
Re-sampling methods in the
structural identification context

Olivier Caelen
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Estimation of the accuracy of a model

The estimation of the accuracy of a model induced by
supervised learning is important for :

Choosing the best model from a given set (model
selection).

Choosing some models from a given set to combine
them.

Estimate the accuracy of the final model.
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Some notations (1)

X is the input space and X ⊂ Rn.

Y is the output space and Y ⊂ R.

x is a random input vector of dimension n.

y is a random output variable.

y = f (x) + ǫ , where ǫ is a random variable.

z = 〈x, y〉 is a realisation of z = 〈x, y〉, where x ∈ X
and y ∈ Y.
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Some notations (2)

DN = (〈x1, y1〉 , 〈x2, y2〉 , . . . , 〈xi, yi〉 , . . . , 〈xN , yN 〉) is a
training set, where xi ∈ X and yi ∈ Y.

zi = 〈xi, yi〉 is a training sample.

N is the number of training samples in DN .
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The complexity of a model (1)

Ψ1, Ψ2, . . . , Ψv, . . . are different classes of model, some
examples:

Ψ1 ⇒ Feedforward Neural Network.

Ψ2 ⇒ Lazy-Learning.

Ψ3 ⇒ Regression Tree.

Ψ4 ⇒ Support Vector Machine.

. . .

Ψv is the set of all the structures of model of the class
model v.
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The complexity of a model (2)

Λs is the set of all the structures with complexity s.

Λ1 ⊆ . . . ⊆ Λs ⊆ . . . ⊆ ΛS

and

ΛS =
S
⋃

s=1

Λs

A figure with the different sets:

Λ3

Λ1

Λ2

ΛS
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The complexity of a model (3)

Γvs is the set of all models of class v and complexity s

Γvs = Ψv ∩ Λs

It follows :
Γv1 ⊆ . . . ⊆ Γvs ⊆ . . . ⊆ ΓvS
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Estimation function

ĥ (x, α) is an estimation of f (x).

α ∈ Γvs and α is the vector of parameters of ĥ.

RN
emp(α) is the empirical risk function of α on DN .

α
N

= arg minα∈Γvs
RN

emp(α)

ĥ (x, α
N
) is the best estimator of f (x), build on DN in

Γvs.
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the generalisation error

MSE is the generalisation error of ĥ (x, α
N
) :

MSE(α
N
) =

∫

X ,Y,ZN

L(z, α
N
)dPN (DN ) dP (y|x)dP (x)

Where, L(z, α
N
) is the prediction error of ĥ (x, α

N
).

L(z, α
N
) is called the cost function.
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Some examples of cost functions

In regression :

L(z, α
N
) =

(

y − ĥ (x, α
N
)
)2

or
L(z, α

N
) =

∣

∣

∣
y − ĥ (x, α

N
)
∣

∣

∣

In classification :

L(z, α
N
) =

{

= 1 if(y = ĥ (x, α
N
))

= 0 if(y 6= ĥ (x, α
N
))
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The choose of the cost function [3]

Supposed N → ∞ :

if L(z, α
N
) = (. . .)2 then

the best model, who minimizes MSE, is Ey,x [y|x]

if L(z, α
N
) = |. . .| then

the best model, who minimizes MSE, is
mediany,x [y|x]
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re-sampling methods

There are different methods to estimate the MSE by
re-sampling:

Empirical risk function.

Holdout.

Monte-Carlo cross-validation.

V fold cross-validation.

Leave-one-out cross-validation.

Bootstrap.

Bootstrap 632.
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Empirical risk function

M̂SEemp (αN ) = RN
emp(αN )

As complexity increases, RN
emp(αN ) decreases.

→ this estimator privileges too complex models.
→ this estimator privileges models who make overfitting!

RN
emp(αN ) is a bad estimator of the MSE(αN ).
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Holdout

The training sample DN is randomly split into two
parts:

D
Nval

= DN/D
Ntr

D
Ntr is used to find α

Ntr .

αtr
N

= arg min
α∈Γvs

RN tr

emp(α)

D
Nval

is used to estimate the accuracy of α
Ntr .

M̂SEhold (αN ) =

∑Nval

i=1 L
(

zi, αNtr

)

Nval
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Holdout

The holdout method splits the data into two mutually
exclusive subsets called the training set and the
validation set :

DN
DNval

DNtr

ˆMSEhold

αtr

N
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Notations for the cross-validation (1)

In each cross-validation method, we create a set D∗ such
as :

D∗ =
{〈

D
Ntr

1

, D
Nval

1

〉

, . . . ,
〈

D
Ntr

k

, D
Nval

k

〉

, . . .
〈

D
Ntr

K

, D
Nval

K

〉}

You can see that each DN is split into two parts:

D
Nval

k

= DN/D
Ntr

k
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Notations for the cross-validation (2)

For each couple of D∗ we compute :

α
Ntr

k

= arg min
α∈Γvs

Remp

(

α,D
Ntr

k

)

And,

M̂SE
k

cv (αN ) =

∑

i∈Nval
k

L
(

zi, αNtr
k

)

Nval
k
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Notations for the cross-validation (3)

And finally:

M̂SEcv (αN ) =

∑K
k=1 M̂SE

k

cv (αN )

K

Each cross-validation method differs in the way of
creating D∗.
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Notations for the cross-validation (4)

DN
D

Ntr

1

D
Nval

1

D
Nval

2

D
Ntr

2

D
Ntr

K

D
Nval

K

.

.

.

α
Ntr

1

α
Ntr

2

α
Ntr

K

ˆMSE
1

cv

ˆMSE
2

cv
ˆMSEcv

ˆMSE
K

cv
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Monte-Carlo cross-validation

To create a couple
〈

D
Ntr

k

, D
Nval

k

〉

, the Monte-Carlo

cross-validation selects randomly N tr samples in DN .
These samples are put in D

Ntr
k

.

and finally: D
Nval

k

= DN/D
Ntr

k

This procedure is repeated K times.

All the couples
〈

D
Ntr

k

, D
Nval

k

〉

in D∗ are iid.
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V fold cross-validation(1)

V fold cross-validation is a Monte-Carlo cross-validation
with two supplementary conditions :

A condition on the values of N tr
k and Nval

k :
{

Nval
k = ⌊N/V ⌋ k ∈ [1, V − 1]

Nval
V = N − (V − 1) ⌊N/V ⌋

N tr
k = N − Nval

k k ∈ [1, V ]
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V fold cross-validation(2)

V fold cross-validation is a Monte-Carlo cross-validation
with two supplementary conditions :

some conditions on the position of each zi :
Each zi appears exactly one time in each
〈

Dk
Ntr

, Dk
Nval

〉

couple of D∗.

Each zi appears exactly V − 1 times, in all the
Dk

Ntr
sets

Each zi appears exactly 1 time, in all the Dk
Nval

sets
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V fold cross-validation(3)

In [5], a good value for V is ten.

Leave-one-out cross-validation is an extreme case of
the V fold cross-validation, where V = N .
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cross-validation property(1) [3]

IF
M̂SE is estimate by cross validation.

ŝ = arg min
s

M̂SE
(

αs
N

)

s̃ = arg min
s

MSE
(

αs
N

)

#val(N) −−−−→
N→∞

∞

THEN

PL = MSE(ŝ) − MSE(s̃) −−−−→
N→∞

0
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cross-validation property(2) [3]

The convergence rate of PL to zero is in

O

(

log(S)
√

#val(N)

)

if L(z, α
N
) = (. . .)2 then the convergence rate of PL to

zero is in

O

(

log(S)

#val(N)

)
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Leave-One-Out C-V failed

I will give an example where the leave-one-out
cross-vaildation failed [5]:

if v = the majority class model

and if DN has only three classes with the same
proportion (e.g. 3 ∗ 50 = 150 samples)

Then the real accuracy is about 33% but M̂SEloo = 0% !
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Bootstrap(1)[4]

The distribution of the samples in DN is an estimation of
the distribution of the samples in the real population:

x ∼ F

DNDN
x ∼ F̂ x ∼ F̂

The total population
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Bootstrap(2)

Estimation of a parameter θ with the total population:

x ∼ F

D
1

N D
2

N
D

K

N

∑
K

k=1
θ̂k

K
= θ̂

θ

θ̂1
θ̂K

θ̂2

The total population

Re-sampling methods in the structural identification context – p.28



Bootstrap(3)

Estimation of a parameter θ with the bootstrap:

x ∼ F

DN

D
∗1
N

D
∗2
N

D
∗B
N

x ∼ F̂

θ̂
∗

1

θ̂
∗

2

θ̂
∗

B

∑B
b=1

θ̂
∗

b

B
= θ̂

∗

The total population

D∗b
N is created by sampling DN with replacement.
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Bootstrap(4)

One step in the estimation of the MSE with the Bootstrap
method.

M̂SE
b

boot (αN ) =

∑

i∈Nval
b

L

(

zi,α
∗

Ntr
b

)

Nval

DN
x ∼ F̂

D
∗

N tr
b

D
∗

Nval
b

α
∗

N tr
b

ˆMSE
b

boots(αN)

D∗
N tr

b

is created by sampling DN with replacement.

D∗
Nval

b

= DN/D∗
N tr

b
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Bootstrap(5)

The bootstrap estimation M̂SEboot is the average of

M̂SE
b

boot with b ∈ [1, B]

M̂SEboot (αN ) =

∑B
b=1 M̂SE

b

boot (αN )

B
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Bootstrap(6)

For each bootstrap sample, about 1/3 of the cases is not
in D∗

N tr
b

:
(

1 − 1
N

)N
−−−−→
N→∞

e−1 ≈ .368

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

N

(1
−

1/
N

)^
N

About 36.8% of the samples in D∗
N tr

b

are copies!
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Bootstrap 632

the Bootstrap is a pessimistic estimator :

EDN

[

M̂SEboot

]

− MSE > 0.

the Empirical risk function is a optimistic estimator :

EDN

[

M̂SEemp

]

− MSE < 0.

the Bootstrap 632 tries to reduce the bias of the
classical Bootstrap:
M̂SEboot632 (αN ) =
∑B

b=1

[

0.632∗M̂SE
b

boot(αN )+0.368∗RN
emp(αN )

]

B
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Bootstrap 632

A example where the Bootstrap632 fails [5] :

If we have a perfect memorizer classifier (e.g. a one
nearest neighbour classifier)

and if the dataset is completely random, say with 2
classes.

Then

M̂SEboot632 ≈

∑B
b=1 0.632 ∗ 0.5 + 0.368 ∗ 1

B
= 68.4%

and the real MSE is 50%!

Re-sampling methods in the structural identification context – p.34



Example of model selection(1)

n = 1 , N = 100 , X = [0, 1]

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

Training Points

input

ou
tp

ut
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Example of model selection(1)

v = neural network and s = {1, 4, 7, 10}

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

nNode = 1

input

ou
tp

ut

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

nNode = 4

input
ou

tp
ut

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

nNode = 7

input

ou
tp

ut

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
nNode = 10

input

ou
tp

ut
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Example of model selection(2)

v = neural network and s = {13, 16, 19, 22}

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

nNode = 13

input

ou
tp

ut

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

nNode = 16

input
ou

tp
ut

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8
10

nNode = 19

input

ou
tp

ut

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

nNode = 22

input

ou
tp

ut
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The goal of model selection

The goal of model selection is to find the best v and s,
which minimise the generalisation error of ĥ (x, α

N
).

〈v̂, ŝ〉 = arg min M̂SE
〈v,s〉

Seek the best type of model

Seek the best number of parameters

Seek the best value of the parameters

αN

v̂

ŝ

Re-sampling methods in the structural identification context – p.38



MSE and NMSE

M̂SE = estimation of the Mean Squared Error

ˆNMSE = estimation of the Normalized Mean
Squared Error

ˆNMSE =
M̂SE

ˆvar(Y )
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Interpretation of the NMSE

var(Y ) =

∑N
i=1 (yi − µ̂)2

N
= Learning Error of µ̂

= Remp (µ̂)

⇓

ˆNMSE =
M̂SE

(

ĥ
)

Remp (µ̂)

if ˆNMSE > 1, then ĥ is "bad".
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NMSE of a neural network

Nts = 10001, Ntr = 100
On each run, I change only the D

Ntr .

5 10 15 20

0.
0

0.
5

1.
0

1.
5

NNET

s

N
M

S
E
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NMSE of a K-Nearest-Neighbour

Nts = 10001, Ntr = 100
On each run, I change only the D

Ntr .

5 10 15 20

0.
1

0.
2

0.
3

0.
4

KNN

s

N
M

S
E
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Stability of a class modelv

"An inducer is stable for a given dataset and a set of
perturbation, if it induces classifiers that make the
same prediction when it is given the perturbed
datasets" [5]

For [2], the neural network is an unstable class of
model and the KNN is a stable class of model.

And for [2, 5], the re-sampling methods for model
selection do not work well with unstable classes.
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Speed-up the model selection

The racing method [6] can be used to speed up the
model selection process:

A set of models are tested in parallel by loo-cv.

If a model is appreciably bad then it is withdrawn
from the set.

=⇒ The computation power is used for the estimation
of the accuracy of the other modes.
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One step in the loo-cv process

ǫ

EST

(

ˆMSEloo

)

i

ΛS

ΛS
Λ1 Λ2 Λ3 Λ4 Λ5 Λ6

ˆMSEloo

What is the value of the bound ǫ?
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the ǫ in the racing

There exist different methods for estimate ǫ :

Hoeffding’s Bound [6].

Bayesian’s Bound [6].

F-Race [1]
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THANK YOU
for your attention!

You can find the slides of this presentation at this address:
http://www.ulb.ac.be/di/mlg/seminars.html
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