First practical results on reduced-round Keccak

Unaligned rebound attack

María Naya-Plasencia
INRIA Paris-Rocquencourt, France
Outline

 ► Introduction

 ► First Practical Results [NP-Röck-Meier11]
 • CP-Kernel: Differential paths.
 • (Near) collisions and distinguishers.
 • 2-rounds 2nd preimage.

 ► Unaligned rebound attack [Duc-Guo-Peyrin-Wei12]
 • Rebound attack.
 • Distinguisher on 8 rounds of Keccak-f.
INTRODUCTION
Security requirements of hash functions

- **Collision resistance**
 Finding two messages M and M' so that $H(M) = H(M')$ must be "hard".

- **Second preimage resistance**
 Given a message M and $H(M)$, finding another message M' so that $H(M) = H(M')$ must be "hard".

- **Preimage resistance**
 Given a hash H, finding a message M so that $H(M) = H$ must be "hard".
Security requirements of hash functions?

A strict definition of ”hard”:

- **Collision resistance**
 - Generic attack needs $2^{\ell_h/2}$ hash function calls \(\Rightarrow\) any attack requires at least as many hash function calls as the generic attack.

- **Second preimage resistance and preimage resistance**
 - Generic attack needs 2^{ℓ_h} hash function calls \(\Rightarrow\) any attack requires at least as many hash function calls as the generic attack.
Security requirements of hash functions

- Collision, (Second) Preimage resistance...

Is that all we ask of a hash function? **NO.**

- Other types of attacks: near-collisions, multicollisions, length extension attacks, distinguishers...
What Is a Distinguisher?

Good question...

In general, it is used for describing non-random properties:

- For example, finding an output or a family of outputs of the studied function with higher probability than for a random function.
Analysis of Building Blocks

Attacks on the hash functions not always possible, but we still value information about the security margin of a hash function. We can analyse reduced versions AND/OR the building blocks.

- Proofs based on ideal properties of compression functions or internal permutations ⇒ Study these components to check if the assumptions hold.
Differential cryptanalysis [Biham, Shamir90]

- Differential path = configuration of differences in the internal state of the compression function through time.

- Each differential path has a probability of being verified.
First Practical Results on Reduced-round Keccak

[NP-Röck-Meier, Indocrypt 2011]
Previous Analysis on **Keccak**

- **On building blocks.**
 - Zero sums up to 24 permutation rounds \(\Rightarrow\) Anne Canteaut’s talk.
 - Lathrop, Aumasson and Khovratovich: triangulation and cube attack results on 4 rounds.

- **Unmodified Reduced-round Hash Function Setting.**
 - Bernstein: 2nd preimages on 6,7,8 rounds, complexities \(2^{506}, 2^{507}, 2^{511.5}\) in time and \(2^{176}, 2^{320}, 2^{508}\) in memory.
First Practical Results

- 4-round hash function distinguisher.
- 3-round near-collision.
- 2-round collision.

- 2-round (second) preimages.

We have implemented all of them.
Transformation θ sums to each state-bit the parity of the weight of two columns \rightarrow Property of θ: when the weight of all the columns of a state is even, the transformation θ becomes the identity.

- For values and differences.

- Kernel: differences that are invariant through θ.

- We searched Double Kernels: verified for two rounds.
Building a double Kernel

start

add element in same column

add element in same column

add element in same column

found kernel
Building a double Kernel

- χ: 1 difference stays the same with proba 2^{-2}.

- Hash function setting: initial difference on message.

- Low weight differential paths for 3 rounds (6-6-6).

\[\Delta_1 \Rightarrow \Delta_2 \Rightarrow \Delta_3 \]

Probability of $2^{-2(6+6)} = 2^{-24}$.
Collision on 2 rounds (256)

- Best differential paths do not work as they impose a difference in hash value.

- Not possible with 3-slices in the kernel: we use 4-slice paths.

- With a probability of 2^{-32}, the paths final differences are not on the hash part.
Near-collision on 3 rounds (256)

- We can use the 3-slice kernel: 2 rounds with cost 2^{24}, 1 more free round: 227 bits still without difference (generic 2^{64}).

- We can control some bits in the last round, and then with cost 2^{44} we obtain collision on 247 bits (generic 2^{101}).
Distinguisher on 4 rounds (256)

- Consider the best path (6-6-6), and the neutral bits: bits of the message that won’t affect the path if they are modified.

- There are 81 neutral bits out of the 1088 bits of the message block.

- Once we find a message that verifies the 2-round path, we can find 2^{81} more.
Distinguisher on 4 rounds (256)

► Off-line complexity: 2^{25}.

► There are 18 positions in the hash that will stay constant for any value of the 81 bits.

► On-line complexity: 2^N, for a false alarm probability of 2^{-18*N}.

► Complexity $2^{25} + 2^N \approx 2^{25}$.
Preimage attack on 2 rounds

2^{33} in time and 2^{29} in memory.
Preimage attack on 2 rounds

\[\theta, \rho, \pi \]
Treating first 48 slices (16 groups of 3):

- We consider three consecutive slices: \(10 \times 3 - 2 = 28\) unknown variables.

- We can compute from \#2 the output of \(\theta\) on two slices: 10 known bits from the backward computation (\#3).

- \(2^{28-10} = 2^{18}\) remain.
Preimage attack on 2 rounds

- 8 × 6-slice groups: $2^{18+18-7-5} = 2^{24}$.
- 4 × 12-slice groups: $2^{24+24-16-5} = 2^{27}$.
- 2 × 24-slice groups: $2^{27+27-22-5} = 2^{27}$.
- 1 × 48-slice group: $2^{27+27-22-5} = 2^{27}$

(with 44 non-repeated variables).

- 16 remaining: 12-slice (2^{27}) and 4-slice (2^{20}) group.
- 12-s and 4-s: 15 common bits: $2^{27+20-15-5} = 2^{27}$.
- 16-s and 48-s: 44 common bits: $2^{27+27-44-5*2} = 1$.

19/31
Preimage attack on 2 rounds

- **Time complexity:** \(10 \times 2^{27} \times 2^2 \approx 2^{33}\).

- **Memory complexity:** \(4 \times 2^{27} = 2^{29}\).
Unaligned rebound attack

[Duc-Guo-Peyrin-Lei FSE 2012]
Simultaneous and independent work from ours.

Also look for low weight differential paths using Kernels (similar found).

Distinguishers by inverting one round.

Unaligned rebound attack: 8 rounds permutation distinguisher.
Rebound attack [Mendel et al.09]

- Used for efficiently finding solutions of a differential path.

- Find solutions for an expensive part of the path in a cheap way, fill in the rest probabilistically.

- Largely used for building distinguishers on compression functions (mostly AES-based).
We choose the differential path.

Inbound phase:

1. we find differences for the black bytes that verify the path with a meet-in-the-middle (probability=2^{-16}).
2. then, for each difference match, 2^{16} values make the inbound possible.

Outbound phase: we need 2^{24} inbound solutions.
Rebound attack [Mendel et al.09]

- Average cost of finding one solution for the inbound part $= 1$, but minimal cost needs to be paid (2^{16} in the example).

- As the remaining part of the path is verified with probability 2^{-24}, we obtain a solution for the whole path with cost 2^{24}.

- Generic cost in comparison: 2^{89}.
KECCAK has weak alignment: impossible to exploit truncated differentials or Super-Sboxes.

\[C = n_F + n_B + \frac{1}{p_{\text{match}}} \frac{1}{p_Fp_BN_{\text{match}}} + \frac{1}{p_Bp_F} \]

\[\Gamma_B^{out} \Gamma_F^{in} = \frac{1}{p_{\text{match}}} \frac{1}{p_Fp_BN_{\text{match}}} \]
Buckets and Balls

- **Keccak** has $64 \times 5 = 320$ sboxes. Match through the inbound possible ⇒ input active sboxes the same as the output active sboxes.
- Adapted buckets and balls problem ⇒ all the sboxes need to be active.
- How are the bits distributed in the sboxes? DDT for a fixed input difference has all possible output differences with same probability, but the number of possible output differences depends strongly on the Hamming weight of the input.
Forward Path

- Use one of the previous low weight differential paths (ex: 2 rounds, 2^{-24}).

- Invert one round → are all sboxes in the middle active? (ex: 2^{-6*2}, generates $2^{19-1.7}$ all-active-sbox inputs.)

- Add one or two rounds in the end.

- 64 equivalent paths by translation
 \[\Gamma_{in}^F = 2^{6+17.3} = 2^{23.3} \].
Backward Path

- Same technique \Rightarrow not enough paths.
- Second round: X columns active, 2 bits per column, paths with 1 or 0 active bits per sbox.

- Half of the bits active for good probability of all sboxes active.
- Enough paths for the inbound, but more paths, less probability. We need: $p_B \geq \frac{1}{p_F N_{match}}$.
- First round: they spread.
How do they compute complexities

- Incorrect to just take into account the average probability:

 - p_{match} increases with the hamming weight.

 - N_{match} decreases with the hamming weight.

- Computations for obtaining one solution take into account the hamming weight.
Unaligned Rebound attack [DGPW 12]

- 8-round permutation distinguisher of Keccak-f[1600], $2^{491.47}$ compared to $2^{1057.6}$.

- Assumptions on some subparts of the distinguisher have been verified independently with implementations.

- Distinguisher implemented on the 100-bit version.
Conclusions

- We presented the first practical results on the hash function reduced-round scenario of Keccak (4 out of 24).

- More rounds (Orr Dunkelman and Itai Dinur’s talks).

- We briefly described the unaligned rebound attacks applied up to 8 rounds of Keccak permutation.

- Keccak (aka SHA-3) is a secure hash function with a (very) big security margin.