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Outline

e Demographic models for predicting population
abundances

e The model selection problem

e Comparison via simulation of FPE, SIC and SRM

e The alpine ibex case study
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The problem, from an ecological
point of view

e Predicting the future population abundance Ny
from the current observation /V;.

e Usually, one tries to predict the rate of increase
Yii 1 = log (Njﬁf—“:l> instead of N¢1q
e Y, .1 can depend for instance on:

e the current population NV
e exogenous climatic forcings Xi¢, Xog, ... Xt
(rainfall, temperature, etc).

e Reliable population abundances prediction lead to
designing proper exploitation policies
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Basic demographic models

e The Malthusian (M) model (1798):

The population growths as N, = A9Ny. The en-
vironment is supposed to provide each individual
with the same resources (density-independence), re-
gardless of the population size.

e The Ricker (R) model (1948) (density-dependence):

yt+1:ln< >:a+bNt(a>O,b<O)
Ny

Depending on the parameters settings, it can reach
the stable equilibrium N = —a/b, or mimick limit
cycles or chaos.
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Ricker models with covariates

e The Ricker model can be extended including covari-
ates:

N
m( ;V“) = a+bN,+cX1; (a>0,b<0) (RI)
t

N,
In ( ;;Ll) = a+bNi+cX1:4+dXo: (a > 0,0 < 0) (RII)
/

Analogously, we obtain models RIII, RIV etc.

e Remark: in practice, we are considering linear re-
gressors

e One usually ends up with a broad suite of demo-
graphic models. How to choose among them?
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The model selection problem (the
machine learning point of view)

e The unknow true system

y=g(x)+e (1)

is supposed

e to receive an input vector x, with probability dis-
tribution P(x)
e and to return an output y, according to P(y|x).
e Both P(x) and P(y|x) are unknown.
e Notation remark: P(x,y) = P(x)P(y|x)

e A finite number ¢ of observations (xj,y;),¢ =
1,...,q is available
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Model selection problem (I1)

e We consider a set of candidate approximating func-

tions f;(x,0).

e The optimal approximating function should in prin-
ciple minimize the risk functional:

R;(6) = / (v — £;(x,8))%dP(x.y)

which is unknown because P(x,y) is unknown.

e What can be measured is instead the empirical risk
(training error):

q

Ry(0)ermy = D005 = J(0x,0))

1=1
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Information Criteria (1Cs)

e [Cs attempt to estimate the unknown risk func-
tional penalizing the empirical risk. For a function
f; having d; free parameters, denoting p,;, = d;/q,
the risk is estimated as:

ERJ(Q) = Rj(e)emp r (pj)

where r(p) is the penalization function.

e 'PE (Akaike’s Final Prediction Error, 1970):

ERITE(0) = Ry(0)emp | 23]

(1—pj)

e SIC (Schwartz Information Criterion, 1978; aka
BIC, aka SC)

ERS1C(0) = Rj(0)empll + =p;(1 — p;) ]
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|Cs basic assumptions

e There is a wide set of ICs in literature, obtained
under different hypotheses. However, all of them:

e are motivated by asymptotic arguments (¢ —
00?)

e assume the linearity of the approximating func-
tions

e and that g(x) is contained in the set of approxi-
mating functions.

e They are therefore often used outside of their con-
stitutive assumptions.
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Structural Risk Minimization
(Vapnik, 1998)

e SRM is a model selection approach of great gener-
ality:

e the dataset is assumed to be of finite size ¢;

e no particular requirements on noise, probability
distributions, etc.;

e no request for linearity.

e For practical regression problems, the follow-

ing bound holds with probability (1—%)
(Cherkassky et al., 1999):

In
Ry(8) < By(6)emp 1\/pjpj1npj+ (9)

where p; is defined as h,/q.

e What's h?
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VC-dimension

h; is the VC-dimension of the approximating func-
tion f;.

It constitutes an index of complexity for a given
function; see (Vapnik, 1998) for a rigorous defini-
tion.

In the linear case, it corresponds to the number of
free parameters.

In the non linear case, it can be estimated by
the algorithms proposed in Vapnik (1994) and
Cherkassky (2000).

See (Corani and Gatto, 2005) for an attempt to esti-
mate the VC-dimension of the commonest nonlinear
ecological models.

In the talk, we will deal just with linear models.
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The idea of the comparison between
ICs and SRM

e The idea:

e simulate stocastichally (i.e., with noise) differ-
ent demographic models, under a wide variety
of parametric settings;

e on each noisy simulation, identify a broad set of
models;

e choose one candidate via FPE, SIC, SRM;

e evaluate the generalization of the chosen models
on testing set;

e repeat the procedure to collect a statistically sig-
nificant dataset

e Remark: we must set:

N.
y = In(=)
X = [Nta Xty ant]
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Stochastic simulation details

e Models are stochastically simulated as

Nt—|—1 = Nt eXp(a + bNt + CXlt + dXQt + nZt)

where Z; is a WN|0,1].

e Depending on the simulated models, b, ¢, d can be
set to 0.

e For each different simulation setting, 500 different
simulations are performed

e 96 (2*3*4*4) simulation settings for model R:

o Ny = [100; —a/b], a = [5;1;1.5], b = —0.01,
n = [.05;.1;.25;.5] , ¢ = [10;20; 50; 100];

e A similar variety of simulation settings is used for
the remaining models.

-Giorgio Corani: Structural Risk Minimization for model selection- 12



The picture of the comparison
methodology

1. perform 500 g—steps simulations using the current
setting;

2. identification of candidates (M, R, RI, RII, RIII,
RIV) via linear LS;

3. discard density-dependent models with b < 0;
4. model selection according to FPE, SIC and SRM;

5. generalization assessment:

(a) compute stochastichally 20 times N,y and then

Yg+1

(b) use the chosen models to deterministically com-
pute jg41

(c) compute the error statistics for each criterion
(20 @ 500 = 10, 000 samples)
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Results: model choices

Aggregated percentages of correct recognition:

FPE SIC
M R RI RII M R RI RII

75% 60% 51% 52%| 71% 55% 49% 51%

SRM
M R RI RII

98% 89% 69% 67%

e SRM correctly selects each model with the highest
frequency

e Both SIC and FPE generally tend, when failing, to
overparameterized models

e On the contrary SRM tends, when failing, to too
simple models.
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Sensitivity to the dataset size ¢

Malthusian model
FPE  SIC SRM

10 | 62% 50% 95%
20 | 76% 68% 96%
50 | 81% 81%  99%
100 | 82% 86% 100%

Ricker model
FPE  SIC SRM

q
10 | 24% 34% 65%

20 | 48% 50% 85%
50 | 68% 52%  9T%
100 | 8% 54%  99%

e On shorts datasets, SRM clearly outperforms the
traditional asymptotical criteria

e Such a finding is confirmed for all the simulated
models
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Out-of-sample prediction error: risk

analysis
e I | .
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Figure 1: Box and whiskers plots of prediction risk

e SRM achieves in every case the lowest risk on each

model

e The gap will increase on multi-step predictions
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Alpine ibex case study

e Population of the Gran Paradiso National Park
(Italy)

e Hunting not allowed, large predators absent. Pop-
ulation dynamics can be explained via density-
dependence and climate forcings
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The dataset

e Censuses and meteorology over 1960-2000 (Jacob-

son et al., Ecology, 2004)

e Snow depth as the most significant climate driver

(Jacobson et al., Ecology, 2004)
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Main findings of Jacobson et al.
(Ecology, 2004)

e They consider as possible regression variables V¢,
L; = In(Ny), the snow depth Sy, the products S Ly
and StNt .

e By cross-checking different statistical tests, they se-
lect the threshold model:

— a + Clst + letSt if St < E
Y= CQSt + dgNtSt if St > S

where S = u(S;) + .50(S;) = 154cm
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Analysis by SRM

e [dentification of all the models considered in the
previous paper, both linear (not reported here) and

with threshold.

Threshold models (unique a)

model # const N; Ly S¢ NS¢ LiS; DoF SRM
15 * * * * 7 0.0120
16 * * * * 7 0.0121
17 * * * 5 0.0140
18 * * * 5 0.0140
19 x * * 5 0.0270
20 x * * 5 0.0284
21 * * * 5 0.0357
22 * * * 5 0.0304
23 * * 3 0.0258

e model 17 was selected in Jacobson et al. (Ecology,

2004)
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LOO-CV with the oustanding
candidates

Model # | (i —§0)2 1/ (N; — Ny)?
15 .0046 43
16 0047 43
17 .0062 46
18 0064 47

e remark: Nt—|—1 — Nt exp(§t+1)

e LOO-CV confirms the ranking of SRM, leading to
choose model 15.
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A novel subset of models

e There is no particular reason for a having a unique
estimate. We then introduce models where a is es-
timated twice.

e General performances improvement (six models out
of 9 improve their SRM score)

model # const Nt Lt St NtSt LtSt DoF SRM

24 x * * * 8 0.0129
25 * * * x 8 0.0129
—26 * * * 6 0.0107
=27 * * * 6 0.0108
—28 * * * 6 0.0110
=29 x * x 6 0.0114
=30 * * * 6 0.0114
=31 * * * 6 0.0114
32 x * Z! 0.0236
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LOO-CV with the ultimate
candidates

Model # | (y: — 4r)° \/(Nt — Ny)?

26 0044 42
27 0045 42
28 0045 41

e [LOO confirms:

e the improvement over the previously considered
models

e that no great differences arise from models 26,
27, 28

e Hence we finally choose model 26, best according to

SRM
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Simulations with model 26
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Figure 2: Leave-one-out cross validation of model 26,
best according to SRM.
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Conclusions

Our experiments show that SRM recognizes all the
considered models with higher frequency than both
FPE and SIC under practically all the simulation
settings.

A strength of SRM is its performance on small
datasets and...

the achievement of lower prediction errors in out-
of-sample validation

In the re-analyis of Alpine ibex case study, we add
some further candidate models, achieving a general
performances improvement of the SRM scores.

One of these new models turns out to be the best
selection, as confirmed also by leave-one-out cross
validation.
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Possibilities for future works

e Listimation of VC-dimensions of the commonest
nonlinear models.

e Application of SRM and ICs in local modelling (lazy
learning]!)
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