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Abstract. In this paper, we report on a recent work for the verification of non-repudiation protocols.
We propose a verification method based on the idea that non-repudiation protocols are best modeled
as games. To formalize this idea, we use alternating transition systems, a game based model, to model
protocols and alternating temporal logic, a game based logic, to express requirements that the pro-
tocols must ensure. This method is automated by using the model-checker MOCHA, a model-checker
that supports the alternating transition systems and the alternating temporal logic. Several optimistic
protocols are analyzed using MOCHA.

1 Introduction

Non-repudiation protocols. During the last decade, open networks, above all the Internet, have
known an impressive growth. As a consequence, new security issues, like non-repudiation have to
be considered. Repudiation is defined as the denial of an entity of having participated in all or part
of a communication. Consider for instance the following scenario: Alice wants to send a message
to Bob; after having sent the message, Alice may deny having sent it (repudiation of origin), or
Bob may deny having received it (repudiation of receipt). Therefore specific protocols have been
designed, generating both a non-repudiation of origin (NRO) evidence, destined to Bob, and a
non-repudiation of receipt (NRR) evidence, intended to Alice. These evidences are based on digital
signatures that provide proofs of the origin of a message or a receipt. In case of a dispute Alice
or Bob can present their evidences to an adjudicator, who can take a decision in favor of one of
the two entities without ambiguity. One of the major problems in these protocols arises when we
want to achieve fairness, i.e. avoid that one of the entities gets its evidence without the other one
being able to also get his one. We have to handle the fact that at one moment during the protocol
execution, an entity will come into an advantageous position, by being the first one to receive the
expected evidence. For instance, if Alice starts sending her message with her non-repudiation of
origin evidence, Bob has received all expected information and may stop the protocol being in an
advantageous position.

Different solutions have been proposed: they are generally divided into two classes, according
to whether they use a trusted third party (TTP) or not. The approach without TTP is either based
on a gradual release of knowledge or on probabilistic protocols. Protocols based on the idea of
a gradual exchange require that all involved parties have equivalent computational power. This
hypothesis is however unrealistic. Probabilistic protocols generally overcome this first problem, but
are inefficient due to the large number of messages that need to be sent. Examples of protocols
without TTP involvment can be found in [6] and [16]. The second approach is the one using a TTP.

* Parts of this works have previously been presented in [12].



Here, a possible scenario is to first send the message to the TTP, who acts as an intermediary to
assure delivery. The major problem of this approach is the network and communication bottleneck,
created at the TTP. To avoid the performance decrease created by this bottleneck, in 1997, Asokan
et al. and Micali independently introduced the optimistic approach for fair exchange in [3] and
[18]. In an optimistic protocol one supposes that in general the involved entities are honest and the
network is well functioning. The rationale is that the TTP only intervenes in case of a problem (a
cheating entity or a network failing a delivery at a critical moment). Afterwards Zhou et al. applied
the optimistic approach to the non-repudiation protocols [26]. These protocols are becoming rather
complexe as they require that at some moment in the protocol, Alice and Bob, are able to contact the
TTP to either force a succesful ending, or to make a later succesfull ending impossible. Optimistic
protocols are the ones that received most of the attention in recent literature.

A non-repudiation protocol has to respect several properties. The first one is fairness': fairness
must ensure that if at least one entity is honest, either both entities receive the expected non-
repudiation evidence or none of them receives it. This property can also be split in the following
two properties. Fairness for Alice ensures that, if Alice is honest, Bob receives the non-repudiation
of origin evidence only if Alice receives her non-repudiation of receipt evidence. Fairness for Bob
ensures that, if Bob is honest, Alice receives her non-repudiation of receipt evidence only if Bob
receives his non-repudiation of origin evidence. The fairness requirement is the conjunction of these
two properties. Another property we require is timeliness: we want that the protocol finishes for
each honest player after a finite amount of time. A third property that is desirable but not necessary
is viability. A protocol is viable if two honest players always succeed in exchanging the expected
evidences. In general viability can only be realized by strengthening the requirements we make
on the communication channels. We define three classes of channels: unreliable channels, resilient
channels and operational channels. No assumptions have to be made about unreliable channels:
data may be lost. A resilient channel delivers data after a finite, but unknown amount of time.
Data may be delayed, but will eventually arrive. When using an operational channel data arrive
before a known, constant amount of time. Operational channels are however rather unrealistic in
heterogeneous networks. A formal definition of both these properties and the channels, will be found
later.

In comparison to other security issues, such as privacy or authenticity of communications, non-
repudiation has not been studied intensively. However, the more studied authentication protocols
have shown that the design of security protocols is an error prone process. Some flaws have only
been found after years (e.g. the Needham-Schroeder public-key authentication protocol [13]). Hence,
a need for formal verification methods has been identified. These methods include an adequate
specification, more precise than the traditional, informal and sometimes ambiguous one often used
in literature. Another aim is the automatic verification. Several works have been engaged: believe
logics, such as BAN [8], general purpose model checkers, e.g. FDR, [14], theorem provers as ISABELLE
for instance [19] and also special purpose verification tools as the NRL protocol analyzer [17]
have successfully been applied to authentication protocols. To the best of our knowledge only
four attempts have been made to verify non-repudiation and fair exchange protocols. First works
have been done on non-repudiation protocols using CSP [20], where the proofs were generated by
hand, and Zhou and Gollman briefly considered using the belief logic SVO [25]. Some work on fair
exchange protocols has been realized using the model-checker Mury [21-23] as well as the animation
tool Possum [7].

! The term fairness will be used in two different contexts in this paper that must not be confused: on one hand it
is used to denote the fairness property that a protocol must respect, on the other hand we use it when discussing
fair computations in the context of temporal logic.



Non-repudiation protocols as games. There are some fundamental differences between authentica-
tion protocols and exchange protocols, e.g. non-repudiation protocols. Generally one of the most
difficult problems in authentication protocols is to deal with the presence of an intruder. In non-
repudiation protocols we do not need to model an intruder, but we have to consider that either
Alice or Bob, the two entities taking part in the protocol, may cheat (cf also [20] and [7]). The most
important difference is that exchange protocols, above all optimistic ones, are not linear. Generally
authentication protocols are ping pong protocols and only allow very few different traces. However,
optimistic non-repudiation and fair exchange protocols are divided in several subprotocols, making
branching possible, although they are intended to be executed in a given order by a honest entity.
Most of the recent protocols give to Alice and Bob the possibility to abort or recover, i.e. force a
succesful ending, a protocol. Hence, it is not always easy to foresee all possible interleavings of these
protocols, or even be sure at which moment in the protocol these subprotocols can be launched.
Changing the order or the moment of execution could result in subtle errors. This is the reason why
we propose a new method for the specification and the verification of exchange protocols. First,
we want to model the actions that are possible in the course of the protocol and not stick to a
given predefined order of execution. In that way, we give a malicious entity the potential not to
follow the protocol, but to construct an attack against the honest entity. Second, we consider the
execution of the protocol as a game: each entity (Alice, Bob, TTP) and each communication channel
is a player. Using games in the context of fair exchange protocol design has first been considered
by Asokan et al. in [5]. We can think of designing a protocol as finding a strategy: the strategy
proposed by the protocol has to defend a honest entity against all possible strategies of malicious
parties that are trying to cheat. This point of view also allows us to express formally the required
properties as strategies. For instance, a property such as fairness for Alice can be expressed as
follows: “a coalition of Bob and all the communication channels does not have a strategy to obtain
a non-repudiation of origin evidence without Alice having a strategy to obtain a non-repudiation
of receipt evidence”. Here, we have rephrased the property as the existence of a strategy. The main
advantage of modeling such protocols as games is that we directly and formally take into account
the possibility of adversarial behaviors. The other participating entities can try to fool Alice when
she tries to obtain her non-repudiation of receipt evidence. As the communication channels are also
modeled as players, they can cooperate with protocol entities. This means that either the channels
are not well-functioning or that they are controlled by a player of the coalition. For instance, when
a message is lost on an unreliable channel, this can be due to a network failure, or a dishonest
player who removed the message by cooperating with the communication channels. As a second
example, consider the game view of the viability property: Alice, in cooperation with Bob must
have a strategy against the coalition of the communication channels, such that both Alice and Bob
possess their expected evidences at the end of the protocol. This example illustrates the facility us-
ing the strategies not only to express adversarial behaviors, but also cooperative behaviors between
several players. The trust in the TTP is modeled by giving the TTP a unique strategy: even if he
makes part of one coalition or the other, his behavior is deterministic and thus cannot choose to
help anyone. By using alternating transition systems and alternating-time temporal logic of Alur
et al. [1], we are able to formalize the non-repudiation protocols and their requirements in a direct
way.

Structure of the paper. We organize the paper as follows. In section 2, we introduce the alternating
transition systems and the alternating-time temporal logic of Alur et al. [1]. The alternating tran-
sition systems are used to formalize exchange protocols as games and alternating-time temporal
logic is used to formalize the requirements that exchange protocols must ensure. Section 3 shows



how exchange protocols, and more specifically non-repudiation protocols, can be modeled naturally
and accurately as games. Viewing those protocols as games allows us to define the requirements as
existence of strategy for players to reach a given goal. The players are the different entities partici-
pating in the protocol. In that way, we directly and formally take into account the possible existence
of adversarial (cheating) behaviors of participating entities to the protocol. The main properties
that a non-repudiation protocol must ensure are given as alternating-time temporal logic formulas.
In section 4, we report on results about the automatic verification of several non-repudiation proto-
cols using the model-checker MOCHA [2]. MOCHA is a model-checker that supports the alternating
transition systems and the alternating-time temporal logic. We use this tool to formally analyze
four protocols and were able to explain in term of strategies several bugs. Then, we compare our
techniques to some related works. Finally, we report on plans for future works in section 5 and
draw some conclusions.

2 A Formal Model of Games and its Logic

Alternating transition systems. The formalism that we use to model exchange protocols as games
is the model of alternating transition systems [1], ATS for short. ATS are a game variant of usual
Kripke structures. An ATS is a 5-tuple S = (II, ¥, Q, 7, §) with the following components:

— II is a set of propositions.

— X is a set of players.

— @ is a set of states.

— 7 : Q — 2T maps each state to the set of propositions that are true in the state.

—0:Qx X —> 229 is a transition function that maps a state and a player to a nonempty set of
choices, where each choice is a set of possible next states. Whenever the system is in state g,
each player a chooses a set @, € d(g,a). In this way, a player a ensures that the next state of the
system will be in its choice @,. However, which state in (), will be next depends on the choices
made by the other players, because the successor of ¢ must lie in the intersection (,c5; Qq of
the choices made by all players. The transition function is non-blocking and the players together
choose a unique next state. Thus, we require that this intersection always contains a unique
state: assuming X' = {aq,...,a,}, then for every state ¢ € @ and every set @1, ..., Q, of choices
Q; € 6(q,a;), the intersection Q1 N ... N @y is a singleton.

For two states ¢ and ¢’ and a player a, we say that ¢’ is an a-successor of ¢ if there exists a set
Q' € 6(q,a) such that ¢’ € Q. We denote by succ(g,a) the set of a-successors of g. For two states
q and ¢', we say that ¢’ is a successor of ¢ if for all players a € X, we have ¢' € succ(q,a). Thus, ¢
is a successor of ¢ iff whenever the system S is in state g, the players in X can cooperate so that
q' will be the next state. A computation of S is an infinite sequence \ = qqg, q1, g2, . . . of states such
that for all positions ¢ > 0, the state g; 11 is a successor of the state g;. We refer to a computation
starting at state ¢ as a g-computation. For a computation A and a position 7 > 0, we use A[i], A[0, ],
and A[4, 0] to denote the i-th state in A, the finite prefix qo, g1, ...,¢ of A, and the infinite suffix
Qi, Qi+1, - - - Of A, respectively.

Alternating-time temporal logic. The Alternating-time Temporal Logic [1] (ATL for short) is defined
with respect to a finite set II of propositions and a finite set X' of players. An ATL formula is one
of the following:

— p, for propositions p € II.
— - or @1 V g, where @, ¢1, and o are ATL formulas.



— ((AYO ¢, (A)Oep, or {(ANp1 Ups, where A C X' is a set of players, and ¢, @1, and @9 are ATL
formulas.

The operator (( )) is a path quantifier, and O (“next”), O (“always”), and U (“until”) are temporal
operators. The logic ATL is similar to the branching-time temporal logic CTL, only that path
quantifiers are parameterized by sets of players. In fact, the parameterized path quantifier (A)) is a
generalization of the path quantifiers of CTL: the existential path quantifier 3 corresponds to (X)),
and the universal path quantifier V corresponds to ((0#)). Sometimes we write (a1, ..., ay,)) instead of
{{a1,--.,an})). Additional boolean connectives are defined from — and V in the usual manner. As
in CTL, we write ((A)) O for ((A))true Up. Extensions of ATL as ATL* and the alternating p-calculus
are defined in [1].

We interpret ATL formulas over the states of a given ATS S that has the same propositions and
players. The labeling of the states of S with propositions is used to evaluate the atomic formulas of
ATL. The logical connectives — and V have the standard interpretation. To evaluate a formula of the
form ((A)1 at a state g of S, consider the following two-player game between a protagonist and an
antagonist. The game proceeds in an infinite sequence of rounds, and after each round, the position
of the game is a state of S. The initial position is . Now consider the game in some position u. To
update the position, first the protagonist chooses for every player a € A, a set Q, € 6(u,a). Then,
the antagonist chooses a successor v of u such that v € @), for all a € A, and the position of the
game is updated to v. In this way, the game continues forever and produces a computation. The
protagonist wins the game if the resulting computation satisfies the subformula 1), read as a linear
temporal formula whose outermost operator is O, [J, or . The ATL formula ({A)% holds at the
state ¢ if the protagonist has a winning strategy in this game.

In order to define the semantics of ATL formally, we first define the notion of strategies. Consider
an ATS § = (I1, X, Q, 7, 0). A strategy for a player a € X is a mapping f, : QT — 29 such that for
all A € Q* and all g € Q, we have f,(\-q) € d(g,a). Thus, the strategy f, maps each finite prefix
A - ¢ of a computation to a set in d(g,a). This set contains possible extensions of the computation
as suggested to player a by the strategy. Each strategy f, induces a set of computations that player
a can enforce. Given a state ¢, a set A of players, and a set F4 = {f, | a € A} of strategies, one for
each player in A, we define the outcomes of F4 from q to be the set out(q, F4) of all g-computations
that the players in A can enforce when they cooperate and follow the strategies in F4; that is, a
computation A = qg, q1,42, ... is in out(q, F4) if go = g and for all positions 7 > 0, the state g;11 is
a successor of ¢; satisfying g 11 € (,c 4 fa(A[0,14]).

We can now turn to a formal definition of the semantics of ATL. We write S, ¢ = ¢ (“state ¢
satisfies formula ¢ in the structure S”) to indicate that the formula ¢ holds at state g of S. When
S is clear from the context we omit it and write ¢ = ¢. The relation |= is defined, for all states ¢
of S, inductively as follows:

— For p € II, we have q = p iff p € 7(q).

—qEpiff g [~ e

—qgF w1V iff ¢ = g1 or g = po.

— g = ((A)O ¢ iff there exists a set F4 of strategies, one for each player in A, such that for all
computations A € out(g, F4), we have A\[1] = ¢.

— q = (A)Op iff there exists a set F4 of strategies, one for each player in A, such that for all
computations A € out(g, F4) and all positions 7 > 0, we have A[i] = ¢.

— q = ((A) o1 Uy iff there exists a set F4 of strategies, one for each player in A, such that for
all computations A € out(q, F4) there exists a position ¢ > 0 such that A[i] = @2 and for all
positions 0 < j < 7, we have A[j] E ¢1.



Note that the next operator O is local: ¢ = ((A))O ¢ iff for each player a € A there exists a set
Qa € 6(g,a) such that for each state ¢’ € [,c 4 Qu, if ¢’ is a successor of ¢, then ¢’ = ¢.

We now illustrate the expressive power of ATL. Consider the set of players X = {a,b,c} and
the following formulas with their verbal reading:

— {(a))Op, player a has a strategy against players b and ¢ to eventually reach a state where the
proposition p is true;

— =((b, c))0p, the coalition of players b and ¢ does not have a strategy against ¢ to maintain the
proposition p true for ever;

— {(a,b)O (p A ={(c)0p), a and b can cooperate so that the next state satisfies p and from there
¢ does not have a strategy to impose p for ever.

Those three formulas are a good illustration of the great expressive power of ATL to express coop-
erative as well as adversarial behaviors between players.

Fairness. As in the usual temporal logic setting, fairness can be used to rule out computations. For
example, to evaluate a formula of the form ((a)){0¢, we may want to only consider computations
where the antagonists, that is the agents in X'\ {a}, respect their fairness constraints. A fairness
constraint is a function v : Q x X — 229 guch that for each g € Q and a € X, we have vy(q,a) C
d(g,a). Given a computation A = ¢og1...¢n ..., we say that v is a-enabled at position i > 0 if
v(gi,a) # 0. We say that v is a-taken at position ¢ > 0 if there exists a set Q' € y(g;,a) such that
¢iy1 € Q'. Finally given a set A C X, we say that X is weakly (v, A)-fair 2 if for each agent a € A,
either there are infinitely many positions of A at which « is not a-enabled, or there are infinitely
many positions of A at which =y is a-taken. A fairness condition I" is a set of fairness constraints. So,
for a given set A C X, we say that A is weakly (I", A)-fair, if X is weakly (v, A)-fair for all fairness
constraints v € I'. Given an ATS S, and a (weak) fairness condition I, we define the semantics of
Fair ATL as follows:

q Er (A)O ¢ iff there exists a set F4 of strategies, one for each agent in A, such that for all
(I', X'\ A)-fair computations A € out(q, Fa), we have A[1] =F ¢.

— q Er (A)Op iff there exists a set F4 of strategies, one for each player in A, such that for all
(I', X'\ A)-fair computations A € out(q, F4) and all positions i > 0, we have \[i] =r ¢.

q =r ((A)p1 Uyps iff there exists a set F4 of strategies, one for each player in A, such that for all
(I, X'\ A)-fair computations A € out(q, Fl4) there exists a position ¢ > 0 such that A[i] =r @2
and for all positions 0 < j < 4, we have A[j] EFr ¢1.

the semantics of the other operators is as in standard ATL.

In [1], a model-checking algorithm handling fairness constraints is presented.

Game guarded command language. Modeling a protocol directly with an alternating transition
system would be cumbersome. Instead we use a simple modeling formalism based on Dijkstra’s
guarded command language, previously introduced in [10]. This simple modeling language is a
subset of the reactive modules used by the verification tool MOCHA. Let X be a set of variables
interpreted over some possibly infinite domains. We denote by X’ = {z' | z € X} the set of
variables obtained by priming each variable in X. Those variables are used to refer to the value of
the variables in the next state. A valuation v of the variables X is a function which maps each of
the variables in X into a value in its domain. Denote by Vx the set of all possible valuations of

2 Note that there exists also, as in the usual temporal logic setting a notion of strong fairness, the interested reader
is referred to [1] for the definition. We will not need the notion of strong fairness in this paper.



the variables X. For any valuation v, we write v’ the valuation obtained by priming each domain
variable of v. For any predicate ¢ over the variables X and a valuation v € Vx, denote by ¢[v]
the truth value of the predicate with all the free variables of the program P interpreted according
to the valuation v. For Y C X, we define vy as the valuation with dom(vy) = Y, such that
Vy €Y tvy(y) =v(y)-

Given a set of program variables X, a Y-action £ (guarded command) has the form | guard —
update, where Y C X, the guard guard is a boolean predicate over X, and the update relation
update is a boolean predicate over X UY'. We also write guard ¢ and update, to represent the guard
and update relation of ¢ respectively. Given a valuation v € Vx, the action ¢ is said to be enabled
if the guard guard, [v] evaluates to true. We assume that for every Y-action, the update relation
is functional, that is, for all valuation functions v € Vx, there is exactly one valuation function
u € Vy such that update;[v Uu'] holds. A Y-process @ is a finite set of Y-actions. We say that the
set of variables Y is the controlled variables of ®. We require that for any valuation of the program
variables, at least one action in the process is enabled.

To model multi-player games, we partition the program variables X into disjoint sets Xi, Xo,
o Xp,le, X = X1 W Xo W - W X, Intuitively, X; contains the variables updated by player i. A
program P = ($1,P9,...,Py) over X is a tuple of processes such that &; is an X;-process. Each
process of the program can be defined by composing smaller processes, each of which controls a
subset of the variables.

The semantics of a program P = {®1, P, ... P, } over the program variables X is the alternating
transition system Sp

- Y ={1,2,...,n} (the n players of the program P).
— Q = Vx, i.e., a state of Sp is a valuation of the program variables.
—0:Vx xX—> 22"% i the transition function defined as
§(v,9) = {{r | rx, =wAr eVx} | £ € B; A guard[v] A update[v Uw']}
— I is a set of boolean predicates over the program variables X.
— 7 maps a state ¢, which is a valuation, to the set 7(q) of propositions that the valuation satisfies.

Intuitively, for i € X' = {1,2,...,n}, player i controls the actions in &;.

A program is run in steps. At each step, player 1 chooses an enabled action ¢ € &;, and
updates the values of the variables in X; according to the predicate update,. Independently and
simultaneously, player 2 chooses an enabled action n € @5 and updates the values of the variables
in Xy according to update,. And so on for the n — 2 other players.

We introduce fairness in our modeling language at the level of actions. Given a set of actions @;
of player ¢, a fairness constraint for player ¢ is a subset I; C @; of actions in regard of which, player
i must be (weakly) fair. Intuitively, an action that belongs to I; can not be constantly enabled
without being taken by player i. So, a fairness condition for a program P = {®1,P,,...,P,} is a
set {I'1,Is,...,I,} where I; C &@; for i : 1 <14 < n. This set of subsets of actions of the program P
induces the fairness condition I" on the ATS defining the semantics of P whose transition relation
is 0. I' contains a fairness constraint -, for each action { € I, defined as follows:

0 ifi1#£j
Ye(v,5) =< 0 if i = j and ~guard,[v]
{QQ €d(v,5) ANV € Q" : update [v U ']} if i = j and guard,[v].

Illustration. In the example of figure 1, we use the following syntactic assymptions. First, in the
update part of the command, if a variable  does not appear in the right-hand side of the command,
it is considered as unchanged by the command, so implicitely, we have z = z’ for each such variable.



Second, the command true —  means that the player owning this command can choose to leave
unchanged its controlled variables, this is a kind of “idle” action. Note that as the guard is true,
that action can be taken at any step of the game if no fairness constraints are imposed on the
player.

A:
[] true
[] true

p’:=true

1l

o]

:=true

|-°‘.

p —
true

d

T

o

C:
[[ @ = r’:=true
[ true —

Fig. 1. A simple program in the game guarded command language.

We are now equipped to consider the example. A state of the system, is a valuation for the
propositions p, q,r. Let us consider the state v such that v, = false, v, = false, and v, = false.
From that state, players A, B, and C can cooperate so that the system reach a state where r is
true. Formally, this is expressed by the following statement:

v = (4, B, C)or (1)

But as player C' can always choose to perform the “idle” action, then A and B alone do not
have a strategy to reach a state where r is true, so

v = =4, B)Or (2)

In fact, player C has a spoiling strategy to prevent A and B to reach a r-state. Furthermore,
he has a winning strategy to impose —r for ever3:

v = (C)O-r 3)

The winning strategy simply consists in taking the idle action at every step of the game. If we

want to exclude this behavior (because it is not a realistic one for example), we can use fairness

constraints. By setting a weak fairness constraint on the action of C' that set r to true, we exclude

the strategies of C that consists in taking the idle action for ever. This fairness constraint excludes
spoiling strategies of C' for formula 2. So, we have :

v Er (4, B)Or (4)

3 Formal Modelization of Non-Repudiation Protocols

Modeling of the protocols. Non-repudiation and fair exchange protocols have several particularities
that allow us to make some simplifications. As also noted in [7] all messages are generally protected

3 The carefull reader has noted that statement v |= =4, B)Or is not equivalent to (C)-r. We have that {(CHO-r
implies v = —~{(A4, B)Or but not the other way round.



by digital signatures or an equivalent mechanism. Hence we consider that only well formed messages
can be sent. Moreover each protocol execution can be uniquely identified by the identity of the
participating entities and a special label. When the label contains some well chosen information
related to an execution, as proposed for instance in [26], it is possible to show that different parallel
executions can not interfere. A unique identification is inherent to optimistic protocols, as the TTP
must be able to identify the protocol run, in case of an abort or recovery request. Therefore we do
not need to verify the execution of several parallel runs.

The notation, classically used in literature to describe cryptographic protocols (A — B : m, to
denote that Alice sends a message m to Bob), has several drawbacks. The protocols are presented as
a linear sequence of message exchanges, with a predefined order. In the case of optimistic exchange
protocols often subprotocols can be invoked at different moments. Unfortunately, running a sub-
protocol at a time not foreseen by the designer, may have unexpected side-effects, threatening the
security of a protocol if one of the participating entities tries to cheat the other entities. Therefore,
we use the modeling language described above to model the exchange protocols. To execute a given
action £, guard; must evaluate to true. The guard guard, is used to represent the elements (such
as keys, messages, ...) necessary for a participating entity, that is a player in our modelization,
to execute the action £. The variables controlled by a player represent his current knowledge and
thus determine which actions he/she can execute. This specification takes into account all possible
executions of subprotocols corresponding to a given initial knowledge, as we do not give any prede-
fined order to these guarded commands. At each point in the protocol execution all messages that
could possibly be sent are determined. Thus, the specification enables a malicious entity to choose
a different order of execution and construct a possible attack. We model the two players Alice and
Bob with this approach.

The TTP is a special player and has to be modeled in a particular way. The TTP must be
impartial, it may not help one or the other player. To make sure that the TTP does not have a
strategy to help one of the players to cheat, we model the TTP in a deterministic way: at each stage
of the execution of the protocol, the TTP executes the action requested by the protocol. This can
easily be done. Consider a protocol where the TTP has to execute the actions &7,&s,...&, in this
given order. We only have to use a n valued variable initialized to 1; each time that the TTP takes
an action this counter is incremented and the guards of the actions of the TTP ensure that only
this sequence is possible.

The communication channels can also be modeled as players. Each transmission is modeled
as a guarded command. We consider three different kinds of communication channels: unreliable,
resilient, and operational. To specify unreliable channels we add an action that the channel can
always take and has no effect, i.e. this is simply an idle action. As a consequence, a message sent on
an unreliable channel may never be delivered. A resilient channel can be specified in a similar way,
but we have to add fairness constraints on the computations in order to force the transmission before
a finite amount of time. More precisely, assume that a resilient channel ¢ has to deliver a message
m1 when the proposition SendV; is set to true and the delivery of the message is modeled by setting
M; to true. Hence, if I" denotes the fairness condition of the program P, modeling the protocol, we
have that | SendM1 — M1 € I, and I, € I'. This fairness constraint rules out trajectories where
¢ can deliver a message and never delivers it. Operational channels do not have any additional
action and thus immediately transmit the messages that have been sent on it. By immediately
transmitting messages we alter the channel definition, which requires messages to be transmitted
before a known constant time. This is however acceptable as the sender can always wait before
sending the message to obtain the desired delay.



When starting to model an informally described protocol we apply the following method. First,
we determine the initial knowledge of each player. Initial knowledge may for instance include nonces,
public and shared keys as well as initially known messages. All these items are represented by
boolean variables initialized to true. All other variables are set to false, indicating that there value is
not known yet. Then we model all useful cryptographic operations that can be applied on the initial
knowledge. Here the term useful means that the operation generates an item that can be used later
in the protocol. Now the following steps are applied to each message X — Y : M = mj4,m;g,...,min of
the protocol. To represent the sending of M;, a guarded command mj; A --- Am;, — SENDm; := true
is added to player X’s description. The guard contains the conjunction of all the elements of the
message. This means that a player is able to send a message if and only if he has knowledge of
all the required elements. The update relation expresses the intention to send the message. The
transmission of the message is represented by a guarded command added to the description of the
communication channel between X and Y. The command will be of the form SENDm; — M; := true.
Note that in order to delay this message a communication channel may choose to execute a different
command. Reception of the message is modeled by adding the following command to Y’s description
M; — mjy := true;...;m;, := true. For each element of M; being set to true for the first time in Y’s
description, we also add all useful cryptographic operations that can be applied on it.

Alice:

[] Ma AKa — Ca’ := true
[] La A Ta A Ca A EODa A =STOPa A —=SENDm1 — SENDm1’ := true;

Bob :

[] M1 A —E00b A =STOPb — Lb’ := true; Tb’ := true;Cb’ := true; EQOb’ := true;

Fig. 2. Example of guarded commands used for protocol modeling.

As an illustration, let us consider the guarded commands of in figure 2. The first guarded
command models the encryption of message Ma under key Ka resulting in the cipher Ca. The second
one expresses that “if Alice has knowledge of L, T, C and E0O, she can send message 1”. The third
guarded command models that the communication channel deliver the message 1 (M1 becomes
true). The last guarded command expresses that Bob increases his knowledge when he receives the
message M1. The meaning of the variables will become more clear in the next section.

The above presented method describes how to model Alice, respectively Bob having arbitrary
behavior. To restrict their behavior to the honest protocol execution, we can easily reinforce the
guards so that the order of execution corresponds to the one dictated by the protocol. We achieve
two different descriptions of Alice, as well as of Bob: the first description models arbitrary behavior,
the second one only the honest behavior.

Modeling of requirements. We show here how the main requirements that an exchange protocol
must fulfill, can be naturally rephrased as the existence of strategies for the participating entities
to reach their goal. The logic ATL is used to formalize those requirements. We will concentrate here



on properties of non-repudiation protocols. The properties described are general properties that do
not apply to a given protocol. They may need to be instantiated when studying a protocol.

In a first approximation, we introduced fairness as the property that either both entities receive
all their desired evidences or none of them receives any valuable evidence. We can now formulate
this requirement as the existence of strategies. We say that the protocol is fair for Alice if “Bob
and the communication channels do not have a strategy to reach a state where Bob has his proof
of origin and Alice has no more a strategy to obtain her proof of receipt”. This can be formally
expressed by the following ATL formula:

—({(B, Com)O(NRO A ={(A)) ONRR) (5)

Here, Com denotes the set of all communication channels. NRR and NRO respectively denote the
non-repudiation of receipt and origin evidences. This is a generic notation as the form of those
evidences depends on a particular protocol. The expressive power of the logic ATL is well illustrated
by this example. Cooperation and adversarity are naturally expressed. To better understand the
advantages of using a game logic to formalize this requirement, let us consider the following CTL
formula:

=30(NRO A =30ONRR) (6)

that may look as an appropriate CTL candidate for the formalization of fairness for Bob. Note that
we have obtained this formula by replacing the two teams in (5) by the entire set of players X.
Note also that the formula (6) can be rewritten in the equivalent and more readable positive form:

VO(NRO — JONRR) (7)

That says “on every state of every run of the protocol, if Bob has his evidence of origin then
there should exist a continuation of the protocol on which Alice eventually receives her evidence
of receipt”. This way, we have lost however the ability of distinguishing between cooperative and
adversarial behaviors. Let us show what are some consequences of this, so to say, “loss of precision”.
For example, it may be the case that the formula (7) is verified because in the course of the protocol
a resilient channel helps Alice to obtain her proof by delivering a message within a given bound
(which is not generally the case for such a channel). As this assumption of cooperative behavior of
the resilient channels can not be made in general, in order to be fair the protocol should guarantee
to Alice that she obtains her proof even if the resilient channel does not deliver the message within
a certain bound. This fact is not ensured by the CTL formalization but is ensured by our ATL
formalization. In fact, in formula (5), it is explicitly stated that the communication channels play
against Alice. A resilient channel has only the obligation to deliver the message after a finite
amount of time and not within a given bound, even if that helps Alice to obtain her proof. This
non-cooperative aspect is precisely formalized in ATL. Also formula (6) may be verified because
there exists some paths, where Bob is honest and allows Alice to obtain her proof. Again, the
protocol should not make the hypothesis that Bob is honest, and should ensure fairness for Alice
even if Bob is trying to cheat her. This adversarial behavior is formally modeled by our ATL formula
and can not be formalized in CTL. We can also have that the CTL formula is false, even if the ATL
formula holds. Such a situation can occur if Alice’s specification contains some non-determinism.
For instance, if the specification does not contain at which moment Alice can stop the protocol,
she may stop it at a “wrong” moment. The CTL formula will fail, while the ATL formula may hold,
as not stopping the protocol at a given moment would have lead to a winning strategy. Using the
notion of strategy, we “automatically” exclude behaviors of Alice that do not serve her objective.
Note that this last comment also rules out the following CTL formula as a candidate for fairness:

VO(NRO — VONRR) (8)



Situations where the protocol is not well defined, occur frequently when integrating the use of
formal methods as an aid in the protocol designing process. During the first steps while designing
the protocol, we generally do not want to deal with all details: the aim of the verification is
to determine whether the given specification contains a winning strategy that leads to a correct
protocol. If Alice is specified in a deterministic way, one may use formula 8 to verify fairness for
Alice. However, we believe that at a specification level, as well as during the design process, the
fairness requirement should explicitly express the adversarial as well as the cooperative behaviors.
To complete the fairness requirement, we express fairness for Bob as follows:

—{(4, Com) O(NRR A =({(B)) ONRO) 9)

and take the conjunction of (5) and (9). We are also interested in first verifying a basic (weaker)
notion of fairness: ” Alice and Bob cooperate to achieve fairness”. This would be translated by the
following ATL formula:

(A, BYO((NRO A NRR) V (~NRO A —=NRR)) (10)

Viability, which can be seen as a variation of the property above, is expressed by the following
formula:

(A, BYO(NRO A NRR) (11)

that says “Alice and Bob can cooperate, so they are honest (i.e. they are following the protocol),
and in that case the protocol should allow them, even in presence of non-cooperating channels, to
obtain their respective evidences”. And finally timeliness is formalized by :

{A)O(stopy A (NRR = =~{(B))ONRO)) (12)

which expresses that “Alice has a strategy to finish the protocol and if she does not have her
evidence at that point, Bob will not be able to obtain his evidence neither”. To represent the fact
that Alice finishes the protocol, we introduce a special variable stop. Once stop is set to true, all of
Alice’s actions are disabled. In this way, we model the fact that Alice stops this protocol session,
including all related sub-protocols that could be waiting for an additional message (e.g. a recovery
or an abort message from the TTP) to arrive. The same requirement can be expressed for Bob.

4 Verification with MocHA

We used the model-checker MOCHA to verify several protocols. As fairness constraints were not
foreseen in the tool, we extended it by rewriting some of the model-checking algorithms, using the
MocHA script language. We report in detail on our verification of the Zhou-Gollmann optimistic
protocol [26] and illustrate on this example our verification methodology. We also checked the
Asokan-Shoup-Waidner certified mail protocol [4], the Kremer-Markowitch non-repudiation proto-
col [11], as well as the Markowitch-Kremer multi-party non-repudiation protocol [15]. For these
protocols, we focus on the results of our verification, rather than the verification process.

4.1 The ZG optimistic non-repudiation protocol

We first give an informal description of the protocol using the following notation:

— X — Y : transmission from entity X to entity Y



X < Y : ftp get operation performed by X at Y

h() : a collision resistant one-way hash function

— Ei(): a symmetric-key encryption function under key &
— Dy(): a symmetric-key decryption function under key &
— Sx(): the signature function of entity X

— m: the message sent from A to B

— k: the message key A uses to cipher m

— ¢ = Eg(m): the cipher of m under the key &k

[ = h(m, k): a label that in conjunction with the entities (A,B) identifies a protocol run
f+ a flag indicating the purpose of a message

— t: the time-out chosen by A

The protocol generates the following evidences:

EOO = Sa(feo00, B,1,t,c): the evidence of origin of ¢

EOR = Sp(feor, 4,1, t,c): the evidence of receipt of ¢

EOOy = Sa(feoo,,B,!,t,k): the evidence of origin of k

EORy = SB(feor,,4,1,t,k): the evidence of receipt of k

Suby, = Sa(fsub,, B, 1, k): the evidence of submission of &

— Cony, = St7p(fcon,s A4, B, 1,1, k): the evidence of confirmation of k issued by the TTP

The protocol is divided into two subprotocols: a main protocol and a recovery protocol. As the
protocol is based on the optimistic approach, the trusted third party (TTP) does only intervene in
the recovery protocol. We start by describing the main protocol, depicted in protocol 1.

Protocol 1 Main protocol
1. A — B: feoo, B,l,t,c,EOO
2. B> A: fEOR,A,l, EOR
3. A—> B: fEOOk;B;l:k'; EOOk
4. B — A fEORk7A7l7 EORy

First Alice sends the digitally signed cipher ¢ = Ey(m) to Bob. In the second message Bob
responds with the evidence of receipt for this cipher (EOR). If Alice does not receive the second
transmission she stops the protocol, otherwise she sends the signed decryption key k& to Bob. Bob
answers by sending the receipt EOR;, for the key. The label [, present in each transmission, identifies
the protocol run. The time-out ¢ specified in message 1 is used in the recovery protocol. Alice may
initiate the recovery protocol if Bob does not send the receipt for the key.

The steps of the recovery protocol are described in protocol 2.

Protocol 2 Recovery protocol
1. A TTP: fow,, B, 1t k, Suby,
2. B < TTP: fcon,, 4, B, 1,t,k, Cong
3. A & TTP: fecon,, A, B,1,t,k, Cony,

Alice sends the signed key, together with the deadline ¢ to the TTP. If the key arrives after
t, the TTP does not accept the recovery. Otherwise the TTP publishes the key together with a



confirmation Cony for the key in a read-only accessible directory, where both Alice and Bob can
fetch the key as well as Cong. Cony serves to Bob as the evidence of origin of the key, and to Alice
as the evidence of receipt of the key as it is accessible to Bob. The deadline ¢ is necessary for Bob
to know the moment when either the key is published or will not be published anymore. In this
protocol, the non-repudiation of origin evidence NRO is composed of EOO and EOOj or of EOO
and Conj. The non-repudiation of receipt evidence NRR is composed of EOR and EOR;, or of EOR
and Cony.

Zhou et al. suppose that the channels between Alice and Bob are unreliable and the channels
between the TTP and both Alice and Bob are resilient. In our model we do not model the ftp get
operation, but assume that the TTP takes the initiative to send messages 2 and 3 of the recovery
protocol to Alice respectively Bob, as soon as these actions are possible.

To verify the protocol we instantiate the properties defined in section 3 for two versions of both
Alice and Bob. The first version allows arbitrary behavior?, the second one restricts the behavior
to the honest protocol execution. The specification of Alice, respectively Bob, allowing arbitrary
behavior will be denoted with A, respectively B, while the specification of the honest behavior of
Alice and Bob will be denoted Ay, respectively By,. When we want to check a property, for instance
fairness for Alice, we first verify that Alice has a strategy to assure the fairness requirements, when
she is allowed to behave in an arbitrary way. We check that

~{(B, Com)O(EQO A (EOOy V Cony) A ~{(A)O(EOR A (EORy V Cony)))

holds. In fact, we have to verify this formula in all states that can be reached during a protocol run
where Alice behaves correctly following the protocol, e.g. after the first message of the main protocol
has been sent, after the first and the second message have been sent, etc. Therefore we include into
the formula until which state the protocol has been executed, without however restricting the
behavior of Bob or any future behavior of Alice. Otherwise, if we only check the formula in the
initial state, Alice could always decide to immediately stop the protocol, not sending any message,
in order to avoid to be cheated. For instance the flaw described hereunder is found while verifying
the following formula.

—E(}(ml A m2A m3 A—m4 A -=TimeOut A —stopp A —stopgA

(B, Com})O(EOO A (EOOK V Cong) A ~{(A)O(EOR A (EORy V Cony))))

In the remaining of the paper, for the sake of readability, we omit to give all details in the formulas,
although the formulas are slightly more complex. If the formula given above does not hold, even
with arbitrary behavior of Alice, the protocol is flawed and cannot be fixed without introducing
new 'mechanisms’ or constraints in the protocol. If the formula holds we additionally need to check
that Alice cannot be cheated when following the protocol. It is possible that the formula holds
because Alice adapted a strategy, that is not the one proposed by the protocol. Therefore we check
the following formula:

=({(B, Com)) O(EOO A (EOO V Coni) A ={{Ap)O(EOR A (EORy V Cony)))

In this formula we restricted Alice’s behavior to the actions that are dictated by the protocol.
If the formula evaluates to false, it means that the protocol, as originally described, is flawed.
However, it is possible to easily correct it, as a strategy was found by the model-checking algorithm

* We call arbitrary behavior, all behavior that is interesting with respect to the protocol, i.e. behavior that results
in sending or obtaining acceptable messages related to the protocol.



while checking the previous formula. This means that we do not have to fundamentally change the
protocol, by adding or changing messages.

While investigating the protocol, we succeeded in finding a flaw in the protocol, even if Alice’s
behavior is not restricted to the honest protocol execution. The hereunder described flaw has briefly
been discussed in [11]. Remember that the communication channels between the TTP and both
Alice and Bob are resilient and that a finite time-out must be chosen by Alice at the begin of the
protocol. In our model, the time-out is a boolean variable controlled by a player Clock. We restrict
the time-out to become true after a finite amount of time, using a similar technique as used for
transmission on resilient channels. In fact, when the main protocol has been executed until step 3,
Bob has received all of his evidences and may decide to stop the protocol in order to try to cheat
Alice. At this point we check whether Alice in cooperation with the clock does have a strategy
against Bob who is cooperating with the communication channels, to receive her non-repudiation
of receipt evidences. As Alice cooperates with the clock, she entirely controls the triggering of the
time-out. Intuitively, it means that Alice can choose the time-out to occur as late as she wants, which
represents the fact, that she chooses the time-out at the first step of the protocol. As Alice does not
receive her evidence, she has to initiate a recovery. For the recovery protocol to be successful, the
request needs to arrive before the time-out. However, as communication channels can help Bob, this
message can be delayed until the time-out occurs. Intuitively, a resilient channel has the capacity
to delay messages: thus for each possible finite time-out value chosen by Alice, Bob (with the help
of the communication channels) can delay long enough the delivery of the message in order for the
TTP to reject the recovery request. The flaw is detected, while verifying the following ATL-formula
that evaluates to true.

(B, Com)O(EOO A (EOOK V Cong) A ~{(A, TimeOut)) H(EOR A (EORy V Cony)))

The formula verifies whether Bob, collaborating with the communication channels, has a strat-
egy to cheat Alice. However, when we change the communication channel to be operational (mes-
sages are transmitted immediately) the protocol becomes fair. Unfortunately, operational channels
are rather unrealistic in practice. On the other hand the formula verifying whether Alice has a
strategy to cheat Bob fails. This is a good example to illustrate that a CTL-formula trying to
express the same property would not be adequate for our purposes. The formula

3O(EOR A (EORg V Cong) A =3O(EOQO A (EOOy V Cong)))

evaluates to true, while Alice does not have an attack against Bob in this protocol. It is easy to
see that Bob can help Alice to get the non-repudiation of receipt evidence. In the same execution,
Alice can abort the protocol after having received Bob’s evidences and then stop the protocol,
before sending her evidence to Bob. This execution exists, but is discarded in our formalism, as we
explicitly express the fact that Bob does not help Alice, as it is the case in the first part of the
described execution.

We can also use our method to find the origin of a flaw. We can add players to the cooperation
to detect the player(s) that make the property fail. As an example, take a look at the flaw we
described in the previous paragraph. We asked whether Bob, together with all the communication
channels, has a strategy to obtain the NRO evidence, such that Alice, in cooperation with the clock,
does not have any strategy to receive the NRR evidence. Using MOCHA we showed the existence
of a flaw, by validating this property. However, it may be difficult to determine the origin of the
failure. To find this origin we change the coalitions to find the player(s) responsible for the flaw. By
adding the communication channel between Alice and the TTP to Alice’s coalition we succeeded in



avoiding the property to be validated. This reflected by the fact that the following formula evaluates
to false.

(B)O(EOO A (EOOK V Cony) A ={(A, TimeOut, Com)O(EOR A (EORy V Cony)))

Once we know that the communication channel is at the origin of the error it may be interesting
to alter the channel’s quality. In that way we see which modifications are needed to recover the
fairness property. In this example we concluded that replacing the resilient channel by an operational
channel was enough to prevent protocol failure. Hence, we have a rather easy and quick investigation
method to locate and possibly prevent flaws. This methodology may also be useful during the design
process of new protocols.

4.2 The ASW certified mail protocol

The ASW certified mail protocol [4] has been designed for use on asynchronous (resilient) networks.
The protocol is more complicated: it uses a main protocol, an abort protocol and two recovery proto-
cols. For such complex protocols the use of formal methods is very helpful, as an important number
of different situations can occur. Using informal methods Zhou et al. [24] found two problems in
the protocol. The first problem compromises fairness for Alice, the second one for Bob. We briefly
describe the protocol and therefore introduce some additional notation specific to this protocol.

— keya and keyp: two fresh random numbers generated by A and B respectively.
- Cc= ETTP(m7 k@?/Aa A7 B)

The main protocol (protocol 3) consists of four messages. In the first message Alice sends a
commitment to m, as well as to the non-repudiation of origin evidence to Bob, by sending the
hash of the message m, as well as the encryption for the TTP of both the message and the random
number key4. Bob replies by sending a commitment to his random number. Then they go on in
messages 3 and 4 by exchanging m and key4 against keyp.

Protocol 3 Main protocol
1. A= B:mi=A,B, TTP,c,h(m),Sa(A, B, TTP,c, h(m))
2. B — A: ma = h(keys), Se(mi, h(keys)
3. A — B: mg =m,keya
4. B = A: m4 = keyn

The abort protocol is executed by Alice if Bob does not reply to the first message of the main
protocol. When Alice wants to abort the protocol (protocol 4), she sends a signed abort request
to the TTP. If at that moment, Bob has already recovered the protocol, the TTP invites Alice to
launch a recovery protocol. Otherwise the TTP sends an abort confirmation to Alice.

Protocol 4 Abort protocol

1. A — TTP: a1 = aborted, m1, Sa(aborted, m,)
if B recovered then recovery_A else
2. TTP — A: abort_token = a1, Strr(ai)

When the third message of the main protocol does not arrive to Bob, he can execute a recovery
protocol (protocol 5). Therefore Bob sends a recovery request, including the cipher ¢ to the TTP.



If the protocol has already been aborted, the TTP sends the abort token to Bob. Otherwise the
TTP decrypts ¢ and sends the message m, as well as key4 to Bob.

Protocol 5 Recovery_B protocol
1. B = TTP: rb1 = B, m1, ma, keyns
if aborted then
2. TTP — B: rb2 = abort_token
else
3. TTP — B: b3 = m, keya

In the same way as Bob, Alice can also recover the protocol (protocol 6) if the fourth message
of the main protocol is not arriving. If the protocol has been aborted previously, the TTP sends
the abort token. Otherwise an affidavit is issued by the TTP, replacing keyp.

Protocol 6 Recovery_A protocol
1. A= TTP: ra1 = A,m1, ma2, m, keya
if aborted then
2. TTP — A: ras = abort_token
else
3. TTP — A: affidavit_token = affidavit, ra1, Stre(affidavit,ra1)

In the protocol, we have that the non-repudiation of origin evidence NRO corresponds to
(m1, keya) and the non-repudiation of receipt evidence NRR to (mq,mq, keyp) or affidavit_token.

When verifying fairness for this protocol, using the techniques described in the previous section,
we find that the protocol is neither fair for Alice nor for Bob.

The first problem is due to the fact that Bob can execute his recovery protocol immediately
after having received the first message. This has not been foreseen by the protocol: at this moment
Alice has not enough information to launch her recovery protocol as requested by the TTP and she
cannot receive the non-repudiation of receipt evidence for her message. Using our method, we easily
detected this flaw: the fact that Alice does not have the ability to execute the recovery protocol is
reflected in our specification by a guard that is not enabled.

In the second attack, compromising fairness for Bob, Alice launches the recovery protocol before
the abort protocol. Executing the protocols in this order makes it impossible for Bob to launch his
recovery protocol. Again, this attack is easily detected by our verification method: the guards of
the commands launching the abort protocol and the recovery protocol are both enabled. Hence,
Alice can choose the order of execution of the protocols and cheat Bob.

4.3 The KM non-repudiation protocol

The KM non-repudiation protocol overcomes the problems discovered in the two previously dis-
cussed protocols. When analyzing the protocol with MOCHA we did not find any errors. However,
we designed an interesting variant of the protocol where we removed the abort protocol. Removing
the abort protocol introduces a new flaw, that does not compromise fairness, as the previous shown
errors did, but the timeliness property. We will give a brief informal description of the variant using
the notation introduced above. The generated evidences are the following:

— EOO = SA(fEOOaBal7h(C))



EOR = Sp(feor, 4,1, h(c))
Sub = SA(fSubaBalaETTP(k))
- Eook = SA(fEOOk,B,lak)

- EORkJ = SB(fEORkaAalak)

- ReCX — SX(fReC)UYal)

- Conk = STTP(fConk,A,B,lak)

In the main protocol we first exchange a cipher of the message under key k against the receipt
for this cipher and go on exchanging the key k against a receipt for the key.

Protocol 7 Main protocol
1. A = B: feoo, fsu, B, !, ¢, Errp(k), EOO, Sub
2. B— A: fEOR,A,l, EOR
3. A—> B: onok,B,l,k', EOOk
4. B = A: fEORk,A;l, EORk

The recovery protocol can be launched if a problem in the main protocol occurs. The TTP sends
the required evidences to both Alice and Bob.

Protocol 8 Recovery protocol
1. X TTP: fRecX,fsub,Y,l,h(C),ETTp(k), Recx, Sub, EOR, EOO
2. TTP — A: fcony,, A, B, 1, k, Cong, EOR
3. TTP — B: fcon,; 4, B, 1, k, Cony,

We can show that this protocol is fair. However, timeliness is not respected as the formula
hereunder evaluates to false.

(ANO(stop 4 A (~(EOR A (EORy, V Cony)) — =(B)O(EOO A (EOOy V Cony))))

Imagine the following situation. Alice sends the first message to Bob. At this moment Alice can
only wait for message 2 to arrive. Bob, however can either stop the protocol or launch the recovery
protocol. In both cases fairness is guaranteed. If Bob waits some time before launching the recovery
protocol, Alice does not know whether Bob halted the protocol or whether she should wait for a
recovery. Unless Alice is waiting forever, Bob only needs to wait for Alice to quit the protocol and
launch the recovery. This attack is due to the fact that Alice has no strategy to finish the protocol
in a finite amount of time. This example emphasizes the importance of the timeliness property,
that is much less studied than fairness. Our formalism (cf formula 12) allows us to formally capture
this flaw.

4.4 The MK multi-party non-repudiation protocol

We also studied the multi-party non-repudiation protocol presented in [15]. In this protocol we have
one originator, Alice, that sends a message to several recipients. We studied the protocol with only
two recipients. In [15] a problem is discussed if the clocks of Alice and the TTP are not synchronized
and a solution to the synchronization problem is given. Using MOCHA we show that the protocol is
unfair for Alice if the synchronization problem is not handled correctly, as proposed in the original
paper.

To describe the protocol we have to add the following notation:



— X = &: multicast from entity X to the set of entities £.

— E¢(): a group encryption scheme F, that can be deciphered by each party P € €.

— B: the set of receiving entities.

— B': the set of receiving entities having sent an evidence of receipt for the cipher to Alice.

— [ = h(m,k): a label that in conjunction with the identity A uniquely identifies a protocol run

The generated evidences are the following.

— EOO = S4(feoo,B,1,t,h(c))

— EORZ = SBi (fEORa Aa lat’ h(C))

— Sub = SA(fSubaBalaETTP(k))

— EOO; = Sa(feoo,, B, 1, h(k))

— EOR; 1 = SB;(feory, 4,1, h(k))

— Recx = SX(fRecxaAaBal)

— Cony, = Strp(fcon, A, B, 1, h(k))
— Early = STTP(fEarIy, l)

— Set = Sa(fset, B',1)

In the main protocol Alice sends a cipher of the message to all potential receivers B. Several of
these receivers B' C B are sending a receipt for this cipher. Alice continues the protocol with the
receivers in B’ by sending them the key corresponding to the cipher of message 1.

Protocol 9 Main protocol
1. A = B: feoo, fsu, B,1,t,¢c, Errp(k), EOO, Sub
2. SfBi — A: fEOR,A,l, EOR;
where B € Band i € {1,...,|B|}
3. A= B feoo,, B, 1, Es(k),EOQO
4. BJ’ — A: fEORk,A,l, EORJ',]C
where B{ € B' and j € {1,...,|B'|}

The first message destined to all receivers in B includes the label, the cipher, as well as the key
k ciphered using the public key of the TTP (this information is used by the TTP in the case of
a recovery). Alice also sends a time-out ¢: a recovery may only be initiated after ¢. If one of the
receivers does not accept the time-out he may stop the protocol.

After having sent the cipher in message 1, Alice decides of the moment to continue the protocol.
All receipts arriving after this moment are not considered any more, without any risk for the
receivers of losing fairness.

Afterwords, when Alice sends the deciphering key it is crucial that only the recipients in B’
receive it. Therefore we need to use a cipher (this is not needed in an optimistic two-party protocol).
In order to cipher only once and to use multicasting, Alice uses a group encryption scheme, e.g. [9].

At each moment during the main protocol Alice and Bob have the possibility to launch the
recovery protocol with the TTP. The recipients in B’ launch a recovery if Alice does not multicast
the ciphered key; Alice initiates the recovery protocol, if not all recipients in B’ send a receipt for
the ciphered key.

Before ¢ (¢ is specified by Alice during the first message in the main protocol and it is resent
together with Alice’s signature during the recovery request) the recovery cannot be initiated. If
someone tries to execute a recovery before ¢, which is resent together with Alice’s signature during
the recovery request, the TTP sends a message to notify that the recovery cannot yet be initiated.



Protocol 10 Recovery protocol
1. X = TTP: frecy, fsubs 4, B, 1, t, h(c), Errp(k), Recx,Sub, EOO
if recovered then
2. TTP = X: fcon,s A, B',1, Egi (k, Srrr(k)), Cong
else if before t then
3. TTP — X: feany, Early
else
recovered=true
4. TTP < A: fser, B, 1, Set
TTP — A: fConk,A, B’, l, Cong,
6. TTP= B U {X}\{A}: feony» A, B’, l,Eg (k, Srrpr(k)), Cong

o

When the recovery protocol is initiated the first time after ¢, the TTP uses ftp get to fetch the
set B’ at Alice. For this purpose Alice maintains a read-only publicly accessible directory containing
the set of users in B’ and her signature on this set. If the directory is not accessible or empty the
TTP supposes B’ = ().

Now the T'TP sends to Alice the confirmation of receipt of the key that may be used to substitute
EOR; , for all i such that B; € B’. The TTP sends to all receiver B; € B’ the confirmation of the
key, that substitutes EOOy, as well as the signed key ciphered for B’ using a group encryption
scheme.

If a receiver B; ¢ B' wants to perform a recovery, after the recovery has already been performed
for the first time, the TTP uniquely identifies each protocol run by [ and A, the TTP sends to this
entity the same message as to each B; € B'. This message is however useless as k has been ciphered
for the set B’ and only informs the recipient that he does not belong to this set.

Using MOCHA we can show that this version of the protocol contains a subtle flaw, due to a
possible shift between the TTP’s clock and Alice’s clock, associated to a race in the transmissions.
In order to show this we verify that both B; and By can collaborate to break fairness for Alice.
Without loss of generality we suppose that it is By, who gets the advantage. The ATL-formula we
verify is the following :

(B, By, Com, TimeOut)) NRO; A —=((A)) NRR;

NRO; and NRR; represent the complete non-repudiation of origin, respectively receipt evidences
related to By. TimeOut is a player that controls the clocks of Alice and the TTP, and has to respect
fairness conditions on the triggering of the time-outs. The flawed scenario is as follows.

Suppose that the clock of the TTP indicates that the moment ¢ arrived whereas it is not yet
the case on the clock of Alice. By can initiate the recovery protocol without having sent the the
second message of the main protocol. The TTP will consult Alice’s public directory and will get
a set B’ not containing B;. If By now sends the second message of the main protocol before the
moment ¢ on the clock of Alice and before the third message of the recovery protocol, sent by the
TTP, arrives to Alice, Alice will include By in B'. B’ will be different from the one obtained by
the TTP. If Alice sends the third message of the main protocol, before receiving the message sent
by the TTP, By possesses the message m and the non-repudiation of origin evidence. If B; doesn’t
send the last message of the main protocol, Alice will receive from the TTP a non-repudiation of
receipt evidence for a set of recipients that only contains Bs. Hence, fairness is broken.

In order to avoid this flaw, Alice must stop taking part at the main protocol as soon as the TTP
consults her public directory. Using this additional constraint, we did not detect any additional
flaw.



5 Related Works

First efforts to apply formal methods to the verification of non-repudiation protocols have been
presented by Zhou et al. in [25]. SVO, a “BAN-like” belief logic has been used to study a non-
repudiation protocol. The aim of that study differs however from our study. In the context of
non-repudiation protocols, belief logics are useful to reason about the validity of the evidences.
They deal with questions of what a judge has to believe when Alice or Bob present their respective
evidences. Belief logics cannot be applied to verify properties such as fairness or timeliness. In
[20] Schneider uses CSP to prove the correctness of a non-repudiation protocol. These proofs are
not automated and require great efforts. Recently Boyd and Kearny [7] discussed a method using
specification animation to analyse fair exchange protocols using the Possum animation tool. The
tool gives the possibility to step through the protocol and examine the consequences of various
actions. Boyd et al. use a high level abstraction that only allows to find errors due to sending
messages out of order. However they succeed in finding errors even on these very simplified versions
of the protocols.

The most extensive studies of fair exchange protocols using formal methods have been presented
by Shmatikov and Mitchell in [21-23]. They use Mury, a finite-state model-checker to analyze a
fair exchange and two contract signing protocols. Their approach differs from our approach on
some major points. First, they use an intruder model. To model the fact that a party is malicious
and could try to cheat, they make that party share all its knowledge with the intruder. The same
intruder model has been used to analyse other security protocols. However we believe that there is
no need to use an intruder model. Therefore we directly model Alice as well as Bob to be potentially
malicious. The analysis using Mury is based on invariant checking. Channel resilience is obtained
by checking all invariants in final protocol states. Protocol runs where messages are lost do not
reach the final protocol states and are discarded. To achieve resilience in our model we need to
add fairness conditions. Invariant checking is sufficient to verify fairness as fairness is a monotonic
property: if fairness is broken at one point of the protocol, the protocol will remain unfair. Checking
only final states is thus sufficient to verify fairness. However with this approach timeliness cannot
be verified. Timeliness is a liveness property guaranteeing that we can always reach a final state in
the protocol. A protocol run, not respecting timeliness, would be discarded for the invariant check
as the protocol would not be finished. Note that Shmatikov et al. did not aim to verify timeliness.
In our model the timeliness property can easily be verified. As shown before timeliness is of crucial
importance for the security of a protocol and should be verified.

6 Conclusions and Future Works

We have shown that exchange protocols, due to their particularities, are best modeled as games.
First, the adversarial and cooperative behaviors that occur during the execution of those protocols
are naturally and precisely expressed in term of strategies. Second, the main requirements that an
exchange protocol must ensure are easily phrased as existence of strategies for the participating
entities to reach well defined goals. We have proposed to use the framework of alternating transition
systems and alternating-time temporal logic to formalize this view of exchange protocols as games.
The great expressive power of alternating temporal logic in this context has been illustrated. The
practical interest of the method has been demonstrated by analyzing several protocols. For the
analysis, we have used the tool MOCHA which is able to automatically verify alternating temporal
formula on alternating transition systems.

In the future, we will try to show that this approach is applicable to the analysis and verification
of more specific properties, such as abuse-freeness in contract signing protocols for instance. We



will also investigate the problem of strategy synthesis. Strategy synthesis is a very powerful tool in
protocol design and can also be used to synthesize attacks, showing the origin of flaws.
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