1 . . . λiλi+1 . . ., we note Λi for the suffix λiλi+1 . . . of Λ starting at this
index i and Λ(i) for for the ith element in Λ. Given Λ ∈ Σω and a formula φ,
we define the satisfaction relation, noted |=, as follows :

• if φ = λ, then Λ |= φ iff Λ(1) = λ;

• if φ = 3ϕ, then Λ |= φ iff ∃i ≥ 1 : Λi |= ϕ;

• if φ = 2ϕ, then Λ |= φ iff ∀i ≥ 1 : Λi |= ϕ.

For a set of infinite sequence of labels M and a formula φ, we have M |= φ if
for all Λ ∈ M we have Λ |= φ.

p1

p4p2

p3

1 11

1 11

t1
t2

Fig. 2. a Petri net with non-blocking arcs.

The PN+NBA of Figure 2 has two transitions. The transitions t1 is a
classical Petri net transition while t2 has an non-blocking part. Let us make
the hypothesis that the tokens represent processes and places represent local
states of processes. In that context, transition t1 models an usual rendez-vous
: “If one process is in its local state p1 and another is its local state p3, then the
two processes can synchronize and move synchronously to their local states p2

and p4, respectively”. In the same context the transition t2 models a “partially
non-blocking” rendez-vous : “If there is one process in p4 and one in p2, then

6

Raskin and Van Begin

the two processes can synchronize and move to p1 and p3 respectively. If no
process are present in p4, a process in p2 does not have to wait and can move
to its local state p1”. In that context, the process in p2 proposes a rendez-vous
to processes in p4. If at least one process is present in p4 the rendez-vous takes
place, otherwise the process in p2 does not have to wait and can proceed.

Problems

The marking reachability problem for a PN+NBA N , is the problem defined
as follows: “Given a PN+NBA N with an initial marking m and a marking
m′, does m′ belong to Reach(N , m) ?”. The marking coverability problem for
a PN+NBA N is the problem defined as follows: “Given a PN+NBA N with
an initial marking m and a marking m′, does there exist a marking m′′ that
belongs to Reach(N , m) and such that m′

4 m′′ ?”. The boundedness problem

for a PN+NBA N is the problem defined as follows : “Given a PN+NBA N and
an initial marking m, is Reach(N , m) finite ?”. The place boundedness problem

for a PN+NBA N is the problem defined as follows : “Given a PN+NBA N , an
initial marking m and a place p, is there c ∈ N such that ∀m′ ∈ Reach(N , m)
we have m′(p) ≤ c ?” The action-based LTL model checking problem for a
labeled PN+NBA N is the problem defined as follows : “Given a labeled
PN+NBA N , an initial marking m and an action-based LTL formula φ, does
L(N , m) |= φ hold ?”

It is well-known that those five problems are decidable on Petri nets
[KM69,May84,Esp94].

Theorem 3.2 The marking reachability, marking coverability, boundedness,

place boundedness and action-based LTL model checking problems are decidable

on Petri nets.

In the next sections we will investigate the decidability of those problems
for PN+NBA.

4 Decidability results

We give here two positive algorithmic results for the analysis of PN+NBA.
They are a direct consequence of the strict monotonicity property of that
class of extended Petri nets.

Proposition 4.1 The class PN+NBA is strictly monotonic.

From Proposition 4.1 and [ACJT96,FS01], we deduce the decidability of
the coverability problem and the boundedness problem for PN+NBA.

Corollary 4.2 The coverability problem and the boundedness problem are de-

cidable for the class PN+NBA.

7

Raskin and Van Begin

li : if ci = 0 then goto l′ else goto l′′

l′

t=0

i

li

cj T

l′′

t
6=0

i

cj

lil′

ti

li

cj K

l′

ti

li

cj K
(a) (b) (c)

li : cj := cj − 1; goto l′li : cj := cj + 1; goto l′

Fig. 3. Simulation of the operations of a 2CM by PN+NBA transitions.

5 Undecidability results

In the previous section, we have seen that the coverability problem and the
boundedness problem are decidable for PN+NBA. In this section we show that
all the other problems that are decidable for Petri nets become undecidable
for PN+NBA.

To establish those undecidability results, we will show that PN+NBA are
able to partially simulate the computations of a 2CM. This partial simulation
result will allow us to reduce in an uniform way undecidable problems for 2CM

to problems for PN+NBA.

5.1 Partial simulations of a 2CM by a PN+NBA

Widget.

For any 2CM C = 〈c1, c2, L = {l1, l2, . . . , lu}, Instr〉, we construct a Petri
net with non-blocking arcs NC = 〈P, T 〉, called the simulation widget, defined
as follows. The set of places P is equal to {c1, c2, l1, l2, . . . , lu, K, T}. The
places c1 and c2 will be used to keep track of the values of the two counters
of C, l1, l2, · · · , lu called the control places will be used to keep track of the
program counter of C, K is called the capacity place, T is called the trash.
The use of K and T will be described below. The set of transitions T is the
smallest set of transitions such that for each li ∈ L:

• if Instr(li) is of the form cj := cj + 1; goto l′, then T contains the transition
tri = 〈I, O, A〉 with I = {(li, 1), (K, 1)}, O = {(cj, 1), (l′, 1)}, and A = ∅.

• if Instr(li) is of the form cj := cj − 1; goto l′, then T contains the transition
tri = 〈I, O, A〉 with I = {(li, 1), (cj, 1)}, O = {l′, K}, and A = ∅;

• if Instr(li) is of the form if cj = 0 then goto l′ else goto l′′ then T con-

tains two transitions tr=0
i and tr

6=0
i defined as:

· tr=0
i = 〈I, O, A〉 with I = {(li, 1)}, O = {(l′, 1)}, and A = {〈cj, T 〉}.

· tr
6=0
i = 〈I, O, A〉 with I = {(li, 1), (cj, 1)}, O = {(cj, 1), (l′′, 1)}, and A = ∅.

Figure 3(a) shows the transition that simulates an increment of cj by mov-
ing one token from the capacity place to cj. Figure 3(b) shows the transition
that simulates a decrement of cj by moving one token from cj to the capacity
place. Figure 3(c) shows the transitions that simulates a zero-test on cj when
cj is equal to zero (transition t=0

i) and when cj is greater than zero.

8

Raskin and Van Begin

l1

lu

TK

c1

c2

li

l1

(a)

l1

TK

c1

p1

c2
β4

p2

β2

β3

β1

loc

TK

c1

c2

β2

β3

p1

p2

βli

β1

β4

K

p1

c2

β1 T

p2

β5

β4p3

β3

l1

c1 v2

v1

v1 + v2

loc

β2

(b)

(c)

(d)

Fig. 4. Construction using the widget.

We note mk the marking of the places in P = {c1, c2, l1, l2, . . . , lu, K, T}
defined as follows: mk(l1) = 1, for any l ∈ {l2, l3, . . . , lu}, mk(l) = 0, mk(c1) =
0, mk(c2) = 0, mk(K) = k, and mk(T) = 0.

Properties of the widget.

Let C = 〈c1, c2, L, Instr〉 be a 2CM and NC = 〈P, T 〉 be the simulation wid-
get associated to C as defined above. Let γ = 〈loc1, v

1
1, v

2
1〉〈loc2, v

2
2, v

2
2〉 . . . be

the computation of C. We associate to γ a sequence of transitions tr1tr2 . . . of
NC, such that for all i ∈ N such that 1 ≤ i ≤ |γ|, we have tri = α(〈loci, v

1
i , v

2
i 〉)

where α is defined as:

α(〈loc, v1, v2〉) =

trk if loc = lk and TypeInst(loc) 6= zerotestj

tr=0
k if loc = lk and TypeInst(loc) = zerotestj and vj = 0.

tr
6=0
k if loc = lk and TypeInst(loc) = zerotestj and vj > 0.

The sequence of transitions corresponding to γ is denoted by α(γ). The func-
tion α−1 on the transitions of the simulation widget is defined as:

α−1(tri) = li if α(〈li, v1, v2〉) = tri for some v1, v2 ∈ N.

9

Raskin and Van Begin

α−1 applied on a sequence of transitions σ = tr1 . . . trn of the widget that
is firable from mk (k ≥ 1), returns a sequence of configurations of C γ =
〈loc0, v

1
0, v

2
0〉 〈loc1, v

1
1, v

2
1〉 . . . 〈locn, v1

n, v2
n〉 such that (i) loc0 = l1, v1

0 = 0, v2
0 = 0

and (ii) for all 1 ≤ i ≤ n, either TypeInstr(li−1) 6= zerotestj and 〈loci, v
1
i , v

2
i 〉

is constructed from 〈loci−1, v
1
i−1, v

2
i−1〉 applying Instr(li−1). Or Inst(li−1) is of

the form if cj = 0 then goto l′ else goto l′′ and the following cases holds.

• tri = tr=0, then loci = l′, v1
i = v1

i−1 and v2
i = v2

i−1, or

• tri = tr 6=0 and loci = l′′, v1
i = v1

i−1, v2
i = v2

i−1.

We now formalize important properties of the widget by the following
lemmas. The proofs of those lemmas are easy but tedious and so given in
appendix.

Lemma 5.1 Let γ = 〈loc1, v
1
1, v

2
1〉〈loc2, v

1
2, v

2
2〉 . . . 〈locr, v

1
r , v

2
r〉 be a computa-

tion of the 2CM C = 〈c1, c2, L, Instr〉 such that for any i ∈ {1, 2, . . . , r},
v1

i + v2
i ≤ k. Let NC be the simulation widget associated to C. The sequence

of transitions α(γ) is firable from the marking mk and firing this sequence of

transitions leads to a marking m′ defined as follows: m′(l) = 1, for l = locr,

m′(l′) = 0 for any l′ 6= locr, m′(c1) = v1
r , m′(c2) = v2

r , m′(K) = k − v1
r − v2

r ,

and m′(T) = 0.

Proof. Given in appendix. 2

This lemma formalizes the fact that any computation of a 2CM on which
the sum of counters does not exceed k can be faithfully simulated by its
associated widget from marking mk with a computation that does not put
tokens in T .

Lemma 5.2 Let σ = tr1tr2 . . . trn be a sequence of transitions of the simula-

tion widget NC associated to the 2CM C = 〈c1, c2, L, Instr〉. If mk →σ m′ and

m′(T) = 0, then α−1(σ) is a computation of C with final(α−1(σ)) = 〈loc, v1, v2〉
such that m′(loc) = 1, v1 = m′(c1) and v2 = m′(c2).

Proof. Given in appendix. 2

This second lemma says that any computation of the widget from its initial
marking that does not put tokens in T is a simulation of a computation of its
associated 2CM.

Lemma 5.3 Let NC be the simulation widget associated to the 2CM C =
〈c1, c2, L, Instr〉. For any marking m such that m ∈ Reach(NC , mk), we have

that m({c1, c2, K, T}) = k.

Proof. Given in appendix. 2

This last lemma says that in any reachable marking of the widget, the sum
of the tokens in the set of places {c1, c2, K, T} stays constant.

10

Raskin and Van Begin

5.2 Undecidability proofs

We are now equipped to establish the undecidability of the marking reach-
ability, action-based LTL model checking and place boundedness problems.

Theorem 5.4 The marking reachability problem is undecidable for PN+NBA.

Proof. Let C = 〈c1, c2, L, Instr〉 be a 2CM and let s = 〈loc, v1, v2〉 be a con-
figuration of C 5 . Let us show that we can reduce the reachability problem
of s in C to the reachability problem between two markings in a PN+NBA.

We construct the PN+NBA N ′ = 〈P ′, T ′〉 starting from the simulation
widget NC = 〈P, T 〉 associated to C. To the simulation widget, we add
the places and transitions as indicated in figure 4(b). That is, P ′ = P ∪
{p1, p2}, T ′ = T ∪{β1, β2, β3, β4} and the new transitions are defined as follows:
β1 = 〈I, O, A〉 such that I = {(p1, 1)}, O = {(K, 1), (p1, 1)}, and A = ∅;
β2 = 〈I, O, A〉 such that I = {(p1, 1)}, O = {(l1, 1)}, and A = ∅; β3 =
〈I, O, A〉 such that I = {(loc, 1)}, O = {(p2, 1)} and A = ∅; β4 = 〈I, O, A〉
such that I = {(K, 1), (p2, 1)}, O = {(p2, 1)}, and A = ∅. We consider the
initial marking m such that m(p1) = 1 and for all p ∈ P ′ \ {p1}, m(p) = 0.
Furthermore, we consider the marking ms defined from the configuration s

as follows: ms(p1) = 0, ms(p2) = 1, ms(l) = 0 for any l ∈ L, ms(c1) = v1,
ms(c2) = v2, ms(K) = 0, and ms(T) = 0. Let us now show that (i) s is
reachable in C iff (ii) ms is reachable from m in N ′.

(i) → (ii). If s is reachable in C then there exists a computation γ =
〈loc1, v

1
1, v

2
1〉, 〈loc2, v

1
2, v

2
2〉, . . . , 〈locr, v

1
r , v

2
r〉 with s = 〈locr, v

1
r , v

2
r〉. Let us note

k the maximum of c1 + c2 along γ. Let us show that we can fire the sequence

of transitions σ = βk
1β2α(γ)β3β

k−v1
r−v2

r

4 and that m →σ ms. By firing βk
1β2, we

put k tokens in the capacity place K and one token in control place l1. The
widget, following Lemma 5.1, is now ready to simulate faithfully γ by firing the
sequence of transitions α(γ) as K contains enough tokens. As the simulation
was faithful, the place c1 contains v1

r tokens and the place c2 contains v2
r tokens.

We also know that the place T contains no tokens, and so by Lemma 5.3 the
place K contains k − v1

r − v2
r tokens. After we can fire β3, the control token is

moved from the control location locr of the widget to the place p2. So firing

β
k−v1

r−v2
r

4 leads to the marking ms.

(ii) → (i). Let us make the hypothesis that ms is reachable in N ′ with
a sequence of transitions σ from m. Let us show that σ must be of the form
β∗

1β2σ0β3β
∗
4 , where σ0 are transitions of the widget. In m, β1 and β2 are the

only firable transitions. Once β2 is fired, place l1 is marked and the transitions
σ0 of the widget has to be fired. To put one token in p2, transition β3 has

5 In the case of reachability, we may simplify a little bit the construction of the widget by
suppressing the capacity place K. However, to keep the proofs uniform and in particular to
be able to use lemmas 5.1, 5.2 and 5.3 in all our proofs, we have decided to keep the widget
in its full version for this proof.

11

Raskin and Van Begin

to be fired. After firing β3, β4 is the only firable transition. It remains us to
prove that α−1(σ0) is a computation of the 2CM C that reaches s. As ms(T)
contains no token, by Lemma 5.2, we know that the simulation was faithful
and so α−1(σ) leads to s in C. 2

Theorem 5.5 The action-based LTL model checking problem is undecidable

for labeled PN+NBA.

Proof. Let C = 〈c1, c2, L, Instr〉 be a 2CM and let s = 〈loc, v1, v2〉 be a con-
figuration of C. Let us show that we can reduce the reachability problem of s

in C to the action-based LTL model checking problem for a PN+NBA.

We construct the PN+NBA N ′ = 〈P ′, T ′〉 starting from the simulation
widget NC = 〈P, T 〉 associated to C. To the simulation widget, we add the
places and transitions as indicated in figure 4(c). That is, P ′ = P∪{p1, p2, p3},
T ′ = T ∪ {β1, β2, β3, β4, β5} and the new transitions are defined as follows:
β1 = 〈I, O, A〉 such that I = {(p1, 1)}, O = {(K, 1), (p1, 1)}, and A = ∅; β2 =
〈I, O, A〉 such that I = {(p1, 1)}, O = {(l1, 1)}, and A = ∅; β3 = 〈I, O, A〉 such
that I = {(c1, v1), (c2, v2), (loc, 1)}, O = {(p2, 1)}, and A = ∅; β4 = 〈I, O, A〉
such that I = {(p2, 1)}, O = {(p3, 1)}, and A = {〈c2, T 〉}; β5 = 〈I, O, A〉
such that I = {(p3, 1)}, O = {(l1, 1), (K, v1 + v2)}, and A = {〈c1, T 〉}. The
labeling function L is the identity function, that is for any tr ∈ T ′ we have
L(tr) = tr. We consider the initial marking m such that m(p1) = 1 and for
all p ∈ P ′ \{p1}, m(p) = 0. Furthermore, we consider the marking ms defined
from the configuration s as follows: ms(p1) = 0, ms(p2) = 0, ms(p3) = 0,
ms(loc) = 1, ms(l) = 0 for any l 6= loc ∈ L, ms(c1) = v1, ms(c2) = v2,
ms(K) = 0, and ms(T) = 0. Let us now show that (i) s is reachable in C iff
(ii) L(N ′, m) 6|= ¬23β3.

(i) → (ii). If s is reachable in C then there exists a computation γ =
〈loc1, v

1
1, v

2
1〉, 〈loc2, v

1
2, v

2
2〉, . . . , 〈locr, v

1
r , v

2
r〉 with s = 〈locr, v

1
r , v

2
r〉. Let us note

k the maximum of c1 + c2 along γ. We now construct from γ a computation
σ of N ′ such that σ |= 23β3. We extend the markings mk (k ≥ 1) to P ′

such that mk({p1, p2, p3}) = 0. The sequence of transitions α(γ) is such that
m →βk

1 β2 mk →α(γ) ms →β3β4β5 mk. By firing βk
1β2, we put k tokens in the

capacity place K and one token in the control place l1 to reach the marking
mk. The widget, following Lemma 5.1, is now ready to simulate faithfully γ

leading to ms by firing the sequence of transitions α(γ) as K contains enough
tokens. After firing β3, the control token is moved from the control location loc

of the widget to the place p2, v1 tokens are removed from c1 and v2 tokens are
removed from c2. Firing β4β5 moves the control token from p2 to l1 passing
through p3 and puts v1 + v2 into K leading to mk. We conclude that the
infinite sequence of transitions σ = βk

1β2(α(γ)β3β4β5)
ω is firable from m and

satisfies the formula 23β3 and so L(N , m) 6|= ¬23β3.

(ii) → (i). Let us make the hypothesis that there is a sequence of labels as-
sociated to a computation of N ′ from the marking m and satisfying the formula
23β3. Let us show that the infinite sequence of transitions σ corresponding to

12

Raskin and Van Begin

such a computation must be of the form β∗
1β2σ0β3β4β5 . . . σnβ3β4β5 . . ., where

each σi(i ≥ 0) is a sequence of transitions of the widget. In fact, β1 and β2 are
the only firable transitions from m. Once β2 is fired, place l1 is marked and
a sequence of transitions of the widget σ0 must be fired. After firing β3, β4

followed by β5 are the only firable transitions, then a sequence of transitions
of the widget σ1 must be fired, etc.

Suppose that s is not reachable and let us derive a contradiction. Assume
that we have m1 →σ1 . . . →β3β4β5 m2i−1 →σi m2i →β3β4β5 m2i+1 →σi+1 . . . For
each i ≥ 1, two cases are possible:

1. m2i−1(c1) = m2i−1(c2) = 0. We consider here two subcases.
• (1a) m2i(c1) = v1 and m2i(c2) = v2. As we suppose that s is not

reachable, we have that α−1(σi) does not correspond to a computation
of C and by lemma 5.2, we know that at least one token has been
added to the place T . By lemma 5.3, one token has been lost from the
set of places {c1, c2, K}. So we can conclude that m2i+1({c1, c2, K}) <

m2i−1({c1, c2, K}).
• (1b) m2i(c1) > v1 and m2i(c2) ≥ v2, or m2i(c1) ≥ v1 and m2i(c2) >

v2. In that case, after firing the sequence β3β4β5, at least one to-
ken was added to T from the places c1 or c2 and so by lemma 5.3,
m2i+1({c1, c2, K}) < m2i−1({c1, c2, K}).

So in the two subcases, we conclude that we have m2i+1({c1, c2, K}) <

m2i−1({c1, c2, K}).
2. m2i−1(c1) 6= 0 or m2i−1(c2) 6= 0. In that case, we start from a mark-

ing m2i−1 that does not correspond to an initial configuration of the
2CM. We know that it is not possible to add tokens in the set of places
{c1, c2, K} from m2i−1 to m2i+1, in fact, we can only move some tokens
from {c1, c2, K} to T . After firing σi, two cases are possible.
• (2a) m2i(c1) = v1 and m2i(c2) = v2. In that case, firing β3β4β5, we

reach a marking m2i+1 to which we can apply case 1 above.
• (2b) m2i(c1) > v1 and m2i(c2) ≥ v2, or m2i(c1) ≥ v1 and m2i(c2) >

v2. In that case, after firing the sequence β3β4β5, at least one to-
ken was added to T from the places c1 or c2 and so by lemma 3,
m2i+1({c1, c2, K}) < m2i−1({c1, c2, K}).

From cases 1 and 2 above, we have that if s is not reachable in C, at least
one token is lost (at least one token is put in T) when firing σiβ3β4β5σi+1β3β4β5

for any i ≥ 1. This guarantees, following Lemma 5.3, that the number of
tokens in {c1, c2, K} will reach zero after a finite amount of time. This means
that NC will not be able to simulate any increment in C and will be blocked.
We conclude that σ cannot be infinite and, then, cannot satisfy the formula
23β3. This contradicts our hypothesis. 2

Theorem 5.6 The place boundedness problem is undecidable for PN+NBA.

Proof. Here, we only sketch the proof. Let C = 〈c1, c2, L, Instr〉 be a 2CM.

13

Raskin and Van Begin

Let us show that we can reduce the boundedness problem for C to the place
boundedness problem for a PN+NBA.

From the widget NC corresponding to C we construct a PN+NBA N ′ as
follows. We add the places p1 and p2 and the transitions β1, β2, β3 and β4 as
shown in Figure 4(d). Intuitively, while p1 contains a token the transitions β1

and β2 can be fired and move tokens from c1 and c2 to the capacity place K.
So β1 and β2 can be used to reset c1 and c2 and put back the tokens in K.
When β3β4 are fired the control flow token moves from p1 to l1 passing through
p2 and one token is added into K. So we extend the simulation capacity of the
widget by one. This construction allows us to move all the tokens in {c1, c2} to
K and put the control token into the initial control flow place. If the counters
are not set to zero, non-blocking arcs guarantee the lost of at least one token
from {c1, c2, K}. Moreover, for each place li such that TypeInst(li) = incj we
add a transition βli that moves the control token into p1 and moves one token
from K to T if there is some tokens in K. We extend mk (k ≥ 1) to P ′ such
that mk({p1, p2}) = 0 and we take m1 as initial marking. We have that K is
unbounded iff C is unbounded.

Suppose that C is unbounded. Starting from m1, the only way to increment
the number of tokens in {c1, c2, K} is to mimic C until there is no more tokens
in K and the next operation to mimics is an increment. Then, firing the
transitions β1 and β2, the counters are set to zero moving all the tokens from
{c1, c2} to K and one new token is generated into K by firing β3β4. This
allows us to reach m2. Applying this strategy from any mi (i ≥ 2) allows us
to reach mi+1 and leads to the construction of an infinite computation where
the number of tokens in {c1, c2, K} grows infinitely often. As all the tokens in
the set {c1, c2, K} are moved to K at the end of the simulation of C by firing
β1 and β2, K is unbounded in this computation.

If C is bounded, there is k ∈ N such that starting from mk, it is not
possible to faithfully simulates C and then fire β1 without losing tokens in
{c1, c2, K} by moving tokens to T with non-blocking arcs. This ensures the
boundedness of K. 2

6 Future Works

Recently, several extensions of the Petri net formalism have been proposed for
modeling parametric systems, a.o. Transfer nets [Cia94], Reset nets [Bil91],
Multi-transfer nets [DRVB02], and the extension proposed in this paper. We
have defined the extension of this paper in order to model partially non-
blocking rendez-vous. The other extensions have been proposed for similar
reasons related to modeling issues. Nevertheless, a careful analysis of the
expressive power of those different extensions of Petri net has not been done
so far. We plan to compare formally the expressive power of those extensions
by studying the languages that they are able to define.

14

Raskin and Van Begin

7 Conclusion

In this paper, we have studied the decidability of five problems for a simple
extension of Petri Nets that makes possible the modeling of “partially non-
blocking rendez-vous” (necessary to model multi-threaded JAVA programs).
The five problems that we have studied are decidable for the basic Petri Net
model. We have shown that due to strict monotonicity of the extended model
and thanks to general results on well-structured transition systems, the mark-
ing coverability and the boundedness problems remain decidable. On the
other hand, the three other problems: marking reachability, action-based LTL

model-checking and place boundedness become undecidable. Our results are
summarized in Table 1.

Problems PN PN + NBA

Marking Reachability
√ ×

Marking Covering
√ √

Boundedness
√ √

Place Boundedness
√ ×

Action-based LTL
√ ×

Table 1
Summary of the decidability/undecidability results.

√
stands for “decidable”, and

× for “undecidable”.

The reader interested in our results may want to look at the following
related works. The decidability of the five problems considered in this paper
for the Petri net models can be found in: for boundedness, place boundedness
and covering in [KM69], for reachability in [May84], and action-based LTL

model-checking in [Esp94]. Several definition of extended Petri nets can be
found in [Cia94] and in [DFS98]. Undecidability results for the class of transfer
nets can be found in [DFS98,DJS99,Duf98]. In [May00], similar problems are
studied in the context of lossy counter machines. For the practical analysis of
models that subsume the class of extended Petri Nets studied here, we refer
the reader to [DRVB02].

Acknowledgement

We would like to thank anonymous reviewers for suggesting improvements to
the submitted version of this paper and in particular for suggesting the future
work on comparing the expressive power of the different extensions of Petri
nets proposed in the context of parametric systems verification.

15

Raskin and Van Begin

References

[ACJT96] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General
Decidability Theorems for Infinite-state Systems. In Proceedings of the
11th Annual Symposium on Logic in Comuter Science (LICS’96), pages
313–321. IEEE Computer Society Press, 1996.

[AK86] K.R. Apt and D. Kozen. Limits for Automatic program Verification of
Finite-State Concurrent Systems. Information Processing Letters, 22(6),
1986.

[Bil91] J. Billington. Extensions to Coloured Petri nets and their applications
to Protocols. PhD thesis, University of Cambridge, 1991.

[Cia94] G. Ciardo. Petri nets with marking-dependent arc multiplicity:
properties and analysis. In Proceeding of the 15th International
Conference on Applications and Theory of Petri Nets (ICATPN 94),
volume 815 of LNCS, pages 179–198. Springer, 1994.

[DFS98] C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset Nets Between
Decidability and Undecidability. In In Proceedings of the 25th
International Colloquium on Automata, Languages, and Programming
(ICALP’98), volume 1443 of LNCS, pages 103–115. Springer, 1998.

[DJS99] C. Dufourd, P. Jancar, and P. Schnoebelen. Boundedness of Reset P/T
nets. In Proceedings of the 26th International Colloquium on Automata,
Languages, and Programming (ICALP’99), volume 1644 of LNCS, pages
301–310. Springer, 1999.

[DRVB02] G. Delzanno, J-F. Raskin, and L. Van Begin. Towards the Automated
Verification of Multithreaded Java Programs. In Proceedings of the
International Conference on Tools and Algorithms for Construction and
Analysis of Systems (TACAS 2002), volume 2280 of LNCS, pages 173–
187. Springer, 2002.

[Duf98] C. Dufourd. Réseaux de Petri avec reset/transfert : Décidabilité et
indécidabilité. PhD thesis, ENS de Cachan, 1998.

[EFM99] J. Esparza, A. Finkel, and R. Mayr. On the Verification of Broadcast
Protocols. In Proceedings of the 14th Annual Symposium on Logic in
Computer Science (LICS’99), pages 352–359. IEEE Computer Society
Press, 1999.

[Esp94] J. Esparza. On the Decidabilty of Model Checking for Several mu-calculi
and Petri Nets. In Proceedings of the 19th International Colloquium on
Trees in Algebra and Programming, volume 787 of LNCS, pages 115–129,
1994.

[FS01] A. Finkel and P. Schnoebelen. Well-structured transition systems
everywhere! Theoretical Computer Science, 256(1-2):63–92, 2001.

16

Raskin and Van Begin

[GS92] S. M. German and A. P. Sistla. Reasoning about Systems with Many
Processes. Journal of ACM, 39(3):675–735, 1992.

[KM69] R. M. Karp and R. E. Miller. Parallel Program Schemata. Journal of
Computer and System Sciences, 3:147–195, 1969.

[May84] E.W. Mayr. An algorithm for the general petri net reachability problem.
SIAM Journal of Computing, 3(13):441–460, 1984.

[May00] R. Mayr. Undecidable Problems in Unreliable Computations. In
Proceedings of the 4th Latin American Symposium on Theoretical
Informatics (LATIN’2000), volume 1776 of LNCS, pages 377–386.
Springer, 2000.

[Min67] N.M. Minsky. Finite and Infinite Machines. Englewood Cliffs, N.J.,
Prentice-Hall, 1967.

17

Raskin and Van Begin

Appendix

Lemma 5.1 Let γ = 〈loc1, v
1
1, v

2
1〉〈loc2, v

2
2, v

2
2〉 . . . 〈locr, v

1
r , v

2
r〉 be a computation

of the 2CM C such that for any i ∈ {1, 2, . . . , n}, v1
i + v2

i ≤ k. Let NC be the

PN+NBA associated to C. The sequence of transitions α(γ) is firable from

the marking mk and firing this sequence of transitions leads to a marking m′

defined as follows: m′(l) = 1, for l = locr, m′(l′) = 0 for any l′ 6= locr,

m′(c1) = v1
r , m′(c2) = v2

r , m′(K) = k − v1
r − v2

r , and m′(T) = 0.

Proof. By induction on the length of the computations of C. The basic case
(l = 1) is obvious. Suppose that the lemma holds for all the computations of
size l < n.

Let γ = γ′ · 〈locn, v1
n, v2

n〉 be a computation of C of size n where γ ′ =
〈loc1, v

1
1, v

2
1〉 . . . 〈locn−1, v

1
n−1, v

2
n−1〉. By induction hypothesis, we have that

α(γ′) leads to the marking m′ in NC such that m′(li) = 1 if li = locn−1,
m′(li) = 0 for all li ∈ L \ {locn−1}, m′(c1) = v1

n−1, m′(c2) = v2
n−1, m′(K) =

k − v1
n−1 − v2

n−1 and m′(T) = 0. The following cases hold.

1. If Instr(locn−1) is of the form cj := cj + 1; goto l′, then we have that
α(〈locn1, v

1
n−1, v

2
n−1〉) = tr such that tr = 〈I, O, ∅〉 where I = {(locn−1, 1),

(K, 1)} and O = {(l′, 1), (cj, 1)}. By hypothesis we have m′(K) > 0 and
we have m′ →tr m′′ such that m′′(l′) = 1, m′′(li) = 0 for all li ∈ L \ {l′},
m′′(c1) = v1

n, m′′(c2) = v2
n, m′′(K) = k − v1

n − v2
n and m′′(T) = 0.

2. If Instr(locn−1) is of the form cj := cj − 1; goto l′, then we have that
α(〈locn−1, v

1
n−1, v

2
n−1〉)= tr such that tr= 〈I, O, ∅〉 where I = {(locn−1, 1),

(cj, 1)} and O = {(l′, 1), (K, 1)}. As 〈locn−1, v
1
n−1, v

2
n−1〉 has a successor,

we have v
j
n−1 > 0 and m′ →tr m′′ such that m′′(l′) = 1, m′′(li) = 0 for

all li ∈ L \ {l′}, m′′(c1) = v1
n, m′′(c2) = v2

n, m′′(K) = k − v1
n − v2

n and
m′′(T) = 0.

3. If Instr(locn−1) is of the form if cj = 0 then goto l′ else goto l′′, then
if v

j
n−1 = 0 we have α(〈locn−1, v

1
n−1, v

2
n−1〉) = tr=0 such that tr=0 =

〈I=0, O=0, {〈cj, T 〉}〉 where I=0 = {(locn−1, 1)} and O=0 = {(l′, 1)}. tr=0

is firable from m′ and we have m′ →tr m′′ such that m′′(l′) = 1, m′′(li) = 0
for all li ∈ L \ {l′}, m′′(c1) = v1

n, m′′(c2) = v2
n, m′′(K) = k − v1

n − v2
n and

m′′(T) = 0. Otherwise if v
j
n−1 > 0 we have α(〈locn−1, v

1
n−1, v

2
n−1〉) = tr 6=0

such that tr 6=0 = 〈I 6=0, O 6=0, {〈cj, T 〉}〉 where I 6=0 = {(locn−1, 1), (cj, 1)}
and O 6=0 = {(l′′, 1), (cj, 1)}. tr 6=0 is firable from m′ and we have m′ →tr

m′′ such that m′′(l′′) = 1, m′′(li) = 0 for all li ∈ L \ {l′′}, m′′(c1) = v1
n,

m′′(c2) = v2
n, m′′(K) = k − v1

n − v2
n and m′′(T) = 0.

2

Lemma 5.2 Let σ = tr1tr2 . . . trn be a sequence of transitions of the PN+NBA

NC associated to the 2CM C. If mk →σ m′ and m′(T) = 0, then α−1(σ) is

a computation of C such that final(α−1(σ)) = 〈loc, v1, v2)〉 where loc = l if

m′(l) = 1, v1 = m′(c1) and v2 = l′(c2).

18

Raskin and Van Begin

Proof. By induction on the size of the sequence of transitions. The basic
case (l = 1) is obvious. Suppose that the lemma holds for all the sequences
of transitions of size l < n. Let σ = σ′ · trn be a sequence of transitions of
NC of size n where σ′ = tr1 . . . trn−1. By induction hypothesis we have that
m →σ′

m′ and final(α−1(σ′)) = 〈loc, v1
1, v

2
1〉 such that m′(loc) = 1, m′(c1) = v1,

m′(c2) = v2 and m′(T) = 0. The following cases holds.

1. if Instr(α−1(trn)) is of the form cj := cj + 1; goto l′, then trn = 〈I, O, ∅〉
such that I = {loc, K} and O = {l′, cj}. We have m′ →trn m′′ and
α−1(σ) is a computation of C with final(α−1(σ)) = 〈l′, v1

2, v
2
2〉 such that

m′′(l′) = 1, m′′(c1) = v1
2, m′′(c2) = v2

2 and m′′(T) = 0.

2. if Instr(α−1(trn)) is of the form cj := cj − 1; goto l′, then trn = 〈I, O, ∅〉
such that I = {(loc, 1), (cj, 1)} and O = {(l′, 1), (K, 1)}. We have m′ →trn

m′′ and α−1(σ) is a computation of C with final(α−1(σ)) = 〈l′, v1
2, v

2
2〉 such

that m′′(l′) = 1, m′′(c1) = v1
2, m′′(c2) = v2

2 and m′′(T) = 0.

3. if Instr(α−1(trn)) is of the form if cj = 0 then goto l′ else goto l′′, then
if m′(cj) = 0, trn must be such that trn = 〈I, O, {〈cj, T 〉}〉 with I =
{(loc, 1)} and O = {(l′, 1)}. We have m′ →trn m′′ and α−1(σ) is a
computation of C with final(α−1(σ)) = 〈l′, v1

2, v
2
2〉 such that m′′(l′) = 1,

m′′(c1) = v1
2 , m′′(c2) = v2

2 and m′′(T) = 0. Otherwise if m′(cj) > 0,
tr must be such that tr = 〈I, O, ∅〉 with I = {(loc, 1), (cj, 1)} and O =
{(l′′, 1), (cj, 1)}, otherwise T would contain one token after firing trn. We
have m′ →trn m′′ and α−1(σ) is a computation of C with final(α−1(σ)) =
〈l′′, v1

2, v
2
2〉 such that m′′(l′′) = 1, m′′(c1) = v1

2, m′′(c2) = v2
2 and m′′(T) =

0.

2

Lemma 5.3 Let NC be the PN+NBA associated to the 2CM C. For any

marking m ∈ Reach(NC , mk), we have that m(c1, c2, K, T) = k.

Proof. By induction on the size of the minimal computation of NC that allows
us to reach m. The basic case (l = 1) is obvious. Suppose that the lemma
holds for all the markings reachable in i steps from mk in NC with i < n.
Suppose that m is reachable by firing n− 1 transitions and we have m →tr m′

for some transition tr of N . tr can be of the following forms:

1. tr = 〈I, O, ∅〉 with I = {(l, 1), (cj, 1)} and O = {(l′, 1), (K, 1)} and
corresponds to a decrement. In this case we have m({c1, c2, K, T}) =
m′({c1, c2, K, T}).

2. tr = 〈I, O, ∅〉 with I = {(l, 1), (K, 1)} and O = {(l′, 1), (cj, 1)} and
corresponds to an increment. In this case we have m({c1, c2, K, T}) =
m′({c1, c2, K, T}).

3. tr = 〈I, O, {〈cj, T 〉}〉 with I = {(l, 1)} and O = {(l′′, 1)} and corresponds
to a test for zero on cj. In this case, when m(cj) = 0 or m(cj) > 0, we
have m({c1, c2, K, T}) = m′({c1, c2, K, T}).

19

Raskin and Van Begin

4. tr = 〈I, O, ∅〉 with I = {(l, 1), (cj, 1)} and O = {(l′′, 1), (cj, 1)} and
corresponds to a test for zero on cj when m(cj) > 0. In this case we have
m({c1, c2, K, T}) = m′({c1, c2, K, T}).

2

20

	Introduction
	Preliminaries
	Petri nets extended with non-blocking arcs
	Decidability results
	Undecidability results
	Partial simulations of a 2CM by a PN- +- NBA
	Undecidability proofs

	Future Works
	Conclusion
	Acknowledgement
	References

