Structural Risk Minimization as model selection criterion for ecological populations

Giorgio Corani

Politecnico di Milano corani@elet.polimi.it

Acknowledgments:

Marino Gatto (Politecnico di Milano)

Outline

- Demographic models for predicting population abundances
- The model selection problem
- Comparison via simulation of FPE, SIC and SRM
- The alpine ibex case study

The problem, from an ecological point of view

- Predicting the future population abundance N_{t+1} from the current observation N_t .
- Usually, one tries to predict the rate of increase $Y_{t+1} = \log\left(\frac{N_{t+1}}{N_t}\right)$ instead of N_{t+1}
- Y_{t+1} can depend for instance on:
 - the current population N_t
 - exogenous climatic forcings $X_{1t}, X_{2t}, \dots X_{mt}$ (rainfall, temperature, etc).
- Reliable population abundances prediction lead to designing proper exploitation policies

Basic demographic models

• The Malthusian (\mathbf{M}) model (1798):

$$N_{t+1} = \lambda N_t \Rightarrow y_{t+1} = \ln\left(\frac{N_{t+1}}{N_t}\right) = a \ (a > 0)$$

The population growths as $N_q = \lambda^q N_0$. The environment is supposed to provide each individual with the same resources (density-independence), regardless of the population size.

• The Ricker (\mathbf{R}) model (1948) (density-dependence):

$$y_{t+1} = \ln\left(\frac{N_{t+1}}{N_t}\right) = a + bN_t \ (a > 0, b < 0)$$

Depending on the parameters settings, it can reach the stable equilibrium $\overline{N} = -a/b$, or mimick limit cycles or chaos.

Ricker models with covariates

• The Ricker model can be extended including covariates:

$$\ln\left(\frac{N_{t+1}}{N_t}\right) = a + bN_t + cX_{1t} \ (a > 0, b < 0) \ (RI)$$

$$\ln\left(\frac{N_{t+1}}{N_t}\right) = a + bN_t + cX_{1t} + dX_{2t} \ (a > 0, b < 0) \ (RII)$$

Analogously, we obtain models RIII, RIV etc.

- Remark: in practice, we are considering linear regressors
- One usually ends up with a broad suite of demographic models. How to choose among them?

The model selection problem (the machine learning point of view)

• The unknow true system

$$y = g(\mathbf{x}) + \epsilon \tag{1}$$

is supposed

- to receive an input vector \mathbf{x} , with probability distribution $P(\mathbf{x})$
- and to return an output y, according to $P(y|\mathbf{x})$.
- Both $P(\mathbf{x})$ and $P(y|\mathbf{x})$ are unknown.
- Notation remark: $P(\mathbf{x}, y) = P(x)P(y|\mathbf{x})$
- A finite number q of observations $(\mathbf{x_i}, y_i), i = 1, \ldots, q$ is available

Model selection problem (II)

- We consider a set of candidate approximating functions $f_j(\mathbf{x}, \theta)$.
- The optimal approximating function should in principle minimize the *risk functional*:

$$R_j(\theta) = \int (y - f_j(\mathbf{x}, \theta))^2 dP(\mathbf{x}, y)$$

which is unknown because $P(\mathbf{x}, y)$ is unknown.

• What can be measured is instead the *empirical risk* (training error):

$$R_j(\theta)_{emp} = \frac{1}{q} \sum_{i=1}^{q} (y_i - f_j(\mathbf{x}_i, \theta))^2$$

Information Criteria (ICs)

• ICs attempt to estimate the unknown risk functional penalizing the empirical risk. For a function f_j having d_j free parameters, denoting $p_j = d_j/q$, the risk is estimated as:

$$ER_j(\theta) = R_j(\theta)_{emp} \ r(p_j)$$

where r(p) is the penalization function.

• FPE (Akaike's Final Prediction Error, 1970):

$$ER_j^{FPE}(\theta) = R_j(\theta)_{emp} \left[\frac{(1+p_j)}{(1-p_j)} \right]$$

• SIC (Schwartz Information Criterion, 1978; aka BIC, aka SC)

$$ER_j^{SIC}(\theta) = R_j(\theta)_{emp} [1 + \frac{\ln(q)}{2} p_j (1 - p_j)^{-1}]$$

ICs basic assumptions

- There is a wide set of ICs in literature, obtained under different hypotheses. However, all of them:
 - are motivated by asymptotic arguments $(q \rightarrow \infty?)$
 - assume the linearity of the approximating functions
 - and that $g(\mathbf{x})$ is contained in the set of approximating functions.
- They are therefore often used outside of their constitutive assumptions.

Structural Risk Minimization (Vapnik, 1998)

- SRM is a model selection approach of great generality:
 - the dataset is assumed to be of finite size q;
 - no particular requirements on noise, probability distributions, etc.;
 - no request for linearity.
- For practical regression problems, the following bound holds with probability $\left(1 \frac{1}{\sqrt{q}}\right)$ (Cherkassky et al., 1999):

$$R_j(\theta) \le R_j(\theta)_{emp} \left[1 - \sqrt{p_j - p_j \ln p_j + \frac{\ln(q)}{2q}} \right]_+^{-1}$$

where p_j is defined as h_j/q .

• What's h?

VC-dimension

- h_j is the VC-dimension of the approximating function f_j .
- It constitutes an index of complexity for a given function; see (Vapnik, 1998) for a rigorous definition.
- In the linear case, it corresponds to the number of free parameters.
- In the non linear case, it can be estimated by the algorithms proposed in Vapnik (1994) and Cherkassky (2000).
- See (Corani and Gatto, 2005) for an attempt to estimate the VC-dimension of the commonest nonlinear ecological models.
- In the talk, we will deal just with linear models.

The idea of the comparison between ICs and SRM

• The idea:

- simulate stocastichally (i.e., with noise) different demographic models, under a wide variety of parametric settings;
- on each noisy simulation, identify a broad set of models;
- choose one candidate via FPE, SIC, SRM;
- evaluate the generalization of the chosen models on testing set;
- repeat the procedure to collect a statistically significant dataset
- Remark: we must set:

$$\begin{cases} y = ln(\frac{N_{t+1}}{N_t}) \\ \mathbf{x} = [N_t, X_{1t}, \dots, X_{kt}] \end{cases}$$

Stochastic simulation details

• Models are stochastically simulated as

$$N_{t+1} = N_t \exp(a + bN_t + cX_{1t} + dX_{2t} + nZ_t)$$
where Z_t is a WN[0,1].

- Depending on the simulated models, b, c, d can be set to 0.
- For each different simulation setting, 500 different simulations are performed
- 96 (2*3*4*4) simulation settings for model R:
 - $N_0 = [100; -a/b], a = [.5; 1; 1.5], b = -0.01,$ n = [.05; .1; .25; .5], q = [10; 20; 50; 100];
- A similar variety of simulation settings is used for the remaining models.

The picture of the comparison methodology

- 1. perform 500 q—steps simulations using the current setting;
- 2. identification of candidates (M, R, RI, RII, **RIII**, **RIV**) via linear LS;
- 3. discard density-dependent models with $\hat{b} < 0$;
- 4. model selection according to FPE, SIC and SRM;
- 5. generalization assessment:
 - (a) compute stochastic ally 20 times N_{q+1} and then y_{q+1}
 - (b) use the chosen models to deterministically compute \hat{y}_{q+1}
 - (c) compute the error statistics for each criterion $(20 \bullet 500 = 10,000 \text{ samples})$

Results: model choices

Aggregated percentages of correct recognition:

	FP	Е		SIC			
M	R	RI	RII	M	R	RI	RII
75%	60%	51%	52%	71%	55%	49%	51%

SRM

M R RI RII

98% 89% 69% 67%

- SRM correctly selects each model with the highest frequency
- Both SIC and FPE generally tend, when failing, to overparameterized models
- On the contrary SRM tends, when failing, to too simple models.

Sensitivity to the dataset size q

	Malthusian model						
	FPE	SIC	SRM				
\overline{q}							
10	62%	50%	95%				
20	76%	68%	96%				
50	81%	81%	99%				
100	82%	86%	100%				

		Ricker	model
	FPE	SIC	SRM
\overline{q}			
10	24%	34%	65%
20	48%	50%	85%
50	68%	52%	97%
100	78%	54%	99%

- On shorts datasets, SRM clearly outperforms the traditional asymptotical criteria
- Such a finding is confirmed for **all** the simulated models

Out-of-sample prediction error: risk analysis

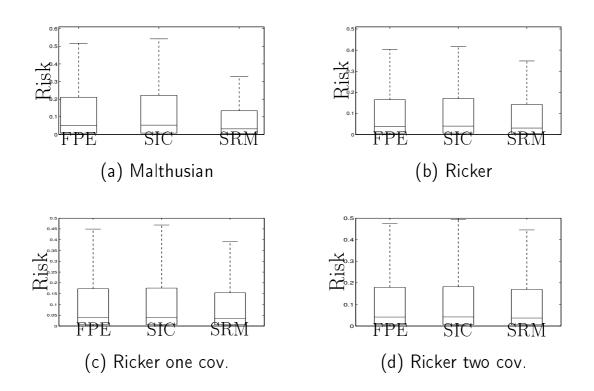


Figure 1: Box and whiskers plots of prediction risk

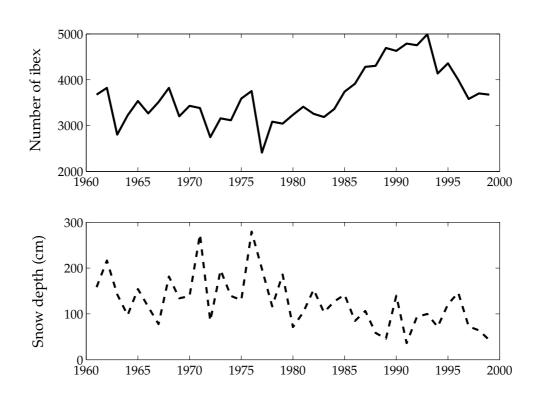
- SRM achieves in every case the lowest risk on each model
- The gap will increase on multi-step predictions

Alpine ibex case study

- Population of the Gran Paradiso National Park (Italy)
- Hunting not allowed, large predators absent. Population dynamics can be explained via density-dependence and climate forcings

The dataset

- Censuses and meteorology over 1960-2000 (Jacobson et al., Ecology, 2004)
- Snow depth as the most significant climate driver (Jacobson et al., Ecology, 2004)



Main findings of Jacobson et al. (Ecology, 2004)

- They consider as possible regression variables N_t , $L_t = \ln(N_t)$, the snow depth S_t , the products $S_t L_t$ and $S_t N_t$.
- By cross-checking different statistical tests, they select the threshold model:

$$y = a + \begin{cases} c_1 S_t + d_1 N_t S_t & \text{if } S_t < \overline{S} \\ c_2 S_t + d_2 N_t S_t & \text{if } S_t > \overline{S} \end{cases}$$

where
$$\overline{S} = \mu(S_t) + .5\sigma(S_t) = 154 \,\mathrm{cm}$$

Analysis by SRM

• Identification of all the models considered in the previous paper, both linear (not reported here) and with threshold.

Threshold models (unique a)								
$\bmod el \; \#$	const	N_t	L_t	S_t	$N_t S_t$	$L_t S_t$	DoF	SRM
15	*	*		*	*		7	0.0120
16	*		*	*		*	7	0.0121
17	*			*	*		5	0.0140
18	*			*		*	5	0.0140
19	*	*			*		5	0.0270
20	*		*			*	5	0.0284
21	*	*		*			5	0.0357
22	*		*	*			5	0.0304
23	*				*		3	0.0258

• model 17 was selected in Jacobson et al. (Ecology, 2004)

LOO-CV with the oustanding candidates

Model #	$(y_t - \hat{y}_t)^2$	$\sqrt{(N_t - \hat{N}_t)^2}$
15	.0046	43
16	.0047	43
17	.0062	46
18	.0064	47

- remark: $\hat{N}_{t+1} = N_t \exp(\hat{y}_{t+1})$
- LOO-CV confirms the ranking of SRM, leading to choose model 15.

A novel subset of models

- There is no particular reason for a having a unique estimate. We then introduce models where a is estimated twice.
- General performances improvement (six models out of 9 improve their SRM score)

model #	const	N_t	L_t	S_t	$N_t S_t$	$L_t S_t$	DoF	SRM
24	*	*		*	*		8	0.0129
25	*		*	*		*	8	0.0129
\Rightarrow 26	*			*	*		6	0.0107
\Rightarrow 27	*			*		*	6	0.0108
\Rightarrow 28	*	*			*		6	0.0110
⇒ 29	*		*			*	6	0.0114
\Rightarrow 30	*	*		*			6	0.0114
\Rightarrow 31	*		*	*			6	0.0114
32	*					*	4	0.0236

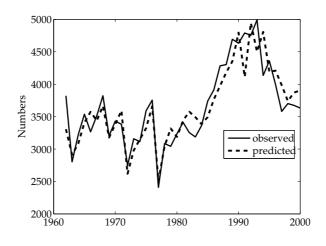
LOO-CV with the ultimate candidates

Model #	$(y_t - \hat{y}_t)^2$	$\sqrt{(N_t - \hat{N}_t)^2}$
26	.0044	42
27	.0045	42
28	.0045	41

• LOO confirms:

- the improvement over the previously considered models
- that no great differences arise from models 26, 27, 28
- Hence we finally choose model 26, best according to SRM

Simulations with model 26



(a) Population abundances

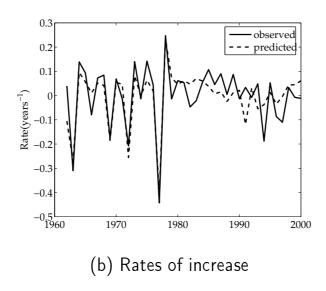


Figure 2: Leave-one-out cross validation of model 26, best according to SRM.

Conclusions

- Our experiments show that SRM recognizes all the considered models with higher frequency than both FPE and SIC under practically all the simulation settings.
- A strength of SRM is its performance on small datasets and...
- the achievement of lower prediction errors in outof-sample validation
- In the re-analyis of Alpine ibex case study, we add some further candidate models, achieving a general performances improvement of the SRM scores.
- One of these new models turns out to be the best selection, as confirmed also by leave-one-out cross validation.

Possibilities for future works

- Estimation of VC-dimensions of the commonest nonlinear models.
- Application of SRM and ICs in local modelling (lazy learning!)