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Outline

� The Machine Learning Group

� A local learning algorithm: the Lazy Learning.

� Lazy Learning for multivariate regression modeling.

� Lazy Learning for multi-step-ahead time series prediction.

� Lazy Learning for feature selection.

� Applications.

� Future work.
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Machine Learning: a definition

The field of machine learning is concerned with the question of how to
construct computer programs that automatically improve with
experience. [35]
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The Machine Learning Group (MLG)

� 7 researchers (1 prof, 6 PhD students), 4 graduate students).

� Research topics: Bioinformatics, Classification, Computational statistics, Data
mining, Regression, Time series prediction, Sensor networks.

� Computing facilities: cluster of 16 processors, LEGO Robotics Lab.

� Website: www.ulb.ac.be/di/mlg.

� Scientific collaborations in ULB: IRIDIA (Sciences Appliquées), Physiologie
Moléculaire de la Cellule (IBMM), Conformation des Macromolécules Biologiques
et Bioinformatique (IBMM), CENOLI (Sciences), Microarray Unit (Hopital Jules
Bordet), Service d’Anesthesie (ERASME).

� Scientific collaborations outside ULB: UCL Machine Learning Group (B),
Politecnico di Milano (I), Universitá del Sannio (I), George Mason University (US).

� The MLG is part to the "Groupe de Contact FNRS" on Machine Learning.
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MLG: running projects
1. "Integrating experimental and theoretical approaches to decipher the molecular

networks of nitrogen utilisation in yeast": ARC (Action de Recherche Concertée)
funded by the Communauté Française de Belgique (2004-2009). Partners: IBMM
(Gosselies and La Plaine), CENOLI.

2. "COMP2SYS" (COMPutational intelligence methods for COMPlex SYStems)
MARIE CURIE Early Stage Research Training funded by the European Union
(2004-2008). Main contractor: IRIDIA (ULB).

3. "Predictive data mining techniques in anaesthesia": FIRST Europe Objectif 1
funded by the Région wallonne and the Fonds Social Européen (2004-2009).
Partners: Service d’anesthesie (ERASME).

4. "AIDAR - Adressage et Indexation de Documents Multimédias Assistés par des
techniques de Reconnaissance Vocale": funded by Région Bruxelles-Capitale
(2004-2006). Partners: Voice Insight, RTBF, Titan.
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Machine learning and applied statistics
Reductionist attitude: ML is a modern buzzword which equates to

statistics plus marketing

Positive attitude: ML paved the way to the treatment of real problems
related to data analysis, sometimes overlooked by statisticians
(nonlinearity, classification, pattern recognition, missing variables,
adaptivity, optimization, massive datasets, data management,
causality, representation of knowledge, parallelisation)

Interdisciplinary attitude: ML should have its roots on statistics and
complements it by focusing on: algorithmic issues, computational
efficiency, data engineering.
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Motivations

� There exists a wide amount of theoretical and practical results for
linear methods in statistics, forecasting and control.

� However, in real settings we encounter often nonlinear problems.

� Nonlinear methods are generally more difficult to analyze than
linear ones, rarely produce closed-form or analytically tractable
expressions, and are not easy to manipulate and implement.

� Local learning techniques are a powerful way of re-using linear
techniques in a nonlinear setting.
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Prediction models from data

TARGET
PREDICTION

MODEL
PREDICTION

INPUT OUTPUT
ERROR

DATA
TRAINING
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Regression setting

� Multidimensional input � � ��

and scalar output � � �

� � � 	 � 
 �
�

where

�

is the unknown regression function and� is the random
error term.

� A finite number of noisy input/output observations (training set��� ).

� A test set of input values for which an accurate generalization or
prediction of the output is required.

� A learning machine which returns a input/output model on the
basis of training set.

Assumption: No a priori knowledge on the process underlying the data.
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The global modeling approach
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Input-output regression problem.
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The global modeling approach
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The global modeling approach
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The global modeling approach
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The global modeling approach
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The local modeling approach
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Input-output regression problem.
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The local modeling approach
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The local modeling approach
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Local fitting and prediction.
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The local modeling approach
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Another local fitting and prediction.
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Global vs. local modeling

� The traditional approach to supervised learning is global
modeling which describes the relationship between the input and
the output with an analytical function over the whole input domain.

� Even for huge datasets, a parametric model can be stored in a
small memory. Also, the evaluation of the parametric model
requires a short program that can be executed in a reduced
amount of time.

� Modeling complex input/output relations often requires the
adoption of global nonlinear models, whose learning procedures
are typically slow and analytically intractable. In particular,
validation methods, which address the problem of assessing a
global model on the basis of a finite amount of noisy samples, are
computationally prohibitive.

� For these reasons, in recent years, interest has grown in pursuing
alternatives (divide-and-conquer ) to global modeling techniques.
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Global vs. local modeling

� The divide-and-conquer strategy consists in attacking a complex
problem by dividing it into simpler problems whose solutions can
be combined to yield a solution to the original problem.

� Instances of the divide-and-conquer approach are modular
techniques (e.g. local model networks [36], regression trees [19],
splines [45]) and local modeling (aka smoothing) techniques.

� The principle underlying local modeling is that a smooth function
can be well approximated by a low degree polynomial in the
neighborhood of any query point.

� Local modeling techniques do not return a global fit of the
available dataset but perform the prediction of the output for
specific test input values, also called queries.

� The talk presents our contribution to local modeling techniques
and their application to a number of experimental problems.
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Lazy vs. eager modeling

� Eager techniques perform a wide amount of computation for
tuning the model before observing the new query.

� An eager technique must then commit to a specific hypothesis
that covers all the future queries.

� Lazy techniques [1] wait for the query to be defined before
starting the learning procedure.

� For that purpose, the database of observed input/output data is
always kept in memory and the output prediction is obtained by
interpolating the samples in the neighborhood of the query point.

� Lazy methods will generally require less computation during
training but more computation when they must predict the target
value for a new query.
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Examples

� The classical linear regression is an example of global, eager, and
linear approach.

� Neural networks (NN) are instances of the global, eager, and
nonlinear approach: NN are global in the sense that a single
representation covers the whole input space. They are eager in
the sense that the examples are used for tuning the network and
then they are discarded without waiting for any query. Finally, NN
are nonlinear in the sense that the relation between the weights
and the output is nonlinear.

� The technique we are going to discuss here is a lazy and local
approach.

� Remark: we can imagine a local technique (e.g. a K-nearest
neighbor) where the most important parameter (i.e. the number of
neighbors) is defined in an eager fashion.
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Some history

� Local regression estimation was independently introduced in
several different fields in the late nineteenth [42] and early
twentieth century [28].

� In the statistical literature, the method was independently
introduced from different viewpoints in the late 1970’s [20, 31, 43].

� Reference books are Fan and Gijbels [26] and Loader [32].

� In the machine learning literature, work on local techniques for
classification dates back to 1967 [24]. A more recent reference is
the special issue on Lazy Learning [1].
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Local modeling procedure
The identification of a local model [3] can be summarized in these
steps:

1. Compute the distance between the query and the training
samples according to a predefined metric.

2. Rank the neighbors on the basis of their distance to the query.

3. Select a subset of the nearest neighbors according to the
bandwidth which measures the size of the neighborhood.

4. Fit a local model (e.g. constant, linear,...).

Each of the local approaches has one or more structural (or
smoothing) parameters that control the amount of smoothing
performed.
In this talk we will focus on the bandwidth selection.
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The bandwidth trade-off: overfit
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Too narrow bandwidth ã overfitting ã large prediction error ä.
In terms of bias/variance trade-off, this is typically a situation of high
variance.
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The bandwidth trade-off: underfit
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In terms of bias/variance trade-off, this is typically a situation of high
bias.
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Bandwidth and bias/variance trade-off
Mean Squared Error

1/Bandwith

FEW NEIGHBORSMANY NEIGHBORS

Bias

Variance

Underfitting Overfitting
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Existing work on bandwidth selection
Rule of thumb methods. They provide a crude bandwidth selection which in some

situations may result sufficient. Examples of rule of thumb are in [25],[27].

Plug-in techniques. The exact expression of optimal bandwidth can be obtained from
the asymptotic expressions of bias and variance, which unfortunately depends on
unknown terms. The idea of the direct plug-in method is to replace these terms
with estimates. This method was first introduced by Woodrofe [47] in density
estimation. Examples of plug-in methods for non parametric regression are
reported in Ruppert et al. [41].

Data-driven estimation. It is a selection procedure which estimates the generalization
error directly from data. Unlike the previous approach, this method does not rely
on the asymptotic expression but it estimates the values directly from the finite
data set. To this group belong methods like cross-validation, Mallow’s

IKJ ,
Akaike’s AIC and other extensions of methods used in classical parametric
modeling.
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Existing work (II)

� Debate on the superiority of plug-in methods over data-driven methods is still
open and the experimental evidences are contrasting. Results on behalf of
plug-in methods come from [47, 41, 38].

� Loader [33] showed how the supposed superior performance of plug-in
approaches is a complete myth. The use of cross-validation for bandwidth
selection has been investigated in several papers, mainly in the case of density
estimation [30].

� In regression an adaptation of Mallow’s

IJ was introduced by Rice [40] for
constant fitting and by Cleveland and Devlin [21] in local polynomial regression.
Cleveland and Loader [22] suggested local

IJ and local PRESS for choosing
both the degree of local polynomial mixing and the bandwidth.

� We believe that plug-in methods are built on a series of assumptions about the
statistical process underlying the data set and on theoretical results which are
more reliable more the number of points tends to infinity.

� In a common black-box situation where no a priori information is available, the
adoption of data driven techniques can result a promising approach to the
problem. On the use of cross-validation for local modeling in regression and time series prediction – p.22/75



Data-driven bandwidth selection
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Original contributions
Problem1: identifying a sequence of local models is expensive.

Solution1: we propose recursive-least-squares (RLS) to speed up the
identification of sequence of models with increasing number of
neighbors [6, 13].

Problem 2: validating a local model by cross-validation is expensive.

Solution 2: we compute the leave-one-out cross-validation by obtaining
the PRESS statistic through the terms of RLS [9].

Problem 3: choosing the best model is prone to errors.

Solution 3: we combine the best models [7].
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Recursive-least-squares in space
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PRESS statistic and leave-one-out

PARAMETRIC IDENTIFICATION ON N-1 SAMPLES

PUT THE  j-th SAMPLE ASIDE

TEST ON THE  j-th SAMPLE 

PARAMETRIC IDENTIFICATION 

ON N SAMPLES
N TIMES

TRAINING SET

PRESS STATISTIC

LEAVE-ONE-OUT

PRESS was first introduced by Allen [2].
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The regression task
Given two variables 8 9 :;

and < 9 :

, let us consider the mapping

=?> : ; @ :
,

known only through a set of A examples

BC 8DFE <D GH ;DJI K obtained as follows:<D L =C 8D GNM ODFE

where

PQ

,

� OD is a random variable such that

R S O D T L U
and

R S OD OV T L U
,

PW X L Q ,

� R S O YD T L Z Y C 8D G

,

P\[ ] ^

, where Z Y C`_ G
is the unknown [ th moment of the

distribution of OD and is defined as a function of 8D .
In particular for [ L ^

, the last of the above mentioned properties implies that no

assumption of global homoscedasticity is made.
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Local Weighted Regression

� The problem of local regression can be stated as the problem of estimating the
value that the regression function

=C 8 G L R S < a 8 T assumes for a specific query
point 8, using information pertaining only to a neighborhood of 8.

� Given a query point 8cb , and under the hypothesis of a local homoscedasticity ofOD , the parameter

d

of a local linear approximation of

=C`_ G
in a neighborhood of 8 b

can be obtained solving the local polynomial regression:e
DI K f <D g 8 hD d i j k lC 8DE 8b Gm E

where, given a metric on the space

: ;
,

� lC 8DE 8b G

is the distance from the query point to the

Q n o

example,

Q L pEq q q E r

,

� kC`_ G

is a weight (aka kernel) function,

� m

is the bandwidth

On the use of cross-validation for local modeling in regression and time series prediction – p.28/75



Local Weighted Regression (II)

� In matrix notation, the solution of the above stated weighted least squares
problem is given by:s d L C t h u h u t Gv K t h u h uxw L Cy hy Gv Ky h{z L |y h z E
where

t

is a matrix whose

Q n o

row is 8 hD , w is a vector whose
Q n o

element is <D , u

is a diagonal matrix whose

Q n o

diagonal element is }D D L k C lC 8DE 8b G~ m G

,y L u t

, z L uxw , and the matrix

t h u h u t Ly hy
is assumed to be

non-singular so that its inverse

| L Cy hy G�v K
is defined.

� Once obtained the local linear polynomial approximation, a prediction of<b L =C 8b G

, is finally given by: � <b L 8 hb s dq
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Linear Leave-one-out

� By exploiting the linearity of the local approximator, a leave-one-out
cross-validation estimation of the mean squared error

R SC =C�� b G g � <b G j T
can be

obtained without any significant overload.

� In fact, using the PRESS statistic [2, 37], it is possible to calculate the error�cvV L <V g 8 hV s dv V , without explicitly identifying the parameters

s dv V from the
examples available with the

W th removed.

� The formulation of the PRESS statistic for the case at hand is the following:

�cvV L <V g 8 hV s dv V L <V g 8 hV |y h zp g � hV | � V L <V g 8 hV s dp g mV V E

where � hV is the

W th row of

y

and therefore � V L }V V 8V , and where

mV V is the

W th

diagonal element of the Hat matrix
� Ly |y h Ly Cy hy G�v Ky h

.
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Rectangular weight function

� In what follows, for the sake of simplicity, we will focus on linear approximator. An
extension to generic polynomial approximators of any degree is straightforward.
We will assume also that a metric on the space

: ;

is given. All the attention will
be thus centered on the problem of bandwidth selection.

� If as a weight function

kC`_ G

the indicator function

k lC 8DE 8b Gm L ��� p

if

lC 8DE 8b G� m
,U

otherwise;
(0)

is adopted, the optimization of the parameter
m

can be conveniently reduced to
the optimization of the number

�
of neighbors to which a unitary weight is

assigned in the local regression evaluation.

� In other words, we reduce the problem of bandwidth selection to a search in the
space of

mC � G L lC 8C � GE 8b G
, where 8C � G

is the

� th nearest neighbor of the query
point.
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Recursive local regression
The main advantage deriving from the adoption of the rectangular weight function is
that, simply by updating the parameter

s dC � G

of the model identified using the
�

nearest neighbors, it is straightforward and inexpensive to obtain

s dC �M p G
. In fact,

performing a step of the standard recursive least squares algorithm [4], we have:���������������������������������������
|C �M p G L |C � G g |C � G 8C �M p G 8 h C �M p G |C � GpM 8 h C �M p G |C � G 8C �M p G�C �M p G L |C �M p G 8C �M p G

�C �M p G L <C �M p G g 8 h C �M p G s dC � Gs dC �M p G L s dC � GNM �C �M p G �C �M p G

where

|C � G L Cy hy G�v K

when

m L mC � G
, and where 8C �M p G

is the

C �M p G th nearest

neighbor of the query point.

On the use of cross-validation for local modeling in regression and time series prediction – p.32/75



Recursive PRESS computation
Moreover, once the matrix

� 	� � � 


is available, the leave-one-out
cross-validation errors can be directly calculated without the need of
any further model identification:

äcv� 	� � � 
 �
�� � � �� ��� 	� � � 
� � � �� � 	� � � 
 � � � ���� � 	 � � � �¡  
�¢ £ 	� � � 
¥¤

Let us define for each value of

�

the

¦� § � ¨
vector ©cv 	� 


that contains
all the leave-one-out errors associated to the model

�� 	� 


.

On the use of cross-validation for local modeling in regression and time series prediction – p.33/75



Model selection

� The recursive algorithm returns for a given query point �   , a set of
predictions

ª �  	� 
 � � �  �� 	� 


, together with a set of associated
leave-one-out error vectors ©cv 	� 


.

� If the selection paradigm, frequently called winner-takes-all, is
adopted, the most natural way to extract a final prediction

ª �¡  ,
consists in comparing the prediction obtained for each value of

�

on the basis of the classical mean square error criterion:

ª �  � � �  �� 	 ª� 
 �

with

ª� � «¬ ­® ¯±°³² ´
MSE

	� 
 � «¬ ­ ® ¯° ² ²µ\¶ · ¸ µ 	 ©cvµ 	� 
 
 ¹²µ\¶ · ¸ µ º
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Local Model combination

� As an alternative to the winner-takes-all paradigm, we explored also the
effectiveness of local combinations of estimates [46].

� The final prediction of the value <b is obtained as a weighted average of the best»

models, where

»

is a parameter of the algorithm.

� Suppose the predictions

� <b C � G

and the error vectors ¼cvC � G
have been ordered

creating a sequence of integers

B �D H so that

½
MSE

C �D G� ½
MSE

C �V G
,

P Q¾ W

. The
prediction of

� <b is given by

� <b L ¿ ÀDI K ÁD � <b C �D G¿ ÀDJI K ÁD E
where the weights are the inverse of the mean square errors:

ÁD L p~ ½

MSE

C �D G

.
This is an example of the generalized ensemble method [39].
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From local learning to Lazy Learning (LL)

� By speeding up the local learning procedure, we can delay the
learning procedure to the moment when a prediction in a query
point is required (query-by-query learning).

� The combination approach makes possible to integrate local
models of different order (e.g. constant and linear) and different
bandwidths.

� This method is called lazy since the whole learning procedure
(i.e. the parametric and the structural identification) is deferred
until a prediction is required.

On the use of cross-validation for local modeling in regression and time series prediction – p.36/75



Experimental setup for regression
Datasets: 23 real and artificial datasets from the ML repository.

Methods: Lazy Learning, Local modeling, Feed Forward Neural
Networks, Mixtures of Experts, Neuro Fuzzy, Regression Trees
(Cubist).

Experimental methodology:

�Â

-fold cross-validation.

Results: Mean absolute error (Table 7.2), relative error (Table 7.3) and
paired t-test (Appendix C) [7].
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Regression datasets
Dataset Number of examples Number of regressors

Housing 330 8

Cpu 506 13

Prices 209 6

Mpg 159 16

Servo 392 7

Ozone 167 8

Bodyfat 252 13

Pool 253 3

Energy 2444 5

Breast 699 9

Abalone 4177 10

Sonar 208 60

Bupa 345 6

Iono 351 34

Pima 768 8

Kin_8fh 8192 8

Kin_8nh 8192 8

Kin_8fm 8192 8

Kin_8nm 8192 8

Kin_32fh 8192 32

Kin_32nh 8192 32

Kin_32fm 8192 32

Kin_32nm 8192 32
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Experimental results: paired comparison
Each method is statistically compared with all the others
(9 * 23 =207 comparisons).

Method
Number of times the method

was significantly worse than another

LL linear 74

LL constant 96

LL combination 23

Local modeling linear 58

Local modeling constant 81

Cubist 40

Feed Forward NN 53

Mixtures of Experts 80

Local Model Network (fuzzy) 132

Local Model Network (k-mean) 145

The less, the best !!
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Award in EUFIT competition
Data analysis competition on regression: awarded as a runner-up amongÃ �

participants at the Third International Erudit competition on
Protecting rivers and streams by monitoring chemical
concentrations and algae communities [10].
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Lazy Learning for dynamic tasks
Multi-step-ahead prediction: [12]

long horizon forecasting based on the iteration of a LL
one-step-ahead predictor.

Nonlinear control: [11]

1. Lazy Learning inverse/forward control.

2. Lazy Learning self-tuning control.

3. Lazy Learning optimal control.
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Embedding in time series
Consider a sequence

Ä

of measurements Å Æ � �

of a observable at
equal time intervals.
We express the present value as a function of the previous Ç values of
the time series itself

Å Æ � � 	 Å ÆÉÈ · � Å ÆÈ ¹ � ¤ ¤ ¤ � Å ÆÈ � 
 �
�

where

�

is an unknown nonlinear function and the vector¦ Å ÆÉÈ · � Å ÆÉÈ ¹ � ¤ ¤ ¤ � Å ÆÈ � ¨

lies in the Ç dimensional time delay space or lag
space.
This standard approach is called “state-space reconstruction” in the
physics community, “tapped delay line” in the engineering community
and Nonlinear Autoregressive (NAR) in the forecasting community.
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One-step and multi-step-ahead prediction
One-step ahead prediction: the Ç previous values of the series are

assumed to be available for the prediction of the next value.
This is equivalent to a problem of supervised learning. LL was
used in this way in several prediction tasks: finance, economic
variables, environmental modeling [23].

Multi-step ahead prediction: we predict the value of the series for the
next

£

steps.
We can classify the methods for multiple step prediction
according to two features, the horizon of the predictor and the
training criterion.
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Multi-step-ahead-prediction
One-step-ahead predictor and one-step-ahead training criterion. The model

predicts

£

steps ahead by iterating a one-step-ahead predictor
whose parameters are optimized to minimize the training error on
one-step-ahead forecast.

One-step-ahead predictor and

£

-step-ahead training criterion. The model
predicts

£

steps ahead by iterating a one-step-ahead predictor
whose parameters are optimized to minimize the training error on
the iterated

£

-step-ahead forecast.

Direct forecasting. The model makes a direct forecast at time

Ê � £

:

Å ÆË Ì � � Ì 	 Å Æ � Å ÆÈ · � ¤ ¤ ¤ � Å ÆÈ � Ë · 
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Iteration of a one-step-ahead predictor
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Local Modeling in the time domain
Consider the embedding Å ÆË · � � 	 Å Æ � Å ÆÈ · � ¤ ¤ ¤ � Å ÆÈ Í 


of order Ç � Î
.

- -

tϕ

t-11t-16 t-1t-6
t
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Local Modeling in the I/O space
Consider the embedding Å ÆË · � � 	 Å Æ 
 of order Ç � �

.

t+1

t
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Note the labels of the axis !!!
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Local modeling in the embedding space
Consider the embedding Å ÆË · � � 	 Å Æ � Å ÆÈ · 


of order Ç � Ã
.
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Conventional and iterated leave-one-out
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It Press in the space

x4 x5x3x2x1z1 z2 z4 z5

y1

y2

y3

y4

y5

xy

loo

z3

yz

it

x

xyβ -3
yzβ

-3

x

y

z

3

-3ŷ

e   (3)

xz
e  (3)

e   (3)

loo

� represents the value of the time series with order Ç � �

at time

Ê � �

,

� represents the value of the time series at time

Ê

, and 
 represents
the value of the time series at time

Ê � �

.
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From conventional to iterated PRESS

� PRESS statistic returns leave-one-out as a by product of the local
weighted regression.

� We derived in [12] an analytical iterated formulation of the PRESS
statistic for long horizon assessment.

� Iterated assessment criterion improves stability and prediction
accuracy.
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The Iterated multi-step-ahead algo
1. Time series embedded as an input/output mapping

�� � � � �
.

2. The one-step-ahead predictor is a local estimate of the mapping�

.

3. The

£

-step-ahead prediction is performed by iterating a
one-step-ahead estimator.

4. Local structure identification performed in a space of alternative
model configurations, each characterized by a different
bandwidth.

5. Prediction ability assessed by the iterated formulation of the
cross-validation PRESS statistic (

£
-step-ahead criterion).
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The Santa Fe time series

� The iterated PRESS approach has been applied both to the
prediction of a real-world data set (A) and to a computer
generated time series (D) from the Santa Fe Time Series
Prediction and Analysis Competition.

� The A time series has a training set of 1000 values and a test set
of 10000 samples: the task is to predict the continuation for

�Â Â

steps, starting from different points.

� The D time series has a training set of 100000 values and a test
set of 500 samples: the task is to predict the continuation for

Ã�

steps, starting from different points.

On the use of cross-validation for local modeling in regression and time series prediction – p.54/75



A series: training set

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

On the use of cross-validation for local modeling in regression and time series prediction – p.55/75



A series: one-step criterion
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A series: multi-step criterion
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Experiments: The Santa Fe Time Series A
order n=16 Training set: 1000 values Test set: 100 steps

Test data Non iter. PRESS Iter. PRESS Sauer Wan

1-100 0.350 0.029 0.077 0.055

1180-1280 0.379 0.131 0.174 0.065

2870-2970 0.793 0.055 0.183 0.487

3000-3100 0.003 0.003 0.006 0.023

4180-4280 1.134 0.051 0.111 0.160

Sauer: combination of iterated and direct local models.
Wan: recurrent network.
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The Santa Fe Time Series D
order Ç � ÃÂ

Training set:

�Â Â � Â Â Â

values Test set:

Ã�
steps

Test data Non iter. PRESS Iter. PRESS Zhang Hutchinson

0-24 0.1255 0.0492 0.0665

100-124 0.0460 0.0363 0.0616

200-224 0.2635 0.1692 0.1475

300-324 0.0461 0.0405 0.0541

400-424 0.1610 0.0644 0.0720

Zhang: combination of iterated and direct multilayer perceptron.
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Award in Leuven Competition
Training set made of

ÃÂ Â Â

points.
Task: predict the continuation for the next

ÃÂ Â

points.
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Iterated Lazy Learning ranked second and fourth [8].
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Lazy Learning for iterated prediction
Multi-step ahead by iteration of a one-step predictor.

Lazy learning to implement the one-step predictor.

Selection of the local structure by an iterated PRESS.

Iterated criterion avoids the accumulation of prediction errors and
improves the performance.
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Complexity in global and local modeling
Consider

r

training samples, A features and




query points.

GLOBAL LAZY

Parametric ident.

�

(NLS)
�

(Nn)+

�

(LS)

Structural ident. by K-fold cross-validation K

�

(NLS) small

prediction for Q queries negligible Q (

�

(Nn)+

�

(LS))

TOTAL K
�

(NLS) Q [

�

(Nn)+

�

(LS)]

where

�

(NLS) stands for the cost of Non-Linear least-Squares and

�

(LS) stands for
the cost of Linear least-Squares.
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Feature selection and LL

� Local modeling techniques are known to be weak in large
dimensional spaces.

� A way to defy the curse of dimensionality is dimensionality
reduction (aka feature selection).

� It requires the assessment of an exponential number of
alternatives (

Ã �

subsets of input variables) and the choice of the
best one.

� Several techniques exist: we focus here on wrappers.

� Wrappers rely on expensive cross-validation (e.g. leave-one-out
assessment)

� Our idea: combine racing [34] and sub-sampling [29] to
accelerate the wrapper feature selection procedure in LL.
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Racing for feature selection

� Suppose we have several sets of different input variables.

� The computational cost of making a selection results from the
cost of identification and the cost of validation.

� The validation cost required by a global model is independent of
Q, while this is not the case for LL.

� The idea of racing techniques consists in using blocking and paired

multiple test to compare different models in similar conditions and
discard as soon as possible the worst ones.

� Racing reduces the number of tests

�

to be made.

� This makes more competitive the wrapper LL approach.
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Sub-sampling and LL

� The goal of model selection is to find the best hypothesis in a set
of alternatives.

� What is relevant is ordering the different alternatives: M2 > M3 >
M5 > M1> M2.

� Reducing the training set size N, we hope to reduce the accuracy
of each single model but not necessarily their ordering.

� In LL reducing the training set size
�

reduces the cost.

� The idea of sub-sampling is to reduce the size of the training set
without altering the ranking of the different models.

� This makes more competitive the LL approach
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RACSAM for feature selection
We proposed the following algorithm [14]

1. Define an initial group of promising feature subsets.

2. Start with small training and test sets.

3. Discard by racing all the feature subsets that appear as
significantly worse than the others.

4. Increase the training and test size until at most winners models
remain.

5. Update the group with new candidates to be assessed and go
back to 3.
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Experimental session

� We compare the performance accuracy of the LL algorithm
enhanced by the RACSAM procedure to the the accuracy of two
state-of-art algorithms, a SVM for regression and a regression
tree (RTREE).

� Two version of the RACSAM algorithm were tested: the first
(LL-RAC1) takes as feature set the best one (in terms of estimate
Mean absolute Error (MAE)) among the winning candidates :
the second (LL-RAC1) averages the predictions of LL
predictors.

� � � , and p-value is

Â ¤ Â �
.
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Experimental results
Five-fold cross-validation on six real datasets of high dimensionality:
Ailerons (

� � � �� Â� � Ç � �Â

), Pole (

� � � � Â Â Â � Ç � ��

),
Elevators (

� � � Î�� � � Ç � ��

), Triazines (

� � �� Î � Ç � ÎÂ
),

Wisconsin (

� � �� � � Ç � � Ã

) and Census (

� � Ã Ã �� � � Ç � � � �

).

Dataset AIL POL ELE TRI WIS CEN

LL-RAC1 9.7e-5 3.12 1.6e-3 0.21 27.39 0.17

LL-RAC2 9.0e-5 3.13 1.5e-3 0.12 27.41 0.16

SVM 1.3e-4 26.5 1.9e-3 0.11 29.91 0.21

RTREE 1.8e-4 8.80 3.1e-3 0.11 33.02 0.17
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Applications

� Financial prediction of stock markets: in collaboration with Masterfood, Belgium.

� Prediction of yearly sales: in collaboration with Dieteren, Belgium, the first
Belgian car dealer.

� Non linear control and identification task in power systems: in collaboration with
Universitá del Sannio (I) [44, 18].

� Modeling of industrial processes: in collaboration with FaFer Usinor steel
company (B), and Honeywell Technology Center, (US).

� Performance modelling of embedded systems: during my stay at Philips

Research [16], Eindhoven (NL).

� Quality of service: during my stay at IMEC, Leuven (B) [17].

� Black-box simulators: in collaboration with CENEARO, Gosselies (B) [15].

� Environmental predictions: in collaboration with Politecnico di Milano (I) [23].
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Software

� MATLAB toolbox on Lazy Learning [5].

� R contributed package lazy.

� Joint work with Dr. Mauro Birattari (IRIDIA).

� Web page: http://iridia.ulb.ac.be/~lazy.

� About 5000 accesses since October 2002.
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The importance of being Lazy

� Fast data-driven design.

� No global assumption on the noise.

� Linear methods still effective in a multivariate non-linear setting
(LWR, PRESS).

� An estimate of the variance is returned with each prediction.

� Intrinsically adaptive.
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Future work

� Extension of the LL method to other local selection criteria (VC
dimension, GCV).

� Classification applications.

� Integration with powerful software and hardware devices.

� From large to huge databases.

� New applications: bioinformatics, text mining, medical data,
sensor networks, power systems.
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References

[1] D. W. Aha. Editorial of special issue on lazy learning. Artificial

Intelligence Review, 11(1–5):1–6, 1997.

[2] D. M. Allen. The relationship between variable and data augmen-

tation and a method of prediction. Technometrics, 16:125–127,

1974.

[3] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted

learning. Artificial Intelligence Review, 11(1–5):11–73, 1997.

[4] G. J. Bierman. Factorization Methods for Discrete Sequential

Estimation. Academic Press, New York, NY, 1977.

[5] M. Birattari and G. Bontempi. The lazy learning toolbox, for

use with matlab. Technical Report TR/IRIDIA/99-7, IRIDIA-ULB,

Brussels, Belgium, 1999.

[6] M. Birattari, G. Bontempi, and H. Bersini. Lazy learning meets

the recursive least-squares algorithm. In M. S. Kearns, S. A.

Solla, and D. A. Cohn, editors, NIPS 11, pages 375–381, Cam-

bridge, 1999. MIT Press.

75-1



[7] G. Bontempi. Local Learning Techniques for Modeling, Predic-

tion and Control. PhD thesis, IRIDIA- Université Libre de Brux-

elles, 1999.

[8] G. Bontempi, M. Birattari, and H. Bersini. Lazy learning for it-

erated time series prediction. In J. A. K. Suykens and J. Van-

dewalle, editors, Proceedings of the International Workshop on

Advanced Black-Box Techniques for Nonlinear Modeling, pages

62–68. Katholieke Universiteit Leuven, Belgium, 1998.

[9] G. Bontempi, M. Birattari, and H. Bersini. Recursive lazy learning

for modeling and control. In Machine Learning: ECML-98 (10th

European Conference on Machine Learning), pages 292–303.

Springer, 1998.

[10] G. Bontempi, M. Birattari, and H. Bersini. Lazy learners at work:

the lazy learning toolbox. In Proceeding of the 7th European

Congress on Inteligent Techniques and Soft Computing EUFIT

’99, 1999.

[11] G. Bontempi, M. Birattari, and H. Bersini. Lazy learning for

modeling and control design. International Journal of Control,

72(7/8):643–658, 1999.

75-1



[12] G. Bontempi, M. Birattari, and H. Bersini. Local learning for iter-

ated time-series prediction. In I. Bratko and S. Dzeroski, editors,

Machine Learning: Proceedings of the Sixteenth International

Conference, pages 32–38, San Francisco, CA, 1999. Morgan

Kaufmann Publishers.

[13] G. Bontempi, M. Birattari, and H. Bersini. A model selection ap-

proach for local learning. Artificial Intelligence Communications,

121(1), 2000.

[14] G. Bontempi, M. Birattari, and P.E. Meyer. Combining lazy learn-

ing, racing and subsampling for effective feature selection. In

Proceedings of the International Conference on Adaptive and

Natural Computing Algorithms. Springer Verlag, 2005. To ap-

pear.

[15] G. Bontempi, O. Caelen, S. Pierret, and C. Goffaux. On the

use of supervised learning techniques to speed up the design

of aeronautics components. WSEAS Transactions on Systems,

10(3):3098–3103, 2005.

[16] G. Bontempi and W. Kruijtzer. The use of intelligent data anal-

ysis techniques for system-level design: a software estimation

75-1



example. Soft Computing, 8(7):477–490, 2004.

[17] G. Bontempi and G. Lafruit. Enabling multimedia qos control with

black-box modeling. In D. Bustard, W. Liu, and R. Sterritt, edi-

tors, Soft-Ware 2002: Computing in an Imperfect World, Lecture

Notes in Computer Science, pages 46–59, 2002.

[18] G. Bontempi, A. Vaccaro, and D. Villacci. A semi-physical mod-

elling architecture for dynamic assessment of power components

loading capability. IEE Proceedings of Generation Transmission

and Distribution, 151(4):533–542, 2004.

[19] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Clas-

sification and Regression Trees. Wadsworth International Group,

Belmont, CA, 1984.

[20] W. S. Cleveland. Robust locally weighted regression and smooth-

ing scatterplots. Journal of the American Statistical Association,

74:829–836, 1979.

[21] W. S. Cleveland and S. J. Devlin. Locally weighted regression:

an approach to regression analysis by local fitting. Journal of

American Statistical Association, 83:596–610, 1988.

75-1



[22] W. S. Cleveland and C. Loader. Smoothing by local regression:

Principles and methods. Computational Statistics, 11, 1995.

[23] G. Corani. Air quality prediction in milan: feed-forward neural

networks, pruned neural networks and lazy learning. Ecological

Modelling, 2005. In press.

[24] T. Cover and P. Hart. Nearest neighbor pattern classification.

Proc. IEEE Trans. Inform. Theory, pages 21–27, 1967.

[25] J. Fan and I. Gijbels. Adaptive order polynomial fitting: band-

width robustification and bias reduction. J. Comp. Graph. Statist.,

4:213–227, 1995.

[26] J. Fan and I. Gijbels. Local Polynomial Modelling and Its Appli-

cations. Chapman and Hall, 1996.

[27] W. Hardle and J. S. Marron. Fast and simple scatterplot smooth-

ing. Comp. Statist. Data Anal., 20:1–17, 1995.

[28] R. Henderson. Note on graduation by adjusted average. Trans-

actions of the Actuarial Society of America, 17:43–48, 1916.

[29] G. H. John and P. Langley. Static versus dynamic sampling for

data mining. In Proceedings of the Second International Con-

75-1



ference on Knowledge Discovery in Databases and Data Mining.

AAAI/MIT Press, 1996.

[30] M. C. Jones, J. S. Marron, and S. J. Sheather. A brief survey of

bandwidth selection for density estimation. Journal of American

Statistical Association, 90, 1995.

[31] V. Y. Katkovnik. Linear and nonlinear methods of nonparametric

regression analysis. Soviet Automatic Control, 5:25–34, 1979.

[32] C. Loader. Local Regression and Likelihood. Springer, New York,

1999.

[33] C. R. Loader. Old faithful erupts: Bandwidth selection reviewed.

Technical report, Bell-Labs, 1987.

[34] O. Maron and A. Moore. The racing algorithm: Model selection

for lazy learners. Artificial Intelligence Review, 11(1–5):193–225,

1997.

[35] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

[36] R. Murray-Smith and T. A. Johansen. Local learning in local

model networks. In R. Murray-Smith and T. A. Johansen, editors,

75-1



Multiple Model Approaches to Modeling and Control, chapter 7,

pages 185–210. Taylor and Francis, 1997.

[37] R. H. Myers. Classical and Modern Regression with Applications.

PWS-KENT Publishing Company, Boston, MA, second edition,

1994.

[38] B. U. Park and J. S. Marron. Comparison of data-driven band-

width selectors. Journal of American Statistical Association,

85:66–72, 1990.

[39] M. P. Perrone and L. N. Cooper. When networks disagree: En-

semble methods for hybrid neural networks. In R. J. Mammone,

editor, Artificial Neural Networks for Speech and Vision, pages

126–142. Chapman and Hall, 1993.

[40] J. Rice. Bandwidth choice for nonparametric regression. The

Annals of Statistics, 12:1215–1230, 1984.

[41] D. Ruppert, S. J. Sheather, and M. P. Wand. An effective band-

width selector for local least squares regression. Journal of

American Statistical Association, 90:1257–1270, 1995.

75-1



[42] G. V. Schiaparelli. Sul modo di ricavare la vera espressione

delle leggi della natura dalle curve empiricae. Effemeridi Astro-

nomiche di Milano per l’Arno, 857:3–56, 1886.

[43] C. Stone. Consistent nonparametric regression. The Annals of

Statistics, 5:595–645, 1977.

[44] D. Villacci, G. Bontempi, A. Vaccaro, and M. Birattari. The role

of learning methods in the dynamic assessment of power com-

ponents loading capability. IEEE Transactions on Industrial Elec-

tronics, 52(1), 2005.

[45] G. Wahba and S. Wold. A completely automatic french curve:

Fitting spline functions by cross-validation. Communications in

Statistics, 4(1), 1975.

[46] D. Wolpert. Stacked generalization. Neural Networks, 5:241–

259, 1992.

[47] M. Woodrofe. On choosing a delta-sequence. Ann. Math. Statist.,

41:1665–1671, 1970.

75-1


	Outline
	Machine Learning: a definition
	The Machine Learning Group (MLG)
	MLG: running projects
	Machine learning and applied statistics
	Motivations
	Prediction models from data
	Regression setting
	The global modeling approach
	The local modeling approach
	Global vs. local modeling
	Global vs. local modeling
	Lazy vs. eager modeling
	Examples
	Some history
	Local modeling procedure
	The bandwidth trade-off: overfit
	The bandwidth trade-off: underfit
	Bandwidth and bias/variance trade-off
	Existing work on bandwidth selection
	Existing work (II)
	Data-driven bandwidth selection
	Original contributions
	Recursive-least-squares in space
	PRESS statistic and leave-one-out
	The regression task
	Local Weighted Regression
	Local Weighted Regression (II)
	Linear Leave-one-out
	Rectangular weight function
	Recursive local regression
	Recursive PRESS computation
	Model selection
	Local Model combination
	From local learning to Lazy Learning (LL)
	Experimental setup for regression
	Regression datasets
	Experimental results: paired comparison
	Award in EUFIT competition
	Lazy Learning for dynamic tasks
	Embedding in time series
	
	One-step and multi-step-ahead prediction
	Multi-step-ahead-prediction
	Iteration of a one-step-ahead predictor
	Local Modeling in the time domain
	Local Modeling in the I/O space
	Local modeling in the embedding space
	Conventional and iterated leave-one-out
	It Press in the space $X 
ightarrow Y 
ightarrow Z$
	From conventional to iterated PRESS
	The Iterated multi-step-ahead algo
	The Santa Fe time series
	A series: training set
	A series: one-step criterion
	A series: multi-step criterion
	Experiments: The Santa Fe Time Series A
	The Santa Fe Time Series D
	Award in Leuven Competition
	Lazy Learning for iterated prediction
	Complexity in global and local modeling
	Feature selection and LL
	
	Racing for feature selection
	
	
	Sub-sampling and LL
	RACSAM for feature selection
	Experimental session
	Experimental results
	Applications
	Software
	The importance of being Lazy
	Future work

