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Algorithm-based assessment

Consider

1.

an assessment criterion the Mean Integrated Squared Error
(MISE)
MISE(N) = Ep, [R(an)]

a parametric class of hypothesis functions h(-, ) with a € A. Let
us consider the case where the set A is structured into a nested
sequence of sets:

AMC---CA;CL..As=A (1)

where s is an index of complexity.
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Model selection

The learning problem can then be decomposed in two steps:

1. the estimation of MISE. This can be performed either in an
analytical or resampling way.

2. the selection of the optimal complexity on the basis of the
estimate. The algorithm of model selection uses the estimates the
generalization error of the learned hypothesis function A(-,af, )
fors =1,...,5 and returns the one expected to have the lowest
one.
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Analytical estimation of MISE

We will consider two methods:

Final prediction error: this method holds for linear targets and linear
hypothesis functions.

Akaike criterion: this method holds when the target and the hypothesis
belong to the same parametric family.
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Expectation of the empirical error

The expectation of the residual sum of squares can be written as
Ep,[Remp) = Ep,[e’'e] = Ep,[Y!' PY] = oitr(P) + E[Y'] P E[Y]
Since tr(ABC) = tr(CAB)
tr(P) =tr(I — H) =N —tr(X(XTX)"1x") =
=N -tr(X'X(X'X)™"hY=N—tr(I,) =N —p
we have
Elee] = (N —p)og + (XB)" P(XB) =
= (N —p)o2 +8'XT(1 - X(XTX)"I1XThYXB = (N —p)o?

This is the expectation of the error made by a linear model trained on
D to predict the value of the output in Dy.
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Bisedness of the empirical error

It can be shown that in the linear case
Ep,[Remp] = Ep,[e’ €] # MISE
As a consequence, if we replace Remp With
ele + 203Vp

we obtain an unbiased estimator.

Nevertheless, this estimator requires an estimate of the noise variance.
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Final prediction error

Given an a priori estimate 52, we have the Predicted Square Error
(PSE) criterion
where ay = and p =n + 1.

Taking as estimate of o2,

we have the Final Prediction Error (FPE)

~ 1+4+p/N

FPE=1— %

Remp(an)
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Maximum likelihood formulation of learning

The derivation of the Akaike criterion is based on a maximum
likelihood formulation of the learning problem.

Consider a training set D generated according to the probability
distribution F,(-) and a parametric class of density functions
g(z,0), with 8 € ©, which approximates the probability F,(-).

the maximum likelihood approach consists in returning an
estimate of 6 on the basis of the training set Dy . The estimate is

On = arg max Lemp(0)

where Lgmp(0) is the empirical log-likelihood
Lemp Z lng Zi, 0
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We define, in analogy with the functional risk, the quantity L(6),
l.e. the expected log-likelihood of the distribution g(-, 6)

L(9) = /Z p(2)Ing(z,0)dz 2)

The quantity L(#) is negative and represents the accuracy of
g(z,0) as estimator of p,(z). Therefore, the larger the value of
L(0) the better is the approximation of p(z) returned by g(z, 8).

We define with 6, the parameter of class 8 which maximizes the
expected log-likelihood:

By = L(6
o = argmax L(0)
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The maximum likelihood analogous of the MISE is the mean
expected log-likelihood

Ly = Ep. [L(Oy)] = /Z 1(63)dPN (D) 3)

that is the average over all possible realizations of a dataset of
size N.
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The Akaike’s information criterion

The derivation of the Akaike’s criterion is based on the following
assumption: there exists a value 6* € © so that the probability
model g(z,0*) is equal to the underlying distribution P(z).

The Akaike’s criterion states that the quantity

n

AIC = Lemp(O) — =

IS an unbiased estimate of the mean expected log-likelihood.
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Resampling techniques for MISE estimation

The most known techniques are

Cross-validation: it is known to provide a nearly unbiased estimate of
the MISE. However, the low bias of cros-validation is often paid by
high variability.

Bootstrap: they aim to reduce the variability of MISE predictions.
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Cross-validation

The basic idea of cross-validation is that one builds a model from
one part of the data and then uses that model to predict the rest
of the data.

The dataset Dy is split k£ times in a training and a test subset, the
first containing N;,. samples, the second containing N;; = N — N,
samples.

Each time, N;,. samples are used by the parametric identification
algorithm £ to select a hypothesis oy, ,i=1,...,k, from A and
the remaining V;s samples are used to estimate the error of

h('7 CV?];V”)

A common form of cross-validation is the “leave-one-out” (I-0-0).
Let D(;) be the training set with z; removed, and h(z, ay ;) be the
corresponding prediction rule. The |-0-0 cross-validated error
estimate is

1 N
W ile) == \ '~/ 1/ \ D\
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L.eave-one-out

A common form of cross-validation is the “leave-one-out” (I-0-0).
Let D(;) be the training set with z; removed, and h(z, ay(;) be the
corresponding prediction rule. The |-0-0 cross-validated error
estimate is

/\

N
1
MISELO :NZ yw (LUZ,OéN(Z)))

Statistical learning theory — p.14/23



L.eave-one-out unbiasedness

The almost unbiasedness of leave-one-out can be shown in the
following manner

Theorem 1 (Devroye et al. 1996).
Ep, [MISE,00] = Ep,, ,[R(an_1)] = MISE(N — 1)

Proof.

—_— 1
EDN [MISELOO] — EDN N Z C (yu h(wu aN(z))) —
1=1

— Z xy.Dn_1 [C (¥, h(x,an-1))] = Ep,_, [R(an_1)] = MISE(N—1)
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Other estimation techniques

Cross-validation provides a nearly unbiased estimate of MISE but
the low bias is often paid by high variability.

Bootstrap estimates can be thought of as smoothed versions of
cross-validation.

The bootstrap has another important advantage: it also provides
a direct assessment of the variability of the estimates of

1. the parameters ay,
2. the prediction error MISE.
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Boostrap estimates of prediction error (1)

The simplest bootstrap approach generates B bootstrap samples
D) , estimates the model A(-, o)) on each of them, and then
applies each fitted model to the original sample Dy to give B

estimates
(1) o

I\/IISEBOO = Z(yi — h(z;, Oé(b)))2

1=1

of the prediction error.

The overall bootstrap estimate of prediction error is the average of
these B estimates.

N

—— Z e ®) 141 ,
MISEgo j{: BO EE:FV:E: -—lza%, )

b: b=1 1=1
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Boostrap estimates of prediction error (2)

This simple bootstrap approach turns out not to work very well. A
second way to employ the bootstrap pardigm is to estimate the
bias (or optimism) of the empirical risk.

BiaSﬁS\Eemp = MISE — EDN[Remp]

The bootstrap estimate of this quantity is obtained by generating
B bootstrap samples D ;) estimating the model k(-, a)) for each
of them and calculating the difference between the MISE on Dy
and the empirical risk on D).

b=

B
. MSEenm 1 b
Biaspoo ™ = §§ 'MISEgoo — §§ 'R
1 b=1

The final estimate is then

—2
MISEgoo = Remp + Biasgar
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Other bootstrap estimates

—_—

Let us consider the simple bootstrap estimator MISEgpg. This is
obtained by calculating the prediction error of a4 for each
elements of Dy.

One problem with this estimate is that we have points belonging
to the training set D,y and test set Dy. In particular it can n be
shown that the percentage of points belonging to both is 63.2%.

In order to remedy to this problem, an idea could be to consider
as test samples only the ones that do not belong to D .
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Other bootstrap estimates (1)

——0
We will define by MISEgo5 the MISE computed only on the
samples that do not belong to D).

WS\E(E)aoo— Z Y (yi — bz, o))

1=1 bEC

where C; is the set of indices of the bootstrap samples D ;) that
do NOT contain ¢ and B; is the number of such bootstrap samples
D

(b)-
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The .032 estimator

However, it can be shown that the samples used to compute
——0
MISEgqg are particularly hard test cases (too far from the training

——0

set) and that consequently MISEgqg is a pessimistic estimate of
MISE.

On the other side, the test cases used in I\WS\EemID are too easy

(too close to the test set) and consequently I\WS\Eelmlo IS an
optimistic estimate of MISE.

A more reliable estimator is provided by the weighted average of
the two quantities

——.632

MlSEBOO = (0.368 x MSEemp + 0.632 % MISEBOO
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Supervised learning procedure
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The supervised learning procedure

1. A nested sequence of classes of hypotheses
A C---CA;C ... Ag

is defined so that A* = UY_, A,.

2. An hypothesis a%;, s =1,...,5, is selected by minimizing the
empirical risk (parametric identification ).

3. A validation procedure returns G, which estimates the
generalization error G3; of the hypothesis a5;.

4. The hypothesis a3, with § = arg min, G, is returned as the final
outcome (model selection).
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