On the use of supervised learning techniques to speed up the design of aeronautics components .

Gianluca Bontempi, Olivier Caelen

Université Libre de Bruxelles; Bruxelles, Belgium

Stephane Pierret, Cécile Goffaux

Centre of excellence in aeronautical research (CENAERO); Gosselies, Belgium

Table of Contents

- The design process
- Machine learning for device design
- Global and local modeling in machine learning
- Experiment results

Design of a complex product(1)

- The design of a complex product can be seen as a search problem in the space of the design parameters which aims to maximize the quality of the product (⇒ optimization problem).
- The optimization device makes a great number of calls to a simulator to calculate the cost of the function to be optimized.

Design of a complex product(2)

- If the simulator is too complex, it can slow down the optimization process.
- This is often the case in aeronautics applications (turbine, heat pipe,...) where the relation between the design parameters and the quality criteria is modeled by a time consuming simulator.

Speed up optimization process(1)

- A possibility to reduce the time required to evaluate each design configuration is the use of supervised machine learning techniques.
- The optimization device will try to use, as often as possible, the supervised machine learning.

Speed up optimization process(2)

- Samples of data of a simulator are collected in D_N .
- D_N is then used to make a training on a supervised machine learning.
- After the training, the machine learning model can make predictions.

The Heat Pipe simulator

- We use a simulator of a heat-pipe to generate training samples.
- A heat pipe is a device for evacuating heat.
- One side of the heat pipe is in contact with the heat and the other one is in contact with outside.

Some notations

- Given two variables $x \in \mathbb{R}^n$ and $y \in \mathbb{R}$.
- Let us consider the mapping $f : \mathbb{R}^n \to \mathbb{R}$, known only through a set of N examples $\{(x_i, y_i)\}_{i=1}^N$ obtained as follows:

$$y_i = f\left(x_i\right) + \epsilon_i$$

where $\forall i, \epsilon_i$ is a random variable such that $E[\epsilon_i] = 0$ and $E[\epsilon_i \epsilon_j] = 0$, $\forall j \neq i$.

• we seek the learning model $\hat{f}(x)$ with the best prediction capacity.

Global vs. local(1)

- The traditional approach to supervised learning is the <u>global</u> modeling which describes $\hat{f}(.)$ with an analytical function over the whole input domain. Examples:
 - linear regression models. $\hat{f}(x) = x^T \beta$
 - two level feedforward neural networks[2].

$$\hat{f}(x) = h\left(\sum_{m=0}^{M} w_{1m}^{(2)} g\left(\sum_{k=0}^{n} w_{mk}^{(1)} x_k\right)\right)$$

Global vs. local(2)

- An other approach is the local modeling.
- An example is the *k-Nearest Neighbour* model.
- The problem in the k-Nearest Neighbour is to find the best value of 'k'.
- The lazy-learning model [1] finds automatically, by PRESS[4], the best value of k.

Global vs. local(3)

The lazy-learning has some promising features:

- The reduced number of assumptions.
 Example:
 - No assumption on the existing of a global function.
 - No assumption on the properties of the noise.
- On-line learning capability
- Effective feature selection
 - Reducing the cost of feature selection by the Hoeffding race[3].

Tests of two models

 In this study, we compare the generalization capacities of a feedforward neural networks with these of a lazy learning on data generated by the Heat Pipe simulator.

Experimental Process

- The experiments use two datasets; I call them
 - ▲ the set D1
 - the set D2
- Two sessions of experiments are carried out:
 - the first with no feature selection.
 - the second with a preliminary selection of the relevant design parameters by Hoeffding race.

The two datasets

- The set D1:
 - it is composed of N = 1260 samples.
 - it has n = 3 inputs and m = 2 outputs.
- The set D2:
 - it is composed of N = 820 samples.
 - it has n = 6 inputs and m = 2 outputs.

The validation procedure

- We adopt the following procedure in order to assess the prediction capacity:
 - The total of samples is randomly divided into two halves.
 - The first half is used for the training.
 - The second half is used for the validation.
 - The estimation of the MISE is returned by :

$$\frac{1}{N/2} \sum_{\langle x, y \rangle \in V(D)} \left(y - \hat{f}\left(x \right) \right)^2$$

Where V(D) is the validation subset of the sample set D_N .

Experimental Results (1)

Before feature selection : Mean square prediction error for the two outputs of D1:

Learner	Output 1	Output 2
Lazy-learning	2.9e-04	2.2e-05
Neural network	5.0e-03	1.2e-04

 Before feature selection : Mean square prediction error for the two outputs of D2:

Learner	Output 1	Output 2
Lazy-learning	1.4e-02	1.0e-05
Neural network	2.2e-02	4.8e-05

Experimental Results (2)

- Next, a feature selection process has been made on the two training sets.
- On the first output variable of *D*1, the best input subset is the complete set of input variables.

Experimental Results (3)

• On the second output variable of *D*1, the feature selection process finds another input subset.

Learner	Output 2
Lazy-learning	7.0e-07
Neural network	2.6e-05

Experimental Results (4)

• On the first output variable of D2, the feature selection process finds another input subset.

Learner	Output 1
Lazy-learning	5.7 e-03
Neural network	1.3 e-02

Experimental Results (5)

• On the second output variable of *D*2, the feature selection process finds another input subset.

Learner	Output 2
Lazy-learning	8.8e-06
Neural network	1.5e-04

Conclusion

- The machine learning model can be used to speed up the design process of a complex product.
- The Leazy-Learning technique appears competitive with more conventional machine learning technique, like feedforward neural networks.

Future work

- Extending the experiments to a larger number of design parameters and quality objectives.
- Integrating the machine learning in the optimization process.

References

- [1] G. Bontempi. Local Learning Technique for Modeling, Prediction and Control. PhD thesis.
- [2] Bishop C. *Neural Networks for Pattern Recognition*. Oxford UP, 1995.
- [3] Oden Maron and Andrew W. Moore. The racing algorithm: Model selection for lazy learners. *Artificial Intelligence Review*, 11(1-5):193–225, 1997.
- [4] R. H. Myers. *Classical and Modern Regression with Applications*. PWS-KENT, Boston, MA, 1990.

THANK YOU for your attention!

You can find the slides of this presentation at this adress: http://www.ulb.ac.be/di/map/ocaelen/ For more information on the Lazy Learning R Package see here :

http://iridia.ulb.ac.be/~lazy/

ANNEXE

The feedforward neural networks (1)

 The feedforward neural network, that we use, has two layers.

 The first layer is based on a sigmoidal transfer function and the second layer on a linear transfer function.

The feedforward neural networks (2)

- The number of hidden nodes (M) is determined using an empirical relation which is a function of :
 - the number of training data.
 - the input dimension.
 - the output dimension.

The two datasets : D1

- N = 1260 samples, n = 3 inputs and m = 2 outputs.
 - Input parameters
 - the internal diameter of the heat pipe.
 - the diameter of the groove (d_{hyd}) .
 - the inclination angle of the heat pipe.
 - Output parameters
 - The power (in Watt) released by the heat pipe.
 - The external diameter of the heat pipe.

The two datasets : D2

- N = 820 samples, n = 6 inputs and m = 2 outputs.
 - Input parameters
 - The internal diameter of the heat pipe.
 - The number of groove in the heat-pipe.
 - The diameter of the groove (d_{hyd}) .
 - The width of the bottom of the grooves (w_b) .
 - The width of the top of the grooves (w_t) .
 - The depth of the grooves (h).
 - Output parameters see D1

The two datasets : figures

