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Abstract. In this paper we investigate in the possible application of parameterized verification
techniques (see [1,12,13,16,15,25]) to synchronization skeletons of multithreaded Java programs.
As first conceptual contribution, we identify a class of infinite-state abstract models that preserve the
main features of the semantics of concurrent Java. We achieve this goal by exploting an interesting
connection with the Broadcast Protocols of [15,16], and by introducing a new communication
primitive similar to the non-blocking rendez-vous of [14]. We formalize these connections via a
special class of Petri Nets with marking-dependent cardinality arcs [5], we called Multi-transfer
Nets (MTNs). As technical contribution, we extend the symbolic verification technique based on
Covering Sharing Trees [12] and previously applied to Petri Nets [13] to the new class of MTNs.
Specifically, we give algorithms to symbolically compute Pre* for an MTN, and we show how to
exploit structural invariants of Petri Nets with marking-dependent cardinality arcs [5] as heuristics to
efficiently explore their state-space. As practical contribution, we have incorporated these technique
in our CST-based library [13] and we have tested it on several parameterized safety problems for
abstractions of multithreaded Java programs as well as for broadcast and client-server protocols
modeled via MTNs. The resulting procedure outperforms HyTech, an existing infinite-state symbolic
model checkers that can be applied to the same class of problems.

1 Introduction

Automated verification of properties of parameterized concurrent systems, i.e., systems consisting of an
arbitrary number of processes, is an important and challenging research goal. Parameterized verification
problems arise in several different contexts like multiprocessors systems [15,16, 9], distributed databases,
and client-server protocols [10]. Although in general the verification problem for parameterized concurrent
systems is undecidable, decision procedures have been discovered for the verification of subclasses in which
systems consist of many identical, finite-state processes. For instance, German and Sisla [20] proposed a
verification method for infinite families of asynchronous CCS processes based on an encoding into Petri
Nets. Safety properties of Petri Nets can be checked algorithmically, e.g., using Karp-Miller’s coverability
tree construction [24]. Recently, this idea has been applied to the verification of safety properties of mul-
tithreaded C programs [2]. Contrary to approaches based on finite-state abstractions of sofware programs
[6,7], parameterized verification techniques can handle infinite-state abstract models (e.g. unbounded
Petri Nets as in [20,2]), with a potential gain of precision in the analysis of the underlying systems.

Multithreaded programs are essential features of nowadays client- and server-side applications (e.g.
in a webserver). Given the impact of Java on this field (think about Applets and Servlets), we believe
that investigating the possible application of parameterized verification techniques to multithreaded Java
programs is an important research goal. In this paper we will focus on what we think are problems pro-
pedeutic to further research in this direction.

We first address the problem of finding adequate infinite-state abstract models for synchronization skele-
tons of concurrent Java programs. The abstractions based on CCS and Petri Nets models adopted for



C programs in [2] are not powerful enough to obtain synchronization skeletons that naturally preserve
the semantics of the concurrent primitives used in a typical multithreaded Java application. The main
difficulty comes from the presence of special Java primitives that provide for global synchronization of
threads, namely the pre-defined methods wait, notify and notifyAll, an operational aspect that cannot
be modeled via rendez-vous communication. The semantics of notifyAll, however, is very similar to the
notion of broadcast communication introduced by Emerson and Namjoshi in [15,16] in order to model
invalidation-based consistency protocols for multiprocessor systems (namely, cache coherence protocols).
Furthermore, the semantics of notify can be given via a special type of non-blocking rendez-vous similar
to the asynchronous rendez-vous introduced in [14].

Our conceptual contribution is to show that these connections can be formalized using a special sub-
class of Ciardo’s Petri Nets with marking-dependend arc cardinality [5]. We will call the resulting model
Multi-transfer Nets (MTNs) and we will adopt them as infinite-state abstract models for multithreaded
Java programs. Contrary to the Broadcast Protocols of [16], MTNs are conservative extensions of Petri
Nets. Furthermore, all practical examples of specification via Broadcast Protocols (see [15,16,9]) can be
naturally formulated as MTNs.

As a second step, we attack the problem of finding an adequate technology to efficiently model check
this new class of infinite-state models. In [16], Esparza, Finkel and Mayr have shown that verification
of a special class of safety properties is decidable for extensions of Petri Nets like Broadcast Protocols.
This result can be naturally extended to the class of MTNs. Decidability holds for the model checking
problem called control state reachability that consists of deciding if a state taken from a given upward
closed set of (unsafe) states is reachable from the initial states. Several interesting verification problems
for safety properties can be represented in terms of control state reachability. The algorithm that decides
the problem is based on backward reachability [1], i.e., on the computation of the transitive closure Pre* of
the pre-image operator. In our previous work [12], we have proposed a graph-based assertional language
called Covering Sharing Trees (CSTs) to compactly represent upward-closed sets (i.e. infinite sets) of
markings of Petri Nets. In [13], we have defined a symbolic backward reachability algorithm based on
CSTs and we have applied it to several parameterized problems for Petri Nets. The algorithm makes use
of symbolic operations like a special predecessor operator Pre working on the graph structure of CSTs,
and it uses heuristics based on structural invariants of Petri Nets in order to cut the state-space during
the backward search.

The technical contribution of this paper is to show that CST-based verification techniques can be
applied to the new class of MTNs. To achieve this goal, we proceed as follows. We first give new algorithms
to symbolically compute the Pre operator associated to an MTN and apply them to build a symbolic
backward reachability algorithm for MTNs. Furthermore, by exploiting the property that MTNs are a
subclass of Petri Nets with marking dependent cardinality arcs, we can automatically extract structural
invariants using the reduction to Petri Nets described by Ciardo (Theorem 1 of [5]). This way, we can
extend the methodology suggested in [13] to MTNs and use the resulting invariants to efficiently cut the
state-space (i.e. the CST that represent the partial results) during backward reachability. It is important to
stress that the new verification algorithms can be applied to abstractions of multithreaded Java programs
as well as to all examples of parameterized systems that can be modeled with MTNs (see discussion in
Section 7).

As practical contribution, we have applied an extension of our CST-based model checking library with
the new algorithms to a large set of parameterized safety problems taken from the literature [9,15, 16].
Our CST-based search engine outperforms HyTech [23] a polyhedra-based model checker that provides
backward reachability, and that can handle the same class of parameterized systems.

Plan of the paper. In Section 2 we introduce abstract models for concurrent Java based on communicating
machines. In Section 3 we show to give a semantics of global machines in terms of a class of extended
Petri Nets called Multi-transfer Nets. In Section 4 we discuss how to extende backward reachability to
MTNs. In Section 5 we define the symbolic operations needed to handle MTNs with CSTs. In Section 6
we show what are the relation between MTNs and Petri Nets with marking dependent cardinality arcs
and explain how to compute a static analysis for MTNs, so as to efficiently prune the set of backward



public class Inc extends Thread { public class Dec extends Thread {

private Point p; private Point p;
public Inc(Point p) { this.p = p; } public Dec(Point P) { this.p = p; }
private void incpoint() { private void decpoint() {
P.incx(); P.decx();
P.incy(Q); P.decy(Q);
} }
public void run() { public void run() {
while (true) incpoint(); while(true) decpoint();
} }
} }

Fig. 1. Example of Java thread classes.

reachable markings. In Section 7 we discuss some experimental results obtained with the CST-based
search engine. In Section 8 we address related works and discuss future direction of research.

2 Abstract Models for Multithreaded Java Programs

A Java thread is basically an object of predefined Java classes like Thread and Runnable [7,26]. The
code of a thread must be specified in the method run that is invoked to start its execution. Threads
are executed in parallel and can share variables and objects. Every object comes with a lock that can
be used to control concurrent accesses to its methods in a multithreaded program. Methods declared
as synchronized compete for the lock on the corresponding instance object. To avoid starvation and
deadlocks, threads can suspend their activity and relinquish the lock on a given object while being inside
a synchronized method using the wait primitive. Waiting processes can be awakened using the notifyAll
primitive. Awakaned processes compete for the locks they relinquish using wait. The primitive notify
can be used to awake a thread arbitrarily chosen between the ones that are waiting. It is important to
note that both notify and notifyAll are non-blocking, i.e., the thread that invokes these primitives
always proceeds in its execution. The previous features (together with the possibility of associating a lock
to a given object using the synchronized instruction, and interrupting threads) are at the basis of the
methodology used for programming using threads [26].

As an example, consider the thread declarations Dec and Inc of Fig. 1, and the class Point of Fig. 2.
The class Point provides methods to increment and decrement the coordinates of a Point object. The
methods decx and decy force a thread to wait for the counters to be non zero. Everytime a coordinate is
incremented a notification is broadcast to awake all suspended threads. Suspended threads will compete
for the lock on the Point object. The thread Dec repeatedly invokes the method decpoint, defined on
the Point methods decx and decy, to decrement the coordinates of the point. Similarly, the thread Inc
repeatedly increments the coordinates via the method incpoint. Suppose now that the main method
creates n and m instances of Inc and Dec, respectively, working on a shared point. Suppose n is passed
as a parameter to main. To ensure the consistency of data after invocation of methods like incpoint and
decpoint, the modifications of the two coordinates should be performed atomically. The property should
hold for any value of n and m, i.e., any possible number of threads. This property can be expressed as
a the following safety property: there are no reachable configurations in which two different threads have
modified only one of the two coordinates. In this paper we will attack this problem using parameterized
verification technology as explained in Section 7.

For this purpose, let us first focus on the problem of finding infinite-state abstract models for our Java
example.



public class Point {
private int x = 0;
private int y = 0;

public synchronized void incx() { public synchronized void incy() {
x=x+1; y=y+1;
notifyAll(); notifyAll();
} }
public synchronized void decx() { public synchronized void decy() {
while (x == 0) wait(); while (y == 0) wait();
x=x - 1; y=y-1;
} }
}

Fig.2. A Java class for point objects.

2.1 Abstract Models as Communicating Machines

Using predicate abstraction [21], we know how to extract the control skeleton of generic instances of
the classes Inc and Dec. The idea is to associate a Boolean variable to each guard in the program,
namely zeroX will be associated to x == 0 and zeroY to y == 0, and then extrapolate the effect of
an instructions on them. Applying this technique and forgetting (for the moment) the synchronization
primitives, we obtain two finite-automata. Following [20, 2], methods invocations can be represented using
synchronization labels and rendez-vous a-la CCS. Furthermore, each state of the automata corresponds
to a control point in the flattened code of the methods (i.e. the methods of the point class are unfolded
into the definition of the threads. Our abstract model should also provide a natural way to restrict the
applicability of a transition depending on the value of the lock associated to a monitor that controls a
shared object.

Let us now consider the synchronization skeleton of threads. Unfortunately, communication via rendez-
vous cannot be used to model the operational semantics of the interplay between the methods wait,
notify and notifyAll. The type of synchronization we need here involves, in fact, a number of processes
that depends on the current global state of the system (all processes that are currently waiting to be
awakened).

An adequate abstract model can be obtained by merging the asynchronous CCS-like model of [20]
(one monitor, and many clients with asynchronous communication), the broadcast protocols of [15] (syn-
chronous communication) to model notifyAll, the global/local machines proposed in [2] (asynchronous
communication with global and local variables) to model locks, and by enriching them with an non-
blocking rendez-vous (similar to the asynchronous rendez-vous of [14]) to model notify. We define next
a new model inheriting all previous features.

Let us first describe the syntax of the Boolean guards and actions associated to a transitions.

Definition 1 (Boolean Guards/Actions). Let B = {by,...,b,} be a finite set of global boolean vari-
ables, and let B’ be their primed version. Then, a Boolean guard ¢, is either the formula true or the
conjunction of literals 1 A ... A £,, where p < n, such that ¢; is either b or —b for some b € B. A Boolean
action @, is a formula b] = vy A ... A bl = v,, where v; is one of {true, false,b;} fori:1,...,n.

Boolean guards and actions are used to express pre-and post-conditions (using primed variables) on the
global variables B. Now, we define the notion of local machine.

Definition 2 (Local machine). A local machine is a tuple (Q, X, d), where

— () is a finite set of states;

— X is the set of synchronization labels used to build the set of possible actions A of a process. Specifi-
cally, let ¢ = ¢4 Agp,, Where ¢, is a satisfiable Boolean guard, and ¢, a Boolean action, then actions
have one of the following form:



Internal action. £ : p.
Rendez-vous. £! : ¢ (send) and £? (receive).
Asynchronous Rendez-vous. £1: ¢ (non blocking send) and £ (receive).
e Broadcast. £!! : ¢ (send) and £?77 (receive).
We will clarify the semantics of actions in the next paragraphs.
— The behavior of the local machine is described via the transition relation § : (Q x A x Q).

In the following, we will use s — s’ to indicate that (s, ,s’) € §. Having in mind the translation from
Java programs, we will also apply the following restrictions:

— The source and target states of a given asynchronous rendez-vous must be all distinct each other.
The states occurring in a broadcast send must be distinct from those in the corresponding receives.
— The target state of a broadcast receive does not belong to the set of its source states.

Broadcasts receives associated to the same send can be partitioned so that each partition is defined
over a distinct set of states.

These restriction derive from the following observations. We mainly use asynchronous rendez-vous and
broadcast to model the semantics of notify and notifyAll. Our restriction avoids cyclic rules like

slocy n—"> sloca, rlocy "—7?> rloca, and rlocy "—??> rlocy that have no meaning if sloc and rloc are control
points in the code of the sender and of the receiver, respectively, and n corresponds to a notifyAll.
Furthermore, all the interesting examples of Broadcast Protocols we are aware of satisfy these conditions
(see Section 7).

Definition 3 (Global machine). A global machine is a tuple (B,{L1,k1),...,{Lm,km)), where B =
{b1,...,b,} is the set of global boolean variables, L; = (Q;, X;,0;) is the i-th local machine and k; is the
number of its active copies for ¢ : 1,...,m, and Q; N Q; = @ for any ¢ and j.

The operational semantics of a global machine is defined as follows.

Definition 4 (Global state). A global state is a tuple G = (p,s), where p = (vq,...,v,) with v; €
{true, false} i : 1,...,n is an evaluation for the variables in B = (b1,...,b,), and the tuple s =
(---s8iys--,8i,,--.) of dimension k = k1 + ...+ ky, represents the collection of process states, such that
Sij c Q, fOI‘j:l,...,ki.

The execution of a machine is formalized through the relation = defined next.

Definition 5 (Operational Semantics). Let G = (p, (s1...,sk)), G = (p', (s} ..., ), and v = pUp'.
Then, G =L G’ iff one of the following conditions holds:

— if there exist 4 and u such that s; L, u, and () = true, then s; = u and s} = s; for all j # .

!

szand

1.
— if there exist ¢, j,u and v such that s; Rl u, Sj N v, and y(p) = true, then s; = u, s
s; = s forall I # 4, 5.

— if there exist ¢ and u such that s; “ u, and y(p) = true, then s; = u, and: if there exist j and v
such that s; N v, then s’ = v and s = s; for any [ # i, j; otherwise, s; = s; for any [ # .
— if there exist ¢ and w such that s; i 4 u, and y(p) = true, then s, = u; furthermore, for all j such

that there exist v and s; ~ v, then 8} = v; finally, s = s for all I # i s.t. £27 is not defined in s;.

A run of a global machine is a sequence of global states GoG1 - .. such that G; =£ Giy1 fori > 0. Gy is
the initial global state of the run. A global state G is reachable from G, written G = G', if and only if
there exists a run from G to G'.

Ezxample 1. Let us go back to the Java threads described in Section 2. The abstract model we extracted
applying the technique of predicate abstraction [21] is described in Fig. 8.



3 Multi-Transfer Nets (MTNs)

Following [20,9, 2], in order to study safety properties of global machines, we will apply a counting
abstraction that maps global states into markings that keep track of the number of processes in very
local state. To be able to model the communication mechanisms of Def. 2, we need however an extended
Petri Net-like model, we will call Multi-transfer Nets (MTNs). MTNs have all the features of Petri Nets.
In addition, MTNs allow us to capture the semantics of rendez-vous, asynchronous rendez-vous and of
broadcast as an instance of a general notion of transfer of at most k tokens. Formally, this model is
defined as follows.

Definition 6 (Multi-Transfer Nets). A multi-transfer net is a tuple (P, B), where :

— P ={p1,p2,-..,Pn} is a finite set of places,

— B={M;,M>,..., My} is a finite set of multi-transfers.

— A multi-transfer M; is a tuple (T3, {Bi, .- ., Bir, },¢i), where
e T; =(Z;,0;) is a (Petri Net) transition: Z;, O; : P — N are multisets of places;
e B;; = (P;j,pij) is a transfer block: P;; C P is the set of source places, and p;; € P is the target;
e ¢; € NU {400} is the bound on the number of tokens that can be transferred via M;.

— Futhermore, in order to avoid cyclic transfers, B must satisfy the following conditions: p;; & F;;
for any 4,j (cond. 1); (P;; U {pi;}) N (Pix U {pir}) = 0 for any j and k (cond. 2); and, finally,
(Pi; U{pi;}) N (Z; U O;) = 0 for any i, (cond. 3). ]

A marking is a mapping m : P — N (a vector of natural numbers). Given Z: P — N, we use Z > m to
indicate that Z(p) > m(p) for all p € P. Furthermore, given S C P we define m(S) = X,csm(p). Then,
we introduce the following definitions.

Firing a Multi-transfer. Let M; be a multi-transfer with transition (Z, O), blocks (P;,p;) for j : 1,...,q,
and bound c¢. We define ©; as the set of places occurring in the transition of M;, ie. ©; = {p | Z(p) >
1}U{p | O(p) > 1}; and §2; as the set of places that are not involved in any transfer block of M;, i.e.
.(2,-=’P\(@,~UP1U...UPqU{pl,...,pq}).

We say that M; is enabled at m if Z > m. If M; is enabled at m, firing it leads to the set of marking m’
(written m 7, m') thta satisfy one of the following conditions:

— m'(p) = m(p) for all p € 4;;

— m’(p) = m(p) — Z(p) + O(p) for any p € O;;

—ifg>0and m(PLU...UP,) >c,let ky,...,k, € N be such that k; + ... + k; = ¢, then m'(p;) =
m(p;) +¢, and m'(P;) = m(P;) — k; with the additional constraint that m(p) > m'(p) for any p € P;,
fori:1,...,q.

—ifg>0and m(P,U...UP,) <c, then m'(p;) = m(p;) + m(P;) and m'(P;) =0foralli:1,...,q.

Note that a Petri Net transition is obtained by considering multi-transfers without transfer blocks. A
transfer arc (all tokens in the sources are transferred to the target) is obtained instead by a multi-
transfer with bound ¢ = +o00. For a bound ¢ € N, A multi-transfer may have a non-deterministic effect
whenever the total number of tokens is greater or equal than ¢. The non-determinism is due to the number
k; of tokens that are transferred in each block, and from their distribution within the set P; of sources.
The operational semantics of an MTNs is defined below.

Definition 7 (Operational Semantics of an MTN). Let M = (P,B) be an MTN with initial
marking mg. Then, a run is a sequence mgm; ... such that for any 7 > 0 there exists M € B such that
m; —pr myy;. The set of markings occurring in all possible run starting from mg form the reachability
set of M.
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Fig. 3. From global machines rules to MTNs.

3.1 From Global Machines to MTNs

The counting abstraction that allows to reason about global machines using MTNs is defined as follows.
Let G = (B,(L1,k1),---,{Lm,km)) be a global machine in which £; has n; local states, i.e., Q; =
{Si1,--,8in; }- Given a global state G = {p, s), we define « as:

a(G) = <P, <U117---;Ulnu---;Umly---avmnm»a

where v;;=number of occurrences of the state s;; € @; in s. Thus, & maps a global state in a tuple
whose length is always size(G) = |B| + n1 + ... + ny, for any value of ky,...,k,, (i.e. independently
from the number of processes). Furthermore, it maps all symmetric state into a unique representation. As
an example, ((true), (wait, wait,use)) and {{true), (wait,use, wait)) are mapped into the abstract state
((true),(2,1,...)), where the first component is the number of wait, and so on. Clearly, using a Petri
Net-like n which processes are abstracted into black tokens it will be possible to reason about properties
of the original system that do not depend on process identifiers. Luckily, several interesting properties
fall into this class.

Given a collection of local machine, we can automatically compute the corresponding MTN as sketched
next (for brevity, we omit the formal translation and give only the key ideas). The translation is obtained
by merging the multi-transfers associated to each boolean variables with those induced by the communi-
cation actions (the only expection is for asynchronous rendez-vous as we will explain later).

Boolean Guard/Actions. Let ¢ = ¢, A, be a Boolean formula as in Def. 1. Given a Boolean variable
b, we introduce the places truep and false, corresponding to its truth values. Initially, we put a token in
falsep, none in truey.

If b occurs in a literal £ of p,, and b’ = ¢ occcurs in @, , we model the effect of ¢ on b as a transition going
from the place naturally associated to £ to the place associated to c¢. E.g. for =b A b’ = true we need a
transition that tests and removes one token from falsep, and adds it to truep. If b does not occur in ¢,
then we use a transfer block with bound +00 to transfer all tokens from one of the two places true, and
falsey to the other. E.g. for b’ = true we have a transfer that goes from falsep to truep. In the following
we will denote M, the multi-transfer (with bound ¢ = +00) coming out of this translation.

Internal action. We first associate a place to each local state. An internal action can be modeled then,
by adding an extra input edge (from source state) and an extra output edge (to the target state) to the
transition associated to the multi-transfer M.

Rendez-vous. As for an internal action, but we need two edges (source and target states) for the sender
and two edges for the receiver.



Asynchronous Rendez-vous. Asynchronous rendez-vous can be modeled by a multi-transfer with
bound ¢ =1 (at most 1 process receives the message!). The transition of the multi-transfer goes from the
source to the target state of the sender. Each trasfer block models the sources and target places of the set
of receivers that move to the same state. Since M, is a multi-transfer with bound 400, the multi-transfer
associated to an asynchronous rendez-vous (with bound ¢ = 1) is pipelined to the multi-transfer M,,. This
solution is not particularly bad since in a Java program we usually need few notify actions. Alternatively,
we could have generalized the definition of MTNs in order to allow different bounds on distinct sets of
transfer blocks.

Broadcast. A broadcast can be naturally modeled via a multi-transfer with bound ¢ = 400 (and thus
merged with M,,). Specifically, an input (from the source state of the sender) and an output (to the
target state of the sender) edge are added to the transition of M,,. Finally, a transfer block for each set
of receivers with the same target state is added to the set of blocks of M.,.

Fig. 3 summarizes the translation (according to a) from local machine to a single MTN: a transfer block
is denoted here as a dashed arc going from the cluster of source places to the target place. Based on the
previous ideas, we have the following proposition.

Proposition 1. Given a global machine G, there exists an MTN M with multi-transfers whose bounds
are either 1 or 400, and such that mgm; ... is a run in M iff GoG; ... is a run in G and m; uniquely
represents a(G;). Thus, the reachability set of M is a conservative approzimation of that of G.

4 Verification of MTN-based Abstract Models

It is well-known that the class of safety properties of Petri Nets whose negation can be expressed in terms
of upward closed sets of markings can be decided using backward reachability [1,18]. The goal here is to
prove that none of the markings in a given infinite set U of unsafe configurations (representing unsafe
configurations for arbitrary number of processes) can be reached from the initial (possibly parametric)
marking mg. To achieve this goal, we first compute the closure Pre*(U) of Pre, and then check that no
instance of my is in the resulting set of markings.

As shown in [1, 18], this algorithm is guaranteed to terminate on PNs and BPs whenever U is upward
closed w.r.t. the componentwise ordering of tuples. Formally, let cones(S) = {m’' | m < m’, m € S}.
Then, a set of markings S is upward closed if cones(S) = S. An upward closed set of markings U is
always finitely generated by a set of minimal tuples, we will denote it as gen(U). As an example, the
marking (0,0,0,0,2,0) generates the upward closed set consisting of all markings (a,b,c,d, e, f) such
that a,b,c,d, f > 0, and e > 2. The termination of backward reachability for Petri Nets and Broadcast
Protocols is based on the following facts: (1) the application of Pre (for Petri Nets and Broadcast
Protocols) to an upward closed set of markings returns a set that is still upward closed; (2) the containment
relation between upward closed sets of markings is a well-quasi ordering [1,18]. Property (2) ensures that
it is not possible to generate infinite chains of non comparable upward closed sets during the computation
of Pre*.

Since upward closed sets are infinite sets of states, one of the advantages of backward reachability is
that it allows to prove safety properties for arbitrary system configurations, and to answer questions like
“does the system ensures mutual exclusion for an arbitrary number of processes?”. It is important to
note that Karp-Miller’s construction may fail from terminate for extension of Petri Nets with broadcast
communication [16].

In our previous works [12], we have shown that a special data structure called Covering Sharing Trees
(CSTs) can be used to compactly represent upward closed sets of markings, and to implement model
checking procedures for Petri Nets. In this paper our goal is to extend CST-based model checking to the
class of MTNs. To achieve this aim, let us first study the properties of the precedessor operator of an
MTN. Its definition is given as follows.

Definition 8 (MTN Precedessor Operator). Let M = (P,B) be an MTN, and let M € B, then
Preps(S) = {m' | m' —p m, m e S}.



By construction, the transition and transfer blocks of an MTNs involve distinct set of places each other.
As a consequence, the following lemma holds.

Lemma 1 (Decomposition of Pre). Let B = (T,{My,Ms,...,M,}) be a multi-transfer. Let By =
(T,0), and B; = {(Tp,{M;}) where Ty = {B,D) for i : 1,...,n. Then, the following holds Pre = Prep, o
Prep, o Preg, o---oPrep, .

This lemma will be useful later when we will describe the algorithms used to compute symbolically
the Pre-operator of our MTN. Furthermore, we can easily prove that MTNs are monotonic w.r.t. the
pointwise ordering on markings, i.e., if m; » mg, then for any mj > m; there exists m/, > m, such
that m{ »> m). According to [1, 18], from this property the following result holds.

Proposition 2. Let M = (P,B) be an MTN, and M € B. If S is an upward closed set of markings,
then Prens(S) is still upward closed.

In the next section we will use the previous properties to describe the algorithms used to compute
symbolically the Pre-operator (of an MTN) over Covering Sharing Trees C'ST's.

4.1 The Assertional Language of Covering Sharing Trees (CSTs)

Covering Sharing Trees are an extension of the Sharing Tree data structure introduced in [29] to efficiently
store tuples of integers. A Sharing Tree S is a rooted acyclic graph with nodes partitioned in k-layers such
that: all nodes of layer ¢ have successors in the layer ¢ + 1; a node cannot have two successors with the
same label; finally, two nodes with the same label in the same layer do not have the same set of successors.
Formally, S is a tuple (N, V,root, end, val, succ), where N = {root} U Ny U...U N U {end} is the finite
set of nodes (N; is the set of nodes of layer ¢ and, by convention, Ny = {root} and N1 = {end}),
V = {x1,%a,...,21} is a set of variables. Intuitively, NV; is associated to z;. val : N ~ ZU{T,L}is a
labeling function for the nodes, and succ : N ~» 2 defines the successors of a node. Furthermore, (1)
val(n) = T iff n = root, val(n) = L iff n = end, succ(end)=0; (2) fori : 0,...,k,Vn € N;, suce(n) C N;11
and succ(n) # 0; (3) Vn € N,V nq,ng € suce(n), if ny # ns then val(ng) # val(ns). (4) Vi,0 <1 <k,
Vni,ne € Ni, 1 # ne, if val(ni) = val(ns) then succ(ni) # succ(ng). A path of a k-sharing tree is a
sequence of nodes (ni,...,n;,) such that n;11 € suce(n;) for ¢ = 1,...,m-1. Paths represent tuples of
size k of natural numbers. We use elem(S) to denote the flat denotation of a k-sharing tree S:

elem(S) ={ (val(ny),...,val(ng)) | (T,n1,...,mk, L) is apathof S }.

Conditions (3) and (4) ensure the maximal sharing of prefixes and suffixes among the tuples of the flat
denotation of a sharing tree. The size of a sharing tree is the number of its nodes and edges. The number
of tuples in elem(S) can be exponentially larger than the size of S. As shown in [29], given a set of tuples
A of size k, there exists a unique sharing tree such that elem (S 4) = A (modulo isomorphisms of graphs).
A Covering Sharing Tree (CST) is a sharing tree obtained by lifting the denotation as follows

cones(S) = {m | n < m, n € elem(S)}.!

Given an upward closed set of markings U, we define the CST Sy as the k-sharing tree such that
elem(Sy) = gen(U). Thus, Sy can be used to compactly represent gen(U) (in the best case the size of Sy
is logarithmic in the size of gen(U)) and to finitely represent U. A CST can also be viewed as a symbolic
representation of the formula: Vimegenwy (#1 > m1A... Az, > m,). An examples of CST is given in the
point (a) of Fig. 5 (see Example 2).

! For a single marking m, cone(m) is defined in a similar way.



function Step2 (S : CST after step (1), P : source, py, : target) return R
R <— EmptyCST
forall value c in the layer associated to place py, do
Sc <— S where the nodes n of the layer associated to px such that val(n) # ¢ have been removed
forall /ayers of Sc corresponding to places P U {p} do
replace all node n by the set of nodes {ng,n1,...,nc} having the same
successors and predecessors than n and such that val(ng) =4
Normalize Sc according to rules (3) and (4)
Compute Qe such that m € cones(Qe) iff 3°  pyp,; m(P) > ¢
Tc — Sc ﬂCST Qc
R +— RUcst Qe

s

e

Fig. 4. Algorithm for Step (2).

5 CST-based Symbolic Pre Operator for MTNs

In [12], we presented an algorithm to computes the Pre associated to a Petri Net transition for an upward
closed set of markings represented via a CST. To extend this technique to MTNs, we can exploit Lemma
1. That is, we simply have to define an algorithm for the Pre operator associated to a transfer block. For
reason of space, in this section we will restrict ourselves to consider multi-transfers having bound +oo.
The algorithm can be extended however to any bound ¢ € N, and in particular for ¢ = 1 (we plan to
describe the general in an extended version).

Let us consider then a multi-transfer Mp with bound +00 and with the only transfer block B = (P, py),
P C P, and py, € P. Furthermore, let Ip = { i | p; € P } (the indexes of places in P).

Given a CST S, our aim is to build an algorithm to construct a CST S’ such that cones(S') =
Preas, (cones(S)).

We proceed in two steps.

(1) The first step consists in removing all paths of S that do not satisfy the following postcondition
(induced by the semantics of transfer blocks with bound +00): all source places in P must contain zero
tokens after firing Mp (in fact, they are all transferred to pg!). Specifically, we first compute the CST Sq
such that

elem(S1) = {(c1,c2,...,cn) € elem(S) | ¢; =0, for any i € Ip}.

By construction, it follows that Press, (cones(S1)) = Preps, (cones(S)). This first step can be performed
in polynomial time in the size of S. We first have to remove all nodes n of the layers associated to places
in P such that val(n) # 0. This will give us what is called a pre-Sharing Tree in [29], a graph in which
condition (4) of Section 4.1 might be violated. By applying the algorithm described in [29], the pre-Sharing
Tree can be re-arranged into a Sharing Tree (and thus the desired CST) in polynomial time.

(2) As a second step, we compute the predecessors of the elements of S;, w.r.t. Mp (recall that
Mp has only the block B = (P, p)). Let us take ¢ = {¢1,...,¢,) € elem(S;1). Then, we know that
the tuple ¢ represents the upward-closed set of markings S = {m | m(p;) > ¢;, i : 1,...,n}. Applying
Preps, to ¢, we should obtain a representation of the upward-closed set S’ whose markings present one
possible distribution of token before the transfer from P to pj took place. Note that the relation between
the number of tokens in P (say )., #i) and in py (say zx) before and after firing Mp is as follows:
Ty = Tk + D e, Ti and x; = 0 for any i € Ip. Thus, S’ will be generated then by the set gen(S’)
consisting of the markings d = (di,ds,...,d,) having the following properties: di, + > ;c;, di = ck;
whereas d; = ¢; for any j & (Ip U {k}). Intuitively, all we need here is to forget about the labels of the
nodes of S; associated to the places in P U {pi}, and replace them with nodes so that the sum of the
values (associated to PU{py}) the along a path always gives c¢j. As an example, consider a transfer from
p1 to p2, and let ¢; = 2 be the constant in the constraint associated to py in S;. Furthermore, suppose
that p; and p, are associated to adjacent layers in our CST. Then, we simply have to add the labels 0,1, 2
in both layers, and then connect the resulting nodes so that the sum of the connected values is always two
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Fig. 5. Set of CST generated during the computation of the transfer ¢y = 2 + c5,¢5 =0

(i-e. we put an edge from 0 (layer of p;) to 2 (layer of py), and so on). In general, however, the algorithm
is more complicate (e.g. we have to take into account places stored in non-adjacent layers, consider more
than one value for ¢, etc.). To attack the general case, we split the process in two sub-steps. For each
possible value of ¢ in S;, we first compute an over-approximation (see 2 and Fig. 4), and then, we
select the exact paths by intersecting the resulting CST with a CST whose generators are the markings
m = (mq,...,my) in which my + Zielp m; = ¢y and m; = 0 for j & Ip U {k}. The algorithm is given in
Fig. 4. The following example will help in undestanding this technique.

Ezample 2. Consider the CST S in Fig. 5(a) consisting of the elements {0, 2,0, 0,0, 0}, (0,1,0,1,0,0) and
(0,0,0,2,2,0) representing the formula & = (ca > 2)V(ca > 1Acy > 1)V (ca > 2Ac; > 2). Now
consider the transfer that moves the tokens from place ps into place p2, defined through the equation
¢h = ca + ¢5,c5 = 0. When applied to the CST(a) the algorithm of Fig. 4 performs the steps shown in
(b-f). Specifically, it first computes (b) by removing the tuple (0,0,0,2,2,0) that do not satisfy ¢f = 0.
At the second iteration of the loop (line 3, Fig.4), it computes (c). By adding new nodes in the second
and fifth layers, we obtain (d), an over-approximation of the backward reachable markings starting from
(c). The CSTQ2 representing all the tuples satisfying cs + ¢5 > 2 is shown in (e). The CST resulting from
the intersection of (d) and Q2 corresponding to the exact set of backward reachable markings starting
from (c) is shown in (f). Finally, the result of the algorithm is the CST (g).

6 Structural Heuristics for MTNs

When compared to forward state-space exploration, the great disadvantage of backward search is that it
does take into account information about initial states. An an example, a given initial marking can forces
some places (e.g. the places true, and false, associated to a Boolean variable) to be always bounded
(e.g. by one). Suppose, however, we are given an over-approximation R of the set of reachable markings.
Furthermore, let U be the seed of backward reachability. Then, we can prune the backward search space
as follows:

— if UNR = 0, then we stop (no marking is reachable from the initial state);
— otherwise, after each application of Pre we remove all newly generated markings that lay outside R.

In [13], we have specialized this idea to Petri Nets and CSTs by using the structural theory of Petri Nets,
and, specifically, the notion of place invariant. Place invariants are solutions of the system of equation
yT . C = 0 where C is the flow matrix associated to a Petri Net, and y” is the transpose of a vector
of n variables (n=number of places). A place invariant p returns the following over-approximation of



the reachability set: Rp = {m | p? - m = p? - mg}, where my is the initial marking. In the extended
setting of MTNs, however, the flow matrix has a more complicated form than for Petri Nets. In fact, the
cardinality of MTNs transitions is a linear function of the current markings.

This class of extended Petri Nets has been studied by Ciardo in [5] (the class N in [5]) in the
context of the more general notion of Petri Nets with marking dependent cardinality arcs. Intuitively, in
this formalism input and output edges associated to a given transition are labeled with functions like
flmi,...,mp)) =a+B1-mi+ ...+ By - my, where a and §; are natural numbers. (Weighted) Petri
Nets are a special case of this model in which functions are constants, i.e., 8; = ... = 8, = 0. To fire a
transition the current marking must satisfy the constraint m > f(m) for every function associated to an
input edge. The effect of firing a transition is obtained by the difference of the cardinality of input and
output edges. The class of MTNs resulting can be viewed as a special case of Petri Nets with marking
dependent cardinality arcs in virtue of the following observations.? As an example, for the MTNs coming
out from the translation of a global machine the following observations hold.

— It is easy to see that a multi-transfer with bound 1 (e.g. an asynchronous rendez-vous) can be split
into a set of rendez-vous (one for each possible source place), easily modeled via constant cardinality
arcs, and an internal move guarded by an inhibitor arc (the case in which there are no tokens in the
source places). However, as shown in [5], inhibitor arcs can also be modeled with linear cardinality
arcs.

— As shown, e.g., in [11], broadcast operations can be modeled via linear transformations on counters
that represent the current number of tokens in each place, and thus they can be naturally modeled
using transitions with linear functions as cardinality arcs.

In [5], Theorem 1, Ciardo has shown that the computation of place invariants for a Petri Net with marking
dependent cardinality arcs can be reduced to those of a Petri Net (with the same invariants). By the
previous observation, we obtain the following proposition.

Proposition 3. Given an MTN N, there exists a Petri Net N' having the same place invariants of N.

By exploiting the previous corollary, we can use existing algorithms and tools like [22] to compute over-
approximations of the reachable set of an MTN. In the following section we will briefly recall how we can
use place invariants to prune CST-backward search (more details are given in [13]).

Structural Invariants and CSTs. The set Rp associated to a place invariant p need not be upward
closed. This implies that we cannot use CST-intersection to symbolically prune the state-space at each
application of Precgsr. The algorithm presented in [13] works instead in the following way. We first note
that p” -m > p” -mg implies that p7 -m' # pT -my for all m’ € cone(m). Thus, checking cone(m)NRy
can be done by checking whether p” - m > p” - mg for some place invariant p. To remove paths of the
CSTs efficiently, the algorithm directly works on the structure of the CSTs. For each edge e of a CST S,
the algorithm checks if for all m € elem(S) passing through e we have cone(m) N R, = 0. An edge
satisfying the test means that all the paths passing through this edge are useless and can be removed.
This algorithm approximates the intersection with Ry, however works in polynomial time and preserves
the upward-closure of the resulting (see [13] for major details).

7 Experimental results

We have extended the CST library of [13] with the new algorithms presented in this paper, and we have
applied it to verification problems for MTNs of different type. In the next paragraph we report on these
experiments.

% For brevity, we omit the formal translation that we plan to include in the extended version.



Multithreaded Java programs verification. The table in Fig. 6 describes some of the experimental results
obtained on MTNs that represent abstractions of multithreaded Java programs. As an example, we have
tested the MTN corresponding to the global machine of Fig. 8 starting from the following unsafe set
of states: at least two threads have modified only one of the two coordinates of the Point object. This
upward closed set of states can be represented by CSTs in which either at least two tokens are in the place
corresponding to the incY() state of Fig. 8, or at least one token is in state incX() and at least one token
is in state decY(), or at least two tokens are in state decY(). For this example, we have automatically
computed place invariants using the PEP tool [22], and we have applied them to prune the search as
shown in Fig. 6 (example Inc/Decp,,). Here m and n represent the number of Inc and Dec threads in
the initial marking. We considered both parametric initial states (m > 1,n > 1) as well as fixed initial
markings (m = 1,n = 1). In the second case place invariants are much more effective (see [13]). In all
cases our tool found a potential bug, that (after looking at the abstract trace) turns out to be a mistake
in the Java program. In fact, though the primitive methods incx, incy, decx, and decy are protected
by a monitor (they are declared as synchronized), the derived methods incpoint and decpoint aren’t.
Thus, increments(decrements) on pair of coordinates are not executed atomically. Our tool finds the error
after 15 iterations. To correct the error we can declare the derived methods synchronized, too. This way
mutual exclusion is automatically guaranteed by the semantics of Java.

In Fig.6, we also consider for the Producer-Consumer example presented in [4, 6] (a classic introductory
example on concurrent Java). After having fixed the number of producers and consumers, say m and n,
in the initial marking, it was possible to prove a form of freedom from deadlocks by checking that it is
not possible to reach a state in which all producers and all consumers are in the waiting state (i.e,. the
unsafe states are such that the number of waiting consumers is greater or equal than m, and the number
of waiting producers is greater or equal than n). The result of this experiment is given in Fig. 6 (example
P/C). (Note that mutual exclusion for this example is directly ensured by the monitor-oriented semantics
of Java (see [4]).) For big values of the constants involved in a constraint the compactness of CSTsis more
and more effective (e.g. compare NNodes(=8509) and NElem*P(=2.434.518) for P/C m,n = 50 in Fig.
6, note that here the unsafe states depend on n,m).

Finally, we have analyzed a more complicated version of the example of [4] in which, by introducing
new class declarations for malicious producers and consumers, we artifically inserted the possibility of
violating mutual exclusion. In this example the presence of violations depends on the values of Boolean
variables.® Our tool finds the bug after 14 iterations (Fig. 6, example 2P /2Cy,,). We manage to verify
the correct version in less than one second (Fig. 6, example 2P/2C,;).

As shown in Fig. 6, we ran the same examples (using the same invariants) on the polyhedra-based
model checker HyTech [23]. Our execution times are always better. Furthermore, in some case HyTech
crashes before reaching a fixpoint or detecting the presence of the initial state because it runs out of
memory.

Protocols To demonstrate the applicability of our techbnology to other classes of parameterized systems,
we have considered the example called CSM in [11], and the Client-Server Protocol of [10], two examples
of Broadcast Protocols. Fig. 7 shows the experimental results for these examples. In the CSM case, we
considered a set of unsafe states expressed by a constraint having the form x > n, where we fixed different
values for n (see Fig. 7). The CST-based search engine outperforms HyTech in all experiments. We note
however that the ratio ET-CST /ET-HyTech (see Fig. 7) tends to decrease for increasing values of n. This
is due to the fact that in our construction we introduce CSTs whose number of nodes depends on the
constants in the corresponding constraints. Note however that for n = 15 our search engine is still 4 times
faster than HyTech.

8 Conclusions and Related Works

In this work we focused on three main points. (1) Via a connection with previous works on parameterized
verification of coherence and consistency protocols [15,16,9,10], we show that there exists a class of

3 The description of all examples are available at the URL: http://www.disi.unige.it/person/DelzannoG/CST/



| MTN | Init |P |T |Prune|Bug|Steps|NNodes|NElems|ET-CST|ET-HyTeCh |Ratio|
Inc/DeChug| m,n>1 |32(28 Vv 10 1542 1823 9.77s 1 -
nc/Dechug| mas1 132128] +/ | o/ | 10|  538] 209 0.82s s 40.24s| 49
nc/Decoug| mm—t |32)28] v/ | /| 10 279 68| 0.22s 5.07s| 23
P/C m;n=2 |18|14 25 833| 10738 29.32s T -
P/C | mn— [18]14] V/ 71 109 35]  0.04s 0.46s| 11.5
P/C | mm—so |18]14] / 151]  8500] 135251 22004s -

9P /2Chug |ktmom>1|34|37 J | 14| 19547] 14827]3002.68s -
9P /2Chug |ktmms1|8]37] | /| 14| 1697| 1330] 2.82s -
2P /2Chug |kimm—1 |44)37] / | /| 14| 1231|  736] 1.64s 1621.60s| 989
9P/2Cok |k tomm>1 |44|37 29| 12479]  8396]3350.055 -
9P /2Cok |ktimm>1 44[37] +/ 1 16 1 0.02s 129s| 65
9P /2C ok |ktmm—1 |44]37] \/ 1 46 1 0.00s 0.06s] > 6

Init=parameters in the initial markings; P=No. places; T=No. multi-transfers;
Prune=use of place invariants; Bug=potential bug detected;

Steps=No. iteration before reaching fixpoint or detecting a bug;
NNodes=Nodes in the last CST (fixpoint);

NElems=Paths in the last CST (fixpoint);

ET-CST=ex.time of the CST engine;

ET-HyTech=ex.time of HyTech (1 indicates that HyTech ran out of memory);
Ratio=ET-HyTech/ET-CST.

Fig. 6. Results using an AMD Athlon 900Mhz with 500 MBytes.

infinite-state abstract models that captures the essence of the concurrent model of Java and for which
one can used decision procedures to verify automatically safety properties for arbitrary number of threads.
(2) We have connected the abstract model to a special class of extended Petri Nets (called MTNs) for
which we can apply symbolic reachability techniques as well as compute structural invariants. This goal
is achieved by extending CST-based symbolic model checking algorithm previously defined for Petri Nets
to the extended class of MTNs. (3) We have implemented all these techniques and experimented on
examples of abstractions of Java programs and protocols, with promising practical results compared to
other technology working on infinite-state systems.

We believe this approach is novel compared to other approaches of software verification via finite
models (see e.g. [6,7]) or with Petri Nets like model [2]. Our preliminary analysis of the problems, tune of
the techniques, and experimental results indicate the potential interest of a second research phase aimed
at producing automatically infinite-state skeletons of Java programs, a task that is in an advanced stage
in the finite-case verification approach (see e.g. [7]). This will be one of our main future directions of
research. As we explain in the paper, our techniques find other interesting applications for the automated
verification of Broadcast Protocols. Concerning this point, we are not aware of other tools designed to
attack symbolic state explosion for this class of extended Petri Nets.
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