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About Dow...

Leading science and technology
company

43 000 employees (5 600 in Global
R&D)

2005 Record Sales of $46.3 billion
Customers in more than 180 countries

Wide range of markets: food,
transportation, health and medicine,
personal and home care, and building
and construction.

Global R&D:
— Business R&D

« dedicated to an operating segment
— Core R&D

» supports all operating segments
and functions

<>

2005 Sales by Operating Segment

(dollars in millions) $3,364

$7,713
Performance Plastics

$11,815

Performance Chemicals

Agricultural Sciences

Plastics

Chemicals

$11,388
Hydrocarbons & Energy

$5,660

Unallocated & Other

$306

$6,061

2005 Sales by Geographic Area

(dollars in millions)

$17,524

North America

Europe

$16,624

Rest of the World

$12,159

University of Brussels

* 2005 Corporate Report
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Before 1990

* Fundamental modelling
— a priori knowledge of processes
— years of research
» Statistical modelling and data analysis
(chemometrics)
— availability of clean data
— low-dimensional
— linearizable
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After 1990

Highly nonlinear processes
* High-dimensional data
Noisy data

« Fast development of models

* New set of tools
— Neural Networks
— Genetic Algorithms
— Genetic Programming
— Support Vector Machines
— Particle Swarm Optimization
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Computational Intelligence at Dow <>

Application Domains

Examples

Material Design

Color Matching
Appearance Engineering
Polymer Design
Synthetic Leather

Materials Research

Diverse Chemical Library Selection
Fundamental Model Building
Reaction Kinetics Modeling
Combi-Chem Catalyst Exploration
Combi-Chem Data Analysis

Production Design

e Nonlinear DOE
e Bioreactor Optimization

Production Monitoring
& Analysis

Critical Parameter Monitoring
Calibration Variable Selection
Intelligent Alarm Processing
Emulator for Online Optimization
Emissions Monitoring

Business Modeling

Diffusion of Innovation

Hydrocarbon Trading & Energy Systems Optimization

Scheduling Heuristics
Plant Capacity Drivers
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SEecific ExamEIes

Inferential Sensors (NN, SVM, GP)

— NOx-Emissions predictions

— Biomass concentration prediction in batch
fermentation processes

— Distillation impurity estimation
Fault and Drift Detection of inline GC

Knowledge discovery

— New rheological insights
Optimization

— Multi-objective of plastic properties
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Inferential Sensor

Process inputs
(Temp, Pressure)

EMJ/March 30,2007

control

<>

~ Quality output

lab test

(NOx,C3,Biomass)

Y~

Quality
prediction

University of Brussels

time delay

/ Key objective: \

To predict
difficult-to-measure
parameters
(NOx, Hg, Melt Index)
from
easy-to-measure data
(temperature, pressure,

flow, etc.)
. 4
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Inferential Sensor Development

Full data set

v

Nonlinear sensitivity analysis
Time delay influence

Analytical Neural Networks

%

Reduced
inputs
data

Outliers detection
Condensed data set generation

Support Vector Machines

Condensed
data

v

Symbolic regression
Functional solutions selection

Genetic Programming

University of Brussels
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Stacked Analytical Neural Networks

« Fast development

« Diverse subnet consensus
indicator of model output
quality

» Allows explicit calculations of
input/output sensitivity

« Can handle time-delayed
inputs by convolution
functions

 (Gives more reliable
estimates based on multiple
models statistics

16O
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Nonlinear Sensitivitx Analxsis

* |teratively eliminate input variables

» Sensitivity of a variable is the impact to the
quality of the total model

Sequence of inputs elimination C/212A may 30NN
. . . . 40
30
5
20
| 10

Il BT s S . b
15 20

Inout runroer
o

20 -

25 - b -60

5 10 15 20
Number of eliminated inputs
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Support Vector Machines >

Only 3 support vectors needed
A to define optimal hyperplane

 Solid theoretical basis =>
Statistical Learning Theory

» Model building is based on
global optimum

 Explicit control over model
complexity

« ad hoc Kernel selection

« Complex theory

 No commercial software

« Computationally intensive

optimal
hyperplane
>

Support vector

‘ Key to robust modeling
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Kernel functions in SVM

*x=(0,0) x=(0,0.25) x=(0,0.5) x=(0,0.75)

e

x=(0.25,0) x=(0.25,0.25) x=(0.25,0.5) x=(0.25,0.75)

x=(0.5,0) x=(0.5,0.25) x=(0.5,0.5) x=(0.5,0.75)

B R S R

x=(0.75,0) x=(0.75,0.25) x=(0.75,0.5) x=(0.75,0.75) x=(0.75,1)

e

x=(1,0.25) x=(1,0.5) x=(1,0.75)
g . L AL

RBF Kernel with ¢=0.2
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Outlier detection using SVM

« Support vectors are
‘unusual’ data points

 Set of sv’s contain
also the outliers

* |Inversed reasoning
can be used for data
compression
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Genetic Programming <>

How does it work?

* Based on artificial evolution of millions of
potential nonlinear functions

o Start with population of basic operators
and functions:

+ - [ *sqrt(x) exp(x) sin(x) x2

* Let new functions (offspring) “evolve”
through mutation, cross-over, etc.

* Next generation => survival of the fittest

What is the result?

« Many (thousands) possible solutions with
different levels of complexity

Example of GP-generated function ] * The final result is an explicit nonlinear

function

y =7.05 - 0.024*((x2 + x3/x4))
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NOx-Emissions viaNN__ ~F>

NOx-Emissions via NN

* Environmental laws limits amount yearly
emitted by a production site.

 US/EU requires an accurate estimate of the
emissions.

 The hardware solution CEMS available at a
cost of $300 000 per unit.

 May use predictive model
— accuracy
— yearly audited

« Commercial system based on NN

* Dow-internally developed model (based on
statistical model)
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Training & Performance

Commercial Inferential sensor
Model Neural network with 14 inputs GP-model with 5 inputs
Maintenance Complete model re-training Parameter fit in statistical software
done by vendor.
On-line Requires specialized run-time Direct implementation in control
Implementation |icenses

RATA 2003 1.8% 1.3%

RATA 2004 5.8 % 3.6 %

» Better accuracy
* Low maintenance cost

* No software licenses

« Estimated savings ~ $100M/sensor
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[Biomass] via GP-ensemble >

« Bacterial fermentation processes in batch reactors

* Need to know when to stop growth-phase and go
Into production phase

« Biomass-concentration indicates when enough
organisms are present for production

« Concentrations are measured by weighing the dried
biomass taken from samples every 2-4 hours

Online hardware equipment (e.g. optical density) is
very expensive ($100 000 per unit)
Typical difficulties for modeling

— High batch-to-batch variation
— New cultures requires retraining
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EerrimentaI Data T

 Input variables: 18 process variables

* QOutput variable: measured OD
(proportional to biomass
concentration)

8 batches for training
3 batches for validation

EMJ/March 30,2007 University of Brussels Page 18



Performance of soft sensor ) Dow 2

—— QOhbsemnved OD
a) Performance of Ensemble
350 3 | ---- Predicted OD

qI—ITraininlg Elatcht'as I I pa— TesiBaiches —wl

200+ =
RObUSt Wrt 150 W] m |:|:|Iml |:|:|E
batch-to-batch S Lo il
variation y
50
|:| | | |
200 300 400 500 GO0 700 300 00 1000
Sample Mumber
(b} Accuracy of the Ensemble
EI:I I I I I I I I I I I
Accuracy ;& ’ 15% Error Bound
= ;
;
Detection of = .
inconsistencies

0 100 200 300 400 500 600 700 800 900 1000
Sample Mumber
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Impact: $ and quality

Pseudo Real Time Medium Time Low Time Multiple Instruments
(seconds, minutes) (hours) (daily/weekly) (capital cost)
— Temperature — Hardware analyzer 1
- Flow Lab measurements
: c
— Pressure 2
o
Qo
|, Inferential Lab measurements
Sensor \
t Calibration Inferential |
Sensor

Lower capital costs j

* Improved controllability
* Fewer lab measurements
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C3-estimation using GP

« Raw material (long-chain polymers) are broken in
crackers under high T and high P.

/\/\/\/ C, (octane)

« Shorter chain polymers needed for other processes

N N

C, (propane) C, (ethane) C, (buthane)

* Need estimation of fraction of C3
« Measured by Gas-chromatograph

* Problems: GC-measurement frequently unavailable
(drifting, faulty measurements)
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X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X14
X15
X16
X17
X18
X19
X20
X21
X22
X23

EMJ/March 30,2007

GP model develogment

* Model 1 (GP selection based on x1 to x23) :

2
—0.004339 — 0.002665( Xe ) R? = 0.941

_ RMSE = 0.0404
X8 Xll

* Model 2 (GP selection based on x1 to x23 and x8-x11)

Xt ox.2 R? = 0.941
~0.02352+1.2697-10°° f*)(”j RMSE = 0.0409
4

Strongly supported by the HC engineers
* Model 3 (GP selection based on x1 to x7, x9 to x23):

X Xo X" | Re=0910
—0.09153+1.6187-1010[ > Xg ZlJ RMSE = 0.0497
4

* Model 4 (GP selection based on x1 to x23, x8-x11, and log y)

VX —Xg R? = 0.942
exp| 2.022-88.7054

RMSE = 0.0406
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Online Performance

* In operation since May 2004

* In parallel with GC

Selected models

0.5 | | | | |
| | | Prediction error
—————— e eeeesies----=- upper limit 1
Good long-term performance | — lower limit

Avg error=0.02 | i

02 R o R i
01 F------N_ \---------- o R R, }
,,,,,,,,, | W A -

Om § vll"| |||| | |||‘L il il i |'||'||||' M"” I‘II||||||' I|‘||| | i ||!\ ! i
o1 5 —
0.2 .

When GC is down, we get agood - R -
prediction from the models | | |
| | | |
08/25 09/04 09/14 09/24 10/04 10/14 10/24
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Fault & Drift Detection (1) <>

{a} model Prediction an Testing Data (RMSEP = 0.0781; rRE=0. 985

= Dhsewed‘f
----- Fredicted v :
21+ Model Disagreement Indicator -+ - LR .

(b Model Prediction when E'-.-'Eﬁ.-' ey Inputis Increased by 15%
3

= F'redlc:ted by
+  Model Disadgreement
2 Indicator

MetoprBogpmmens, o T
|:| / - i

1] a00 ] 1400 2000
5 Humbers

Detect abnormal process
conditions
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1.8

1.6

1.4

1.2

0.8

0.6

0.4

Observed Y

— Predicted Y
Model Disagreement Indicator

"
({

.

- J‘%W'NLU

Robust to faulty
measurement

Sample Number
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Fault & Drift Detection (2) <>

Model Prediction when Variable 18 was Fixed Between Samples 1100 and 1300
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05

Predicted Y - Observed Y

-0.5

(a) Error Between Analytical Instrument and Model

Upper Limit

T

4

MWWMMWWMWW W

] T
Lower Limit "
w i

500 1000 1500 2
(b) Model Prediction on Testing Data

ffffff Predicted Y
— Observed Y
*  Model Disagreement

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

500 1000 1500 2000
Sample Number

Analytical Instryment Drift Simulation

Detect drift of
analytical
instrument
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Fault & Drift Detection (3) >
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Knowledge discovery via GP %57

Understanding the complex connection between molecular structure and
rheological properties is key to new product development. (MWD <« rheology)

Empirical Models Fundamental Models
 Measure MWD indirectly Theoretically derived
« Moments: Mw, Mn and Mw/Mn MWD theoretically determined

* rheology = f(moments) * rheology = f(MWD)
* Only valid for limited distribution  Valid for large ranges
parameter ranges « However, MWD not known in
practice

Desire: rheology = f(moments), but also valid for large ranges
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Virtual EerrimentaI Design

* Use fundamental models to generate
rheology data (output)

— Set I: Monodisperse systems
— Set |l: Polydisperse systems - unimodal
— Set |l Polydisperse systems — bimodal
* Derive moments data from theoretical
distributions (inputs)
« Use GP to develop large range model
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Performance New Model

6 e
s sets | - Il X s WO
5 - o low Mw test points Joagle e
> high Mw unimodal test points wre
, | |2 high Mw/Mn unimodal test points T ’
— . e AR
9 ® e .’ﬂ.’bﬁo ,0
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1 e
'®
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0 1 2 3 4 5 6
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Particle Swarm OEtimization

« An efficient technique to find the global optimum for
model inversion and non-linear parameter estimation

At each time step t

For each particle |
Update the position change (velocity)
Vi(t+2) = 7+ (V;(t) + ¢ rand©0D)- (RO - X (1)
+C, -rand(0,) - (P, (t) — X; (1))
Then move
X (t+1) =X, () +V.(t+1)

Note: - stochastic component
- parameters C;,C,, ¥ default values (2.05, 2.05, 0.73)
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OEtimized color sEectrum of Elas
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Requirements for success

« Accuracy of prediction

* Robustness in the production environment where
the quality of the input data is not guaranteed

* Extrapolation (generalization) outside the known
operating conditions

 Self-assessment capabilities to warn operators of
low confidence of the model

* Fault and drift detection of hardware sensors
(analytical instruments)

* Interpretability of the model by the process
engineers

« Ease of implementation in the current control
systems

« Cheap and fast to development and maintain
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Kex messages to take home

* (Chemical) Industry needs a broad toolset
(no “silver bullet” technique)
— different techniques are complementary
— hybrid solutions are the most effective

* Accuracy of a model is not the only
requirement for successful applications
— Interpretability
— ease of implementation
— low cost of maintenance
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External Publications of AEEIica |

Application

Initial data size

Reduced data size

Model structure

Reference

Inferential sensors

Interface level prediction

(25 inputs x 6500 data
pts)

(2 inputs x 2000 data pts)

3 models, 2 inputs

Kordon and Smits, 2001

Interface level prediction

(28 inputs x 2850 data
pts)

(5 inputs x 2850 data pts)

One model, 3 inputs

Kalos et al, 2003

Emissions prediction

(8 inputs x 251 data pts)

(4 inputs x 34 data pts)

Two models, 4 inputs

Kordon et al, 2003b

Biomass prediction

(10 inputs x 705 data pts)

(10 inputs x 705 data pts)

9 models ens, 2-3 inputs

Jordaan et al , 2004

Propylene prediction

(23 inputs x 6900 data
pts)

(7 inputs x 6900 data pts)

4 models ens, 2-3 inputs

Jordaan et al , 2004

Emulators

Chemical reactor

(10 inputs x 320 data pts)

(10 inputs x 320 data pts)

5 models, 8 inputs

Kordon et al, 2003a

Accelerated modeling

Structure-property

(5 inputs x 32 data pts)

(5 inputs x 32 data pts)

One model,4 inputs

Kordon et al, 2002

Structure-property

(9 inputs x 24 data pts)

(9 inputs x 24 data pts)

7 models , 3 -5 inputs

Kordon and Lue, 2004

Structure-property

(4 inputs x 289 data pts)

one model, 3 inputs

Jordaan et al. 2006

Linearized transforms

Chemical reactor model

(4 inputs x 19 data pts)

(4 inputs x 19 data pts)

3 transforms

Castillo et al, 2002
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