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From statistics to learning� Learning is the problem of finding a desired dependence using a
limited number of observations.� The problem of learning is so general that almost any question
that has been discussed in statistical science has its analog in
learning theory.� However, some very important general results were first found in
the framework of learning theory and then reformulated in the
terms of statistics.� In particular, learning theory for the first time stressed the problem
of

1. small sample statistics,

2. nonparametric assumptions,

3. nonlinearity
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Definition of learning method� A learning method is an algorithm (usually implemented in
software) that estimates an unknown mapping (dependency)
between a system’s inputs and outputs, from the available data,
i.e. known input-output samples.� Once such a dependency has been accurately estimated, it can
be used for prediction of system outputs from the input values.� The goal of learning is the prediction accuracy for future data,
also known as generalization.
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Learning problem
Two are the major problems of learning

1. To estimate the desired function from a wide set of functions.

2. To estimate the desired function on the basis of a limited number
of examples.

The assumption is that the observed data are somehow representative
of the unknown probabilistic phenomenon underlying the data.
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Supervised learning: the actors� Multidimensional input � � ��

and scalar output � � �

.� A finite number of noisy input/output observations (training set��� ).� No a priori knowledge on the process underlying the data.� A test set of input values for which an accurate generalization or
prediction of the output is required.
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Statistical formulation of a learning machine� A data generator of i.i.d input vectors 	 � 
 � � �

according to
some unknown (but fixed) probability distribution

��
 � � � .� A target operator, which transforms the input 	 into the output
value � � � � �

according to some unknown (but fixed)
conditional distribution

��� � � � � � .� A training set

� � � �� ���� �� �� � �� � �� �� � � �� � � � � �� � 
made of

!

pairs

� �"� �" � � # � 
%$ �

independent and identically distributed
(i.i.d) according to the joint distribution

�'& �)( � � � �� �� � � � � �� � � � � � �
 � � �
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Statistical formulation of a learning machine
A learning machine has three components:

1. A class of hypothesis functions

* �,+� - � with - � .

. Think, for
example to the class of linear functions

* �,+� - � � � / -. In the
following, we will assume that finding the required function means
determining the corresponding value of the parameter -.

2. A cost function

0 � �� * � � � � . For instance, a quadratic cost function.

3. An algorithm

1

of parametric identification which takes as input
the training set

� � and returns as output one hypothesis function* � +� - � �

where - � � .
- � � - � ��� � � 23 45 6879: ; <

emp

� - �

minimizes the empirical risk

<
emp

� - � � = !
�

"?> �
0 � �"� * � �"� - � �

constructed on the basis of the data set .
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Assessment criteria
Functional risk: it averages over the


 �

-domain the cost

0

for a given
hypothesis

* �,+� - � �

:

< � - � � � @ 
 � AB � �C� D � EGF H 0 � �� * � �� - � � �I �� � � � � �I �
 � � �

The hypothesis - � is kept fixed.

MISE: Mean Integrated Squared Error: it is the average of the functional
risk

< � - � �

over the ensemble of training sets with

!

samples:

MISE � @�J K A < � - � � D

In this expression

< �ML � �
is a function of the random variablesN � .
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Functional risk vs. MISE
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Three learning problems
The previous formulation is very general and encompasses three
well-known problems:

1. Classification or pattern recognition

2. Regression

3. Density estimation
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Classification
It is an example of learning problem where� the target’s output � takes only two values � � � � �O � = 

� the class of hypothesis is made of indicator functions, that are
functions which take only two values: zero and one.� the cost function is

0 � �� * � �� - � � �
PQ

R
O

if � � * � �� - �

=
if � S � * � �� - �

The functional risk in this case represents the probability of different
answers between the target and the indicator function

* � �� - � .
The problem consists then in finding a function that minimizes the
probability of classification error when the probability distribution is
unknown but a training set is given.
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Regression
It is an example of learning problem where� the target’s output � is a real value� the class of hypothesis is made of real value functions� the cost function is

0 � �� * � �� - � � � � �UT * � �� - � � �
It is well known in statistics that the function that minimize the
functional risk is

* � �� - V � � �W � � � � �I � � �I �� � � � � �

The problem consists then in estimating the regression function when
the probability distribution is unknown but a training set is given.
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Density estimation
It is an example of learning problem where� we consider only the input random variable 	

� the class of hypothesis is the set of probability densities
* � �� - � ,� the cost function is

0 � * � �� - � � � T XZY 4 � * � �� - � �
It is known that the generator density is the one that minimize the
functional risk with the above cost function.
Density estimation boils down to minimizing a functional risk when the
probability distribution is unknown but a training set is given.
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Illustrative example
We consider a supervised learning problem where :� The input is a scalar random variable 	 � �

with a uniform
probability distribution over the interval

AT [� [ D

.� The target is distributed according to a Gaussian distribution with
mean � \ and unit variance.� The training set is made of

! � = O O

pairs.
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The learning machine is characterized by the following three
components:

1. A class of hypothesis functions

* � �� - � � - � made of all the linear
models passing through the origin. The class

.

is then the set of
real numbers.

2. A quadratic cost

0 � �� * � � � � � � �T * � � � � � .

3. An algorithm of parametric identification based on the
least-squares technique. The empirical risk is the quantity

<

emp

� - � �
�] ]

"?> �
� �" T - �" � �

If the knowledge on the joint distribution was available, it would be
possible to compute also the risk functional as

< � - � � = ^
�

_ �
� � \ T - � � � I � ` =
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Empirical risk
The empirical risk for the training set

� � (y-axis) vs. the parameter
value (x-axis).
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Functional risk
The functional risk (y-axis) vs. the value of parameter - (x-axis).
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Two interpretations of the learning problem
Hypothesis-based: it is the interpretation proposed by Vapnik. The goal

of the hypothesis-based approach is to estimate the performance
of the selected hypothesis - � . The main assumption is that
averaging over all possible training sets would be unnatural given
the single realization available. Since the distribution of the data is
not known, hypothesis-based methods search for distribution-free
bounds. As a drawback, the results might be too conservative for
a specific learning problem.

Algorithm-based: it focuses on the estimation of the Mean Integrated
Squared Error. A learned hypothesis is seen as a function of the
data

� � : since

� � is a random variable, the hypothesis is
random as well and must be assessed averaging different
realizations. It would be desirable to repeat several times the data
generation and to run each time the learning algorithm. since the
use of repeated realizations is not viable in a real learning
problem resampling methods are employed. Statistical learning theory – p.20/51



The Vapnik’s approach� The Vapnik’s approach proposes a comprehensive theory of the
problem of learning and generalization.� His work returns a large amount of results from the theoretical
conditions for consistency of the learning process to constructive
methods to select function estimators.� In the following the functional risk notation is at first rewritten as

< � - � � 0 � �� * � �� - �I ��c 
 F � d � �� � � � e � ( � - �I ��& � ( � - � .

where ( � � �� � � , e �)( � - � � 0 � �� * � �� - � � , the probability measure��& �,+ �

is unknown but an i.i.d. sample ( �� � � �� ( � is given.� In the following the empirical risk is rewritten

<
emp

� - � � � = !
�

"?> �
e �)( "� - � �
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Decomposition estimation/approximation� Let us define with

. V

the set of all possible single valued
mappings

fhg 
 i �

and consider the quantity

- V � 2 3 4 5 679: ;j < � - �
Thus,

< � - V � represents the absolute minimum rate of functional
risk. In the classification case, the model - V is called the Bayes
classifier and

< � - V � the Bayes error.� Let -] � 2 3 4 5 679: ; < � - �

be the hypothesis in the class
.

that minimizes the functional risk.
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Decomposition estimation/approximation (II)
We can write the equality

< � - � � T < � - V � � � < � - � � T < � -] � � ` � < � -] � T < � - V � � �

� Err kl m npo � - � � ` Err qr rs tu � - � �

� It is common practice to define the first right-hand term as
estimation error and the second term as approximation error. The
approximation error is intrinsically related to the approximation
capabilities of the class of hypothesis, while the estimation error
represents the discrepancy between the best generalization error
in the class and what is obtained from

� � .� The size of

.

is a compromise: when the size of

.

is large,

< � -] �

may be close to

< � - V � , but the estimation error is probably large
as well. If the size of

.
is too small, there is no hope to make the

approximation error small
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Decomposition estimation/approximation (III)
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Functional and empirical risk
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The ERM principle� A key issue is the the convergence of the empirical risk

<
emp

� - � �
to the best functional risk into the class

.

, or in other terms the
consistency of the Empirical Risk Minimization (ERM) principle.� The ERM principle is consistent for the set of functions

e �)( � - �

and for the probability distribution

v & �)( �

if the following two
sequences converge in probability to the same limit

< � - � � wT T T T i� xy < � -] �

<

emp

� - � � wT T T T i� xy < � -] �
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Sufficient condition
The following two relations hold between the quantities presented in
the figure

Lemma 1 (Devroye 1988).

< � - � � T 687 z9: ; < � - � � < � - � � T < � -] �|{ [~} �� 9: ; � <
emp

� - � T < � - � �

� <

emp

� - � � T < � - � � � { } �� 9: ; � <

emp

� - � T < � - � �
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From this lemma, we see that upper bounds for} �� 9: ; � <

emp

� - � T < � - � � provide us with upper bounds for three
quantity simultaneously

1. the quantity

< � - � � T 687 z 9: ; < � - � which returns the sub-optimality
of the the model chosen by the ERM principle within the class- � .

2. the quantity

� <

emp

� - � � T < � - � � �

which returns the error
committed when the empirical risk is used to estimate the
functional risk of the selected model

3. the quantity

� <

emp

� - � � T 67 z 9: ; < � - � � which returns the error
made when the empirical risk is used to estimate the functional
risk of the best model in the class

.

It can be shown that bounding } �� 9: ; � <

emp

� - � T < � - � � is not only a
sufficient but also a necessary condition for consistency of the ERM
principle. Statistical learning theory – p.28/51



Key theorem of learning
Theorem 1 (Vapnik,Chervonenkis, 1991). Let

e �)( � - � - � .

be a set of functions

that satisfy the condition

�{ e �)( � - �I v � ( � { �
Condition necessary and sufficient for the ERM principle to be consistent is that the

empirical risk

<

emp

� - � converges uniformly to the actual risk
< � - � over the sete � ( � - � , - � .

that is

X 65� xy Prob } �� 9: ; � < � - � T <
emp

� - � �?� � � O � �� O

This theorem replaces the problem of consistency with the problem of
uniform convergence.
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Beyond classical statistics
The uniform convergence is guaranteed by the Law of Large Numbers
in the trivial case of the set of functions

e � ( � - � containing only one
element. For a real-valued bounded function

�{ e � ( � - �|{ �

using Hoeffding’s inequalities we have

Prob

����� e � ( � - �I v �)( � T = !
�

"?> �
e � ( "� - � ����� � � �� �� T [ �� !� �T � � �
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Beyond classical statistics (II)
The generalization is easy for the case where

e � ( � - � has a finite
number of

�

elements:

Prob } ���� �� �
����� e �)( � - �I v � ( � T = !

�
"?> �

e � ( "� - � ����� � � �

�� �� T [ �� !� �T � � � �� �� X7 �
! T [ ��� �T � � � !

In order to obtain uniform convergence for any �, the expression

X 65� xy
X7 �

! � O

has to be true.
A similar relation will be indicative for uniform convergence also in the
case of an infinite set.
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Uniform convergence� Consider the sequence of random variables

�� � } �� 9: ; � < � - � T <

emp

� - � � � } �� 9: ; e � ( � - �I � �)( � T = !
�

"?> �
e � ( "� - �

where the set of functions

e � ( � - � , - � .

, has an infinite number
of elements.� In contrast to the cases with a finite number of elements the
sequence of random variables

�� for a set with an infinite number
of elements does not necessarily converge to zero.� The problem becomes: To describe the properties of the set of
functions

e � ( � - � , - � .
, under which the sequence of random

variables

�� converges in probability to zero.
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Entropy of a set of functions� Let

e � ( � - � , - � .

, be a set of indicator functions. Consider a
sample

��� .

.

contains infinitely many functions, only a finite
number of clusters of functions is distinguishable for a given
sample

��� .� The idea is that, even if a set� Let us characterize the diversity of the set of functions

e �)( � - � ,- � .

, on the dataset

� � by the quantity
; � ��� �

that evaluates
how many different separations of the given sample can be done
using functions from the family

e � ( � - � , - � .

.� Note that

; � N � �

is a random variable since

N � is a random
variable.� The quantity � ; � ! � � @ X7 ; � N � �

is called the entropy of the set of functions on the given data.
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Entropy and convergence
Theorem 2. A necessary and sufficient condition for the two-sided uniform

convergence of the functional risk to the empirical risk is that

X 65� x y
� ; � ! �! � O

� In other words, the ratio of the VC entropy to the number of
observations should decrease to zero with increasing number of
observations.� This is a sufficient condition for the consistency of the ERM
principle (necessary and sufficient conditions are given by a
slightly different construction). Note that this condition depends
on the underlying probability distribution

� & � + �

.� Note that the entropy of functions has taken the place of the
number of function in the finite case.

Statistical learning theory – p.34/51



Other measures of capacity
Consider two new concepts that are constructed on the basis of; � ��� �

.

Annealed VC entropy: it is defined as

� ;�� � � ! � � X7 @ A ; � N � � D
.

Growth function: it is defined as

�; � ! � � X7 5 2 ���K
; � ��� �

It can be shown that

� ; � ! �{ � ;�� � � ! �{ �; � ! �
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Rate of convergence
Definition 1 (Fast convergence). We say that the asymptotic rate of convergence of

the empirical risk to the functional risk is fast if for any

!� !] , the exponential

bound

Prob

� < � - � T < � L � � � � �� _ ��� � � �
holds true, where �� O

is some constant.

It can be shown that

Theorem 3. Sufficient condition for a fast rate of convergence is that

X 65� xy
� ;�� � � ! �! � O

Note that this condition depends on the underlying probability
distribution

� & �,+ �

.
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Universal fast convergence� The results on consistency and fast convergence presented
before are dependent on the (unknown) underlying probability
distribution

� � + �

.� What makes the Vapnik approach a milestone in learning theory
was the ability to discover a theoretical result independent of the
probability measure( i.e. independent of the problem to be
solved). He showed that:

Theorem 4. Necessary and sufficient conditionfor consistency of ERM for any

probability measure is X 65� x y
�; � ! �! � O

If this condition holds true, then the rate of convergence is fast.

Statistical learning theory – p.37/51



Distribution independent Bound
Vapnik proved that in the pattern recognition case

Prob } �� 9: ; � < � - � T <

emp

� - � � � � { ^� �� �; � [ ! �
! T �� !

This means that, provided

�; � ! �

does not grow linearly in

!
, it is

actually possible to make nontrivial statements about the functional
risk

< � - � �

on the basis of the empirical risk
<

emp
� - � �

.
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Confidence interval� If we specify the probability with which we want the bound to hold,
we can get a confidence interval, which tells us how close the risk
should be to the empirical risk.� By setting the right-hand side of the bound to

�� O
, and then

solving for �, we get that with a probability

= T �
.

< � - � �|{ <

emp

� - � � ` �
[

where � � ^ �; � [ ! � T X7 � � � ^ �!

� We call the right-hand side, the guaranteed risk.
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VC dimension� It summarizes the behaviour of the growth function

�; � ! �
with a

single number.� If

.

is as rich as possible, so that for any size

!

, the points can be
chosen such that an hypothesis function

* �,+� - � , - � .
can

separate them in all

[ �

possible ways, then
�; � ! � � ! X7 [

. If
this is the case, the convergence does not take place and the
learning is not successfull.� Vapnik and Chervonenkis showed that either the relation�; � ! � � ! X7 [

holds true for all
!

, or there exists some maximal!

for which this relation is satisfied. This maximal

!

is called the
VC dimension and is denoted by

*
.� By construction, the VC dimension is the maximal number of

points which can be shattered by functions in

.

.
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Theorem 5. Any growth function either satisfies the equality

�; � ! � � ! X7 [

or is bounded by the inequality

�; � ! �{ * X7 !* ` =
where

*

is an integer such that when

! � *

�; � * � � * X7 [��; � * ` = � � � * ` = � X7 [

We will say that the VC dimension of a set of indicator functionse � ( � - � is infinite if the growth function is linear.
We will say that the VC dimension of a set of indicator functionse � ( � - � is finite and equals

*
if the corresponding growth function is

bounded by a logarithmic function with coeficient

*

.
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VC dimension and number of parameters� The finiteness of the the VC dimension is a necessary and
sufficient condition for distribution independent consistency of
ERM learning machines� The VC dimension of the set of linear functions with   ` =
parameters is equal to

* �   ` =

. Note that for the set of linear
functions the VC dimension equals the number of free parameters
but that in the general case this is not true.� The VC dimension of the set of functions

* � �� - � � } 687 - �� - � �

is infinite.� Generally speaking, the VC dimension of a set of functions can be
either larger than or smaller than the number of parameters.� The VC dimension of the set of functions (rather than the number
of parameters) is responsible for the generalization ability of
learning machines.
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Structural risk minimization� Consider the confidence interval for a set of functions

e � ( � - � ,- � .

, having a finite VC dimension

*

. Then the second
summand on the right-hand side of the inequality is

� � *� !� � � � ^ * ¡ X7 � �¢ ` = £ T X7 � � � ^ �

!

� When

! � *

is large, the

�

term is small. The actual risk is then
close to the empirical risk. This means that a small value of the
empirical risk gurantees a small value of the (expected) risk.� If

! � *

is small, a small

<

emp

� - � �
does not guarantee a small

value of the actual risk. In this case, to minimize the actual risk< � - � �

one has to minimize the right-hand side of the confidence
interval simultaneously over both terms.� Note that the first term depends on a specific function

* �,+� - � �

while the second term depends on the VC dimension of the whole
set of functions. Statistical learning theory – p.43/51



Structural risk minimization� To minimize the right hand side of the bound of risk, one has to
make the VC dimension a controlling variable.� The SRM principle inductive principle is intended to minimize the
risk functional with respect to the empirical risk and the
confidence interval.� Let the set

¤

of functions

e � ( � - � , - � .
be provided with a

structure consisting of nested subsets of functions¤¦¥ � � e �)( � - �� - � . ¥  such that

¤� � ¤� � + + + � ¤ � and the VC
dimension

* � of each set

¤ � of functions is finite.� For a given set

� � , the SRM principle chooses the functione � ( � - � � minimizing the empirical risk in § � for which the
guaranteed risk (right-hand side) is minimal.� The SRM principle defines a trade-off between the quality of the
approximation of the given data and the complexity of the
approximating function. Statistical learning theory – p.44/51



Structural risk minimization
Let - ¥� be the hypothesis that minimizes the empirical risk in the set- � . ¥ : - ¥� � 2 3 4 5 6879: ;©¨ <

emp

� - �

It follows that with probability

= T �

, the risk

< � - ¥� �
is bounded as

< � - ¥� �|{ <

emp

� - ¥� � ` � � *� !� � � � SRM

� § �

The term SRM(s) is made of the sum of the empirical risk and a term
which increases as the VC dimension of the class increases.
The SRM method chooses the hypothesis - ª¥� where

«§ � 23 45 687 SRM

� § �
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Structural risk minimization

complexity
h

Bound on the risk

Confidence interval

Empirical Risk

s S1
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Universal consistency of SRM
Definition 2. An hypothesis - � is called universally strongly consistent if

X 65� x y < � - � � � < � - V �

for any distribution of

� 	� � � .
Theorem 6. Let

.� � .�8� � � � be a sequence of classes of hypothesis such that for

any distribution of

� 	� � � ,

X 65¥ xy 67 z9: ;G¨ < � - � � < � - V �

Assume also that the VC dimensions

*� � *� � � � � are finite and satisfy

y
¥ > � � _ ¢ ¨ � ¬

then the hypothesis - ª¥� selected by structural risk minimization is strongly universally

consistent.
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Separating hyperplane
Consider a binary classification problem.
We call a hyperplane

­ V � T ­] � O � ® ­ ® � =
a

¯

-margin hyperplane if it classifies vectors � as follows

� �
PQ

R
=

if

­ V � T ­] ° ¯

T =

if

­ V � T ­] ° �� ±² �

Support Vector Machines provides an algorithm for finding a maximal
margin hyperplane in the separable case.

Statistical learning theory – p.48/51



Separating hyperplane
The followin theorem holds

Theorem 7. Let the input vectors � � ��

belong to a sphere of radius R. Then the

set of

¯

-margin separating hyperplanes has VC dimension

*

which is bounded by

the inequality *{ 5 687 ³ <� ¯�
´�   ` =

It follows that� the VC dimension of a separating hyperplane can be less than  ` =

.� the VC dimension of the set of
¯

-margin separating hyperplanes
with

¯

large is small.
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Science vs. non science
Question: Is there a formal way to distinguish between scientific and
non scientific approaches?
Consider for example, meteorology and astrology. What is the formal
difference between them?� Is it the complexity of the models?� Is it the predictive ability of their models?� Is it their use of mathematics?� Is it in the level of formalism?

None of the aboves can be useful to make a distinction.
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Popper’s theory� In the 1930s, K. Poper suggested his famous criterion for
demarcation between scientific and nonscientific theories.� According to Popper, a necessary condition for a scientific
discipline is the feasibility of its falsification.� By falsification, Popper means the existence of a collection of
particular assertions which canot be explained by the given
theory although they fall into its domain.� If there is no example that can falsify the theory of astrology, then
astrology according to Popper should be considered as non
scientific.� The notion of entropy of of

.
summarizes this notion in the case

of statistical learning. If
� ; � ! � � [ �

then the set of functions

.

is
such that almost any sample

� � (of arbitrary size N) can be
separated in all possible ways by functions of this set.� We call this learning machine nonfalsifiable because it can give a
general explanation (hypothesis function) for almost any data.
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