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Abstract

We investigate the security difference between DSA and
Schnorr’s signature. The security of DSA can be reduced to
the problem: to find m ∈ Ω, ρ, θ ∈ Z∗

q such that H(m) =
ρ

(
(gρy)θ mod p

)
mod q, where Ω denotes the text space and

the message m is not restrained. Unlike DSA evaluates the
hash function only at the message m, Schnorr’s signature
adopts a self-feedback mode by evaluating the hash function
at (m, r, s). Thus its security becomes more robust.

1. Introduction

In 1984, ElGamal [2] proposed a famous cryptographic
mechanism, which can be used for both digital signatures
and encryption. The ElGamal mechanism gets its security
from the difficulty of calculating discrete logarithms in a
finite field. In the past two decades, many variations of the
ElGamal signature have been proposed, including DSA and
Schnorr’s signature [10]. Schneier [9] claimed that DSA
is not a derivative of the Schnorr’s signature, nor even of
ElGamal’s signature. All three are examples of the general
construction of discrete-logarithm-based digital signatures.
A question should then be raised. Are all the variants equally
secure?

Notice that there is a marked difference between many
variations of the ElGamal signature and Schnorr’s signature.
Now we only use DSA to illustrate this difference. See the
following table.

Verification

DSA r = (gH(m)s−1
yrs−1

mod p) mod q.
Schnorr’s signature r = H(m||gsy−r mod p)

Table 1. DSA and Schnorr’s signature

Clearly, the Schnorr’s signature evaluates the hash function
at the resulting signature (m, r, s) rather than DSA evaluates
it just at m.

In 1996, Vaudenay [12] introduced hidden collision at-
tacks against DSA based on forging public parameters. In
2005, Wang et al [14] presented a collision attack against the
hash function SHA-1. But the resulting texts m1, m2, satis-
fying SHA-1(m1) = SHA-1(m2), are usually restrained.

In this paper, we investigate the security difference be-
tween DSA and Schnorr’s signature. Our results show that
the security of DSA can be reduced to the problem, to
find a triple m ∈ Ω, ρ, θ ∈ Z∗

q such that H(m) =
ρ

(
(gρy)θ mod p

)
mod q, where Ω denotes the text space.

Compared with the common temporary key-only attack, to
find r, k ∈ Z∗

q such that r = (gk mod p) mod q, where
r ∈ R, R denotes the set of those legal r’s issued by the
signer using the same secret key x, the new attack is more
effective because of the big length gap between |p| (1024-
bit) and |q| (160-bit). If ρ (�= 1) is settled in advance, the
running time of the new attack is O(

√
q

|S(m)| ), where

S(m) def=
{
ĝtmodp : 0 < t ≤ q − 1, ĝ = gρymodp

}⋂
{

z + iq : 0 ≤ i ≤
[
p − z

q

]
, z = H(m)ρ−1modq, m ∈ Ω

}

But Schnorr’s signature is free of the new attack because it
uses a self-feedback mode. More precisely, it evaluates the
hash function at (m, r, s) rather than DSA evaluates it only
at the message m.

2. Description of DSA

The signature mechanism requires a hash function H :
{0, 1}∗ −→ Z∗

q for some integer q. The DSS explicitly
requires use of the Secure Hash Algorithm (SHA-1). It’s
universally believed that the security of DSA relies on two
distinct but related discrete logarithm problems. One is the
logarithm problem in Z∗

p . The other is the logarithm problem
in the cyclic subgroup of order q.

[Public key] p : 512-bit to 1024-bit prime. q : 160-bit
prime factor of p− 1. g : a base element of order q mod p.
y : = gx mod p.

[Private Key] x ∈ Z∗
q (a 160-bit number).

[Signing] (1) Select a random secret integer k ∈ Z∗
q .

(2) Compute r = (gk mod p) mod q, s = k−1(H(m) +
xr) mod q. (3) The signature for message m is the pair (r, s).

[Verifying] Accept it if and only if

(gH(m)s−1
yrs−1

mod p) mod q = r

where s−1 is computed in Z∗
q .
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3. Common attacks

It’s well-known that there are two common attacks against
DSA.

(1) Key-only attack against k or x. We know each signature
requires a new value of k, and the value must be chosen
randomly. If Eve ever recovers a k that Alice used to
sign a message, perhaps by exploiting some properties
of the random-number generator that generated k, she
can recover Alice’s private key x. If Eve ever gets two
messages signed using the same k, even if she doesn’t
know what it is, she can recover x. And with x, Eve
can generate undetectable forgeries of Alice’s signature.
In any implementation of the DSA, a good random-
number generator is essential to the system’s security.

(2) Collision attack against the hash function SHA-1 used
in DSA.

A complete description of “key-only attack against k” can
be specified as follows:

1. Given a signature (r, s) on a message m, find k such
that r = (gk mod p) mod q.

2. From k, recover the private key x = (ks −
H(m))/r mod q.

As for other attacks against DSA, we refer to [13], [12].

4. The attack against k versus the attack
against x

It should be stressed that there is a marked difference
between the attack against the temporary k and the secret
key x. Actually, the attack against k does surpass the attack
against x.

The attack against k aims at finding r ∈ R, k ∈ Z∗
q such

that
r = (gk mod p) mod q (1)

where R denotes the set of those legal r’s issued by the
signer using the same secret key x. In nature, it is equivalent
to

gk mod p =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r
r + q
...

r +
[

p−r
q

]
q

Compared with the common key-only attack, to find x ∈ Z∗
q

such that
y = gx mod p (2)

the attack against k is more effective because of the big
length gap between |p| (1024-bit) and |q| (160-bit). Roughly
speaking, the length gap of two modulus results in an
increase of the number of solutions to Eq.(1). The running
time of the attack against x using Pollard’s rho algorithm is
O(

√
q). However, the running time of the attack against k

is O(
√

q
|S(r)|) using Pollard’s rho algorithm for a fixed r,

where

S(r)
def=

{
gt mod p : 0 < t ≤ q − 1

}⋂

{
r + iq : 0 ≤ i ≤

[
p − r

q

]}

In fact, without loss of generality, we assume that the
|S(r)| solutions to Eq.(1) are uniformly distributed in the
interval [0, q−1]. If we equally divide the interval into |S(r)|
intervals, then there is a unique solution to Eq.(1) in each
interval, which is of the length q

|S(r)| .
Considering r may be chosen from those legal signatures

issued by the signer using the same secret key x, the attack
against k is more effective. The running time of the attack
against k using Pollard’s rho algorithm is O(

√
q

|S(r)| ), where

S(r) def=
{
gt mod p : 0 < t ≤ q − 1

}⋂

{
r + iq : 0 ≤ i ≤

[
p − r

q

]
, r ∈ R

}

5. An attack against DSA based on the length
gap of two modulus

5.1. Basic idea

By the verification in DSA, we have:

r =
(
gH(m)s−1

yrs−1
mod p

)
mod q

Suppose that r =
(
gαyβ mod p

)
mod q

and set
⎧⎨
⎩

(gαyβ)s = gH(m)y(gαyβ mod p) mod p
αs = H(m) mod q
βs = (gαyβ mod p) mod q

Thus, H(m) = αβ−1
(
gαyβ mod p

)
mod q.

Denote the text space by Ω. To launch an attack against
DSA, it suffices to find α, β ∈ Z∗

q and m ∈ Ω such that

H(m) = αβ−1
(
gαyβ mod p

)
mod q (3)

and compute

r =
(
gαyβ mod p

)
mod q, s = rβ−1 mod q

The resulting signature is (m, r, s).
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5.2. The new attack versus the key-only attack
against k

We claim that Eq.(3) is less intractable than Eq.(1). In
fact, the Eq.(3) is reduced to

H(m) = ρ
(
(gρy)β mod p

)
mod q

if we take α = ρβ mod q and settle ρ (�= 1) in advance.
Since the order of g relative to p is q and y = gx mod p, the
above equation can be written as

H(m) = ρ
(
ĝβ mod p

)
mod q

where ĝ = gρy mod p, Ordp(ĝ) = q. Thus we consider the
following problem, to find θ ∈ Z∗

q and m ∈ Ω, given ρ, p, q,
such that

H(m)ρ−1 =
(
ĝθ mod p

)
mod q (4)

For a fixed ρ ∈ Z∗
q , we define the following set

S(m) def=
{
ĝt mod p : 0 < t ≤ q − 1, ĝ = gρy mod p

}⋂
{

z + iq : 0 ≤ i ≤
[
p − z

q

]
, z = H(m)ρ−1 mod q, m ∈ Ω

}

Notice that Ordp(ĝ) = q = Ordp(g), thus{
ĝt mod p : 0 < t ≤ q − 1

}
=

{
gt mod p : 0 < t ≤ q − 1

}
Recall that

S(r) =
{
gt modp :, 0 < t ≤ q − 1

}
⋂ {

r + iq : 0 ≤ i ≤
[
p − r

q

]
, r ∈ R

}

and the set R consists of those legal r’s issued by the signer
using the same secret key x, we have

|S(m)| ≥ |S(r)|
because it’s always reasonable to assume |Ω| >> |R| in
practice. It’s easy to find that the number of solutions to
Eq.(4) is |S(m)|. Therefore, the running time of this collision
attack is O(

√
q

|S(m)| ).

5.3. Further discussion

We know the collision attack against the hash function
SHA-1 [14] is an excellent work in recent. But the resulting
texts m1, m2 satisfying SHA-1(m1) = SHA-1(m2) are
usually restrained. The key-only attack against k is of little
efficiency because r is restrained. However, the new attack
is of more practical significance since the text m is not
restrained.

The cardinal of S(m) (see the above definition) is of great
importance in practice. Regretfully, it seems that it is difficult

to make a positive or negative theoretical analysis of it. In
the collision attack, we can also define

S(m,ρ) def=
{
(gρy)t modp : 0 < t ≤ q − 1, ρ ∈ Z∗

q

}
⋂

{z + iq : 0 ≤ i ≤
[
p − z

q

]
,

z = H(m)ρ−1 modq, ρ ∈ Z∗
q , m ∈ Ω}

if we do not fix ρ in advance. Under the circumstance,
the number of solutions to the collision problem in DSA
is |S(m,ρ)|.

6. Schnorr’s signature and its self-feedback
mode

Historically, many researchers believed that DSA was very
similar to the Schnorr’s signature. It consequently led to
a lawsuit [3]. In this section, we will definitely point out
that Schnorr’s signature is free of the new attack because it
uses a self-feedback mode. An adversary cannot disassemble
computational assignments for finding similar collisions. In
this regard, Schnorr’s signature is more robust than DSA.

6.1. Description

It’s well known that DSA is related to Schnorr’s signature.
The signature scheme employs a subgroup of order q in Z∗

p ,
where p is a large prime number. It also requires a hash
function H : {0, 1}∗ −→ Zq .

[Setup] Public key: p, a large prime. q, a large prime factor
of p−1. g, a base element of order q mod p. y = gx mod p.
Private Key: x ∈ Z∗

q .
[Signing] (1) Select a random secret integer k ∈ Z∗

q . (2)
Compute e = gk mod p, r = H(m||e), s = xr + k mod q.
(3) The signature for message m is the pair (r, s).

[Verifying] Accept it if and only if

H(m||gsy−r mod p) = r

6.2. An advantage

A marked difference between DSA and Schnorr’s signa-
ture is that the resulting signature (r, s) in the latter should
be input into the hash function H(·) for verification. But in
DSA the hash function H(·) evaluates only at the message
m. In other words, Schnorr’s signature uses a self-feedback
mode. Thus an adversary is forced to search for a digest r
so that

H(m||gsy−r mod p) = r for given p, g, y,H(·) (5)

According to some general cryptographic assumptions on
H(·), the problem is very intractable.

The challenge in (5) is introduced in Schnorr’s signature.
In the signature scheme, the resulting r is tightly bound
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with the given message m and another signature datum s.
An adversary cannot disassemble computational assignments
because the output and input of H(·) should be generated
synchronously. Regretfully, neither r nor s in DSA is bound
to m in this way. In short, Schnorr’s signature is more closely
related to DLP than DSA [7], [8], [11], [6].

7. Conclusion

The exponent q has a comparatively short length (160-
bit), while the modulus p is of 1024-bit length. In 2004,
Koblitz and Menezes [4] remarked that:

The reductionist security failure is a much more
serious matter than any of the issues that the anti-
DSA people raised in 1992 [1]. It is also surprising
that apparently none of the NSA cryptographers
noticed this possible objection to DSA. If they
had, they could have easily fixed it (without any
significant loss of efficiency) by having the signer
evaluate the hash function at (m, r) rather than
just at m.

Intuitively, if the signer evaluates the hash function at (m, r)
rather than just at m, the security of DSA becomes more
robust.

Acknowledgement

Supported by National Natural Science Foundation of
China (Project 60873227), Cryptasc Project (Institute for
the encouragement of Scientific Research and Innovation of
Brussels), Innovation Program of Shanghai Municipal Edu-
cation Commission, Shanghai Leading Academic Discipline
Project (J50101), Key Disciplines of Shanghai Municipality
(S30104).

References

[1] D. Branstad, M. Smid. Responses to comments on the NIST
proposed digital signature standard, In: Advances in Cryptol-
ogy CRYPTO’92, Lectures Notes in Computer Science 740,
pp. 76-88. Springer-Verlag, 1992.

[2] T. ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms, In: Advances in Cryp-
tology CRYPTO’84, Lectures Notes in Computer Science 196,
pp. 10-18. Springer-Verlag, 1984.

[3] http://www.ibiblio.org/patents/txt/crypt.txt

[4] N. Koblitz, A. Menezes. Another look at provable security,
Journal of Cryptology, Vol. 20, 1, pp. 3-37. Springer-Verlag,
2007.

[5] A. Menezes, P. Oorschot, S. Vanstone. Handbook of Applied
Cryptography, CRC Press, 1996.

[6] P. Paillier, D. Vergnaud. Discrete-log-based signatures may
not be equivalent to discrete log. In: Advances in Cryptology
ASIACRYPT 2005, Lectures Notes in Computer Science 3788,
pp. 1-20. Springer-Verlag, 2005.

[7] D. Pointcheval, J. Stern. Security proofs for signature
schemes, In: Advances in Cryptology EUROCRYPT’96, Lec-
tures Notes in Computer Science 1070, pp. 387-398. Springer-
Verlag, 1996.

[8] D. Pointcheval, J. Stern. Security Arguments for Digital
Signatures and Blind Signatures. Journal of Cryptology, vol.
13, pp. pp. 361-396. Springer-Verlag, 2000.

[9] B. Schneier. Applied Cryptography Protocols, algorithm, and
source code in C (Second Edition), John Wiley & Sons, Inc.
1996.

[10] C. Schnorr. Efficient signature generation for smart cards.
In: Advances in Cryptology CRYPTO’89, Lectures Notes in
Computer Science 435. pp. 239-252. Springer-Verlag, 1989.

[11] V. Shoup. Lower Bounds for Discrete Logarithms and Related
Problems. In: Advances in Cryptology EUROCRYPT’97, Kon-
stanz, Germany, Lectures Notes in Computer Science 1233,
pp. 256-266, Springer-Verlag, 1997.

[12] S. Vaudenay. Hidden Collisions on DSS. In: Advances in
Cryptology CRYPTO’96, Santa Barbara, California, U.S.A.,
Lectures Notes in Computer Science 1109, pp. 83-88,
Springer-Verlag, 1996.

[13] S. Vaudenay. The Security of DSA and ECDSA–
Bypassing the Standard Elliptic Curve Certification Scheme,
http://lasecwww.epfl.ch/pub/lasec/doc/Vau03a.ps.

[14] X. Wang, Y. Yin, H. Yu. Finding Collisions in the Full SHA-
1. In: Advances in Cryptology CRYPTO 2005, Lectures Notes
in Computer Science 3621, pp. 17-36. Springer-Verlag, 2005.

204204


