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About Dow…

• Leading science and technology 
company

• 43 000 employees (5 600 in Global 
R&D)

• 2005 Record Sales of  $46.3 billion
• Customers in more than 180 countries 
• Wide range of markets: food, 

transportation, health and medicine, 
personal and home care, and building 
and construction. 

• Global R&D:
– Business R&D

• dedicated to an operating segment
– Core R&D

• supports all operating segments 
and functions

* 2005 Corporate Report
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Before 1990

• Fundamental modelling
– a priori knowledge of processes
– years of research

• Statistical modelling and data analysis 
(chemometrics)
– availability of clean data
– low-dimensional 
– linearizable
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After 1990

• Highly nonlinear processes 
• High-dimensional data
• Noisy data
• Fast development of models
• New set of tools

– Neural Networks 
– Genetic Algorithms
– Genetic Programming 
– Support Vector Machines
– Particle Swarm Optimization



EMJ/March 30 ,2007 University of Brussels Page 5

Computational Intelligence at Dow

Application Domains Examples 

Material Design 
• Color Matching 
• Appearance Engineering 
• Polymer Design 
• Synthetic Leather 

Materials Research 

• Diverse Chemical Library Selection 
• Fundamental Model Building 
• Reaction Kinetics Modeling 
• Combi-Chem Catalyst Exploration 
• Combi-Chem Data Analysis 

Production Design • Nonlinear DOE 
• Bioreactor Optimization 

Production Monitoring
& Analysis 

• Critical Parameter Monitoring 
• Calibration Variable Selection 
• Intelligent Alarm Processing 
• Emulator for Online Optimization 
• Emissions Monitoring 

Business Modeling 
• Diffusion of Innovation 
• Hydrocarbon Trading & Energy Systems Optimization
• Scheduling Heuristics 
• Plant Capacity Drivers 
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Specific Examples

• Inferential Sensors (NN, SVM, GP)
– NOx-Emissions predictions 
– Biomass concentration prediction in batch 

fermentation processes
– Distillation impurity estimation

• Fault and Drift Detection of inline GC
• Knowledge discovery

– New rheological insights
• Optimization 

– Multi-objective of plastic properties
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Inferential Sensor

Process inputs 
(Temp, Pressure)

Quality output 
(NOx,C3,Biomass)

grab sample

Quality 
prediction

lab test

?

Key objective:
To predict 

difficult-to-measure 
parameters 

(NOx, Hg, Melt Index) 
from 

easy-to-measure data 
(temperature, pressure, 

flow, etc.)

time delaycontrol
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Inferential Sensor Development

Nonlinear sensitivity analysis
Time delay influence

Analytical Neural Networks

Outliers detection
Condensed data set generation

Support Vector Machines

Symbolic regression
Functional solutions selection

Genetic Programming

Full data set

Reduced 
inputs
data

Condensed 
data 

Y = f(x)
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Stacked Analytical Neural Networks
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• Fast development
• Diverse subnet consensus 

indicator of model output 
quality

• Allows explicit calculations of 
input/output sensitivity

• Can handle time-delayed 
inputs by convolution 
functions

• Gives more reliable 
estimates based on multiple 
models statistics
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Nonlinear Sensitivity Analysis

• Iteratively eliminate input variables 
• Sensitivity of a variable is the impact to the 

quality of the total model
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Support Vector Machines

1+=iy

1−=iy optimal 
hyperplane

w

• Solid theoretical basis => 
Statistical Learning Theory

• Model building is based on 
global optimum

• Explicit control over model 
complexity

• ad hoc Kernel selection
• Complex theory
• No commercial software
• Computationally intensive

Key to robust modeling

Support vector

Only 3 support vectors needed
to define optimal  hyperplane



EMJ/March 30 ,2007 University of Brussels Page 12

Kernel functions in SVM



EMJ/March 30 ,2007 University of Brussels Page 13

Outlier detection using SVM

• Support vectors are 
‘unusual’ data points

• Set of sv’s contain 
also the outliers

• Inversed reasoning 
can be used for data 
compression
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Genetic Programming

How does it work?
• Based on artificial evolution of millions of 

potential nonlinear functions 
• Start with population of basic operators 

and functions:
+  - /  * sqrt(x) exp(x) sin(x) xa

• Let new functions (offspring) “evolve”
through mutation, cross-over, etc.

• Next generation => survival of the fittest

What is the result?
• Many (thousands) possible solutions with 

different levels of complexity
• The final result is an explicit nonlinear 

function  
y = 7.05 - 0.024*((x2 + x3/x4))

Example of GP-generated function
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NOx-Emissions via NN

• Environmental laws limits amount yearly 
emitted by a production site.

• US/EU requires an accurate estimate of the 
emissions.

• The hardware solution CEMS available at a 
cost of $300 000 per unit.

• May use predictive model
– accuracy
– yearly audited

• Commercial system based on NN
• Dow-internally developed model (based on 

statistical model)
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Training & Performance 

Commercial Inferential sensor

Model Neural network with 14 inputs GP-model  with 5 inputs

Maintenance Complete model re-training
done by vendor.

Parameter fit in statistical software

On-line 
implementation

Requires specialized run-time
licenses

Direct implementation in control

RATA 2003

RATA 2004

1.8 % 1.3 %

5.8 % 3.6 %
• Better accuracy
• Low maintenance cost
• No software licenses
• Estimated savings ~ $100M/sensor
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[Biomass] via GP-ensemble

• Bacterial fermentation processes in batch reactors
• Need to know when to stop growth-phase and go 

into production phase
• Biomass-concentration indicates when enough 

organisms are present for production
• Concentrations are measured by weighing the dried 

biomass taken from samples every 2-4 hours
• Online hardware equipment (e.g. optical density) is 

very expensive ($100 000 per unit)
• Typical difficulties for modeling

– High batch-to-batch variation 
– New cultures requires retraining
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Experimental Data

• Input variables: 18 process variables
• Output variable: measured OD 

(proportional to biomass 
concentration)

• 8 batches for training
• 3 batches for validation
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Performance of soft sensor

Robust w.r.t
batch-to-batch 

variation

Accuracy

Detection of 
inconsistencies
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Impact: $ and quality

Pseudo Real Time

(seconds, minutes)

Medium Time 

(hours)

Low Time 

(daily/weekly)

Multiple Instruments

(capital cost) 

Temperature

Flow

Pressure

Hardware analyzer 1
Lab measurements

Lab measurementsInferential 
Sensor

Hardware analyzer 2

Hardware analyzer 3

Calibration Inferential 
Sensor

C
al
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• Improved controllability
• Fewer lab measurements Lower capital costs
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C3-estimation using GP

• Raw material (long-chain polymers) are broken in 
crackers under high T and high P.

• Shorter chain polymers needed for other processes

• Need estimation of fraction of C3 
• Measured by Gas-chromatograph
• Problems: GC-measurement frequently unavailable 

(drifting, faulty measurements)

C8 (octane)

C3 (propane) C2 (ethane) C4 (buthane)
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GP model development
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• Model 3 (GP selection based on x1 to x7, x9 to x23):

R2 = 0.910
RMSE = 0.0497

• Model 1 (GP selection based on x1 to x23) :

R2 = 0.941
RMSE = 0.0404 

• Model 2 (GP selection based on x1 to x23 and x8-x11)

R2 = 0.941
RMSE = 0.0409

• Model 4 (GP selection based on x1 to x23, x8-x11, and log y)

R2 = 0.942
RMSE = 0.0406

Strongly supported by the HC engineers
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Online Performance
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Avg error = 0.02

• In operation since May 2004

• In parallel with GC

When GC is down, we get a good 
prediction from the models
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Fault & Drift Detection (1)

Detect abnormal process 
conditions
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Fault & Drift Detection (2)
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Fault & Drift Detection (3)
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Knowledge discovery via GP

Empirical Models
• Measure MWD indirectly
• Moments: Mw, Mn and Mw/Mn
• rheology = f(moments)
• Only valid for limited distribution 

parameter ranges

Fundamental Models
• Theoretically derived
• MWD theoretically determined
• rheology = f(MWD)
• Valid for large ranges
• However, MWD not known in 

practice

Understanding the complex connection between molecular structure and 
rheological properties is key to new product development. (MWD ↔ rheology)

Desire: rheology = f(moments), but also valid for large ranges
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Virtual Experimental Design

• Use fundamental models to generate 
rheology data (output)
– Set I: Monodisperse systems
– Set II: Polydisperse systems - unimodal
– Set III: Polydisperse systems – bimodal

• Derive moments data from theoretical 
distributions (inputs)

• Use GP to develop large range model 
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Performance New Model
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Particle Swarm Optimization

Global best

Local best

Local best

• An efficient technique to find the global optimum for 
model inversion and non-linear parameter estimation

At each time step t
For each particle i

Update the position change (velocity)

Then move

+⋅=+ )( ()1( tVtV ii χ ))()(( )1,0(1 tXtPrandc ii −⋅⋅

))()(()1,0(2 tXtPrandc ig −⋅⋅+

)1()()1( ++=+ tVtXtX iii

χ,, 21 cc
Note: - stochastic component 

default values (2.05, 2.05, 0.73)- parameters
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Optimized color spectrum of plastics
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ColourPro Formulation Optimization

Frequency Swarm
GA

Multiple-objective PSO 
with 15 variables

PSO and GA
convergence

Real-time optimization
in 2-3 seconds
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Requirements for success

• Accuracy of prediction
• Robustness in the production environment where 

the quality of the input data is not guaranteed
• Extrapolation (generalization) outside the known 

operating conditions
• Self-assessment capabilities to warn operators of 

low confidence of the model
• Fault and drift detection of hardware sensors 

(analytical instruments)
• Interpretability of the model by the process 

engineers
• Ease of implementation in the current control 

systems
• Cheap and fast to development and maintain
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Key messages to take home

• (Chemical) Industry needs a broad toolset 
(no “silver bullet” technique)
– different techniques are complementary
– hybrid solutions are the most effective

• Accuracy of a model is not the only 
requirement for successful applications
– interpretability
– ease of implementation
– low cost of maintenance
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External Publications of Applications

Application Initial data size Reduced data size Model structure Reference

Inferential sensors

Interface level prediction (25 inputs x 6500 data 
pts)

(2 inputs x 2000 data pts) 3 models, 2 inputs Kordon and Smits, 2001

Interface level prediction (28 inputs x 2850 data 
pts)

(5 inputs x 2850 data pts) One model, 3 inputs Kalos et al, 2003

Emissions prediction (8 inputs x 251 data pts) (4 inputs x 34 data pts) Two models, 4 inputs Kordon et al, 2003b

Biomass prediction (10 inputs x 705 data pts) (10 inputs x 705 data pts) 9 models ens, 2-3 inputs Jordaan et al , 2004

Propylene prediction (23 inputs x 6900 data 
pts)

(7 inputs x 6900 data pts) 4 models ens, 2-3 inputs Jordaan et al , 2004

Emulators

Chemical reactor (10 inputs x 320 data pts) (10 inputs x 320 data pts) 5 models, 8 inputs Kordon et al, 2003a

Accelerated modeling

Structure-property (5 inputs x 32 data pts) (5 inputs x 32 data pts) One model,4 inputs Kordon et al, 2002

Structure-property (9 inputs x 24 data pts) (9 inputs x 24 data pts) 7 models , 3 -5 inputs Kordon and Lue, 2004

Structure-property (4 inputs x 289 data pts) one model, 3 inputs Jordaan et al. 2006

Linearized transforms

Chemical reactor model (4 inputs x 19 data pts) (4 inputs x 19 data pts) 3 transforms Castillo et al, 2002
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