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Intro

Discovering structure in data:

• Data preprocessing: prepare data for learning (algorithm)

• Algorithm selection: find a learning model fitting the data

Machine Learning Bias

Learn efficiently: make assumptions about data structure (bias)

• Good learning performance ⇔ assumptions hold for data.

Types of bias:

• Representation: data model (language bias)

• Hypothesis evaluation: search heuristics (procedural bias)

• Data configuration: skewness, discretization,. . .
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Meta-learning: definition

How to know if ML bias matches the given data?

Meta-Learning

Use experience of previous ML experiments to learn
(automatically) how to improve automatic learning.

Goals:

• Gain insight into learning behavior to improve existing
algorithms

• Select most promising learning techniques after analysis of
new learning tasks
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Meta-learning

Algorithm selection: start with looking at given data
• Prior knowledge available about dataset?
• Can we compute some data properties?

Approach

• Compute dataset characteristics (size, corr., entropy,. . . )

• Record performance of algorithms on dataset (experiments)

• Predict performance on new datasets (data mining)
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Meta-knowledge base

size #attr. ...

2300 43

Dataset Characteristics

algorithm

C4.5

Algorithm

accuracy runtime ...

.92 43

Performance measures

⇒ Predict performance
on new datasets

• Characteristics of natural datasets

• General: size, #attributes,. . .
• Statistical: corr(attrX , attrY ), skewness, kurtosis,. . .
• Info-theoretic: H(class), H(attr), MI (class, attr), N/S ,. . .
• Landmarkers, model-based characterisations

• Algorithm
• Often default parameters, minimal preprocessing

• Performance measures
• e.g. predictive accuracy and runtime
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The curse of dimensionality
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Curse of dimensionality:

• Many dataset characterizations: high-dimensional space

• Each instance = result of experiment: new dataset

• Limited number of natural datasets: very sparse evidence

• Low generalisability of results

Many more datasets necessary to make good predictions
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Results don’t generalise over algorithms:

• What if we change parameter settings?

• parameters change ML bias (e.g. under/overfitting)
• Hoste & Daelemans, 2005: significant impact on relative

performance

• No link to properties of algorithm (eg. data fragmentation)

Algorithm characterization needed to generalise results
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Explaining learning behavior
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⇒ Predict performance
on new datasets

We can learn when an algorithm fails, but not why

• Representation mismatch/ overfitting?

• No explanation in terms of algorithm properties

More thorough investigation needed to diagnose
failure/success
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Data transformation

No link to preprocessing techniques

• Preprocessing has large impact on algorithm performance

• Hoste & Daelemans, 2005: significant impact on relative
performance

Practical advice should include preprocessing steps
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Descriptive meta-learning

• Goal: Descriptive (vs. comparative) meta-learning

• Investigate specific questions
• “What would be the effect of increasing parameter X on

runtime?”
• “Would an algorithm able to model fine-grained concepts

perform better (or does it overfit)?”

• Explain reasons behind success/failure
• Gain insights into why an algorithm behaves a certain way
• For algorithm selection of future algorithm design
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Experiment databases

C4.5 v.1

MLS heur. ... Dataset TP FP ...

2 gain DS1 945 84

Algorithm parameters Performance measures

• Blockeel, 2005: improve interpretability of ML experiments
• Also see Perlich, 2003: ML results ↔ dataset size

• Build database of large number of experiments, such that
results are:

• Generalisable: use large variety of (synthetic) datasets
• Reusable: store all parameters and measurements (may prove

useful later)
• Reproducible: log all experiment settings (for further tests)

• Online, experimentation in background (cluster)
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Experiment databases
Experiment Database

Algo impl. Par. sett. Dataset TP FP ...

C4.5 v.1 C451 - 1 DS1 945 84

Dataset characteristics

ID size #attr ...

DS1 2300 43

C4.5 v.1 parameter settings

ID MLS heur ...

C451-1 2 gain

General algorithm properties

ID model lin? ...

C45v1 DT no

Performance measures

TP FP ... bias err var err

945 84 43 62

• Experiments not focused on one
hypothesis, but to learn about
algorithm

• Allows thorough investigation:
• Test hypothesis by querying expDB

• “What is the effect of parameter
X on runtime for large datasets?”

• Find patterns by data mining expDB
• Rules, decision trees, association

rules,. . .
• Prediction of algorithm

performance (e.g. kNN)
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• Maintain validity of meta-learning
experiments

• Unbiased: hide large range of different
concepts + characterize concept

• model characteristics
• concept variation
• example cohesion,. . .

• “Natural”: approximate characteristics
of natural datasets

• complex attribute relations
• complex value distributions
• noise, missing values,. . .

• Coverage: control characteristics to
cover meta-feature space

• experiment design
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Dataset generator

• Ongoing work

• Underlying concepts: several modules (DT, NN,. . . )
• could be combined

• Example generation: multi-tier approach
• Low-level description

• initializes attribute generators for imposing dependencies,
value distributions, noise,. . .

• Can be nested

• High-level description
• based on dependency model (eg. Bayesian net) and high-level

parameters

• Built on WEKA
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Attribute generator: value distributions

• Attribute generator: value distributions
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• Attribute generator: dependencies
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• Algorithm parameters settings
• Stored as parameter name-value

pairs

• General algorithm properties
• representation model
• dependency on linear separability,

conditional independency,. . .
• use of data fragmentation, attribute

summation,. . .
• ability to handle fine-grained

concepts, local relevance,. . .
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Investigating inductive performance
Experiment Database
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Preprocessing steps

Data preprocessing has very large effect on inductive performance

• Experiment database: effect of dataset char. on performance

• Separate database: effect of preprocessing on dataset char.

• For new dataset characteristics:
• Predict how preprocessing changes characteristics
• Predict algorithm performance on projected dataset char.

• Propose (ranked) list of machine learning “strategies”
algorithm

experiments
querying, datamining

preprocessing

experiments
matching

new
dataset

meta-features

learning “strategies”:

prepr.X→ prepr.Y→ algo A

prepr.X→ prepr.Z→ algo C

. . .
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Preprocessing steps

Strong link between preprocessing steps and bias/variance error:

• Feature construction and transformation

• reduces bias error by changing data representation
• e.g. removing attribute correlations

• Feature selection

• reduces variance error by removing irrelevant attributes
• e.g. less “noise”, less chance of overfitting

We can use bias/variance error to predict when preprocessing step
may improve algorithm performance
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Conclusion

• Ideas for a descriptive form of meta-learning
• thorough investigation of algorithm behavior
• explain behavior in terms of their properties

• Experiment databases: efficient experimentation
• synthetic datasets: unbiased, “natural”, covering
• generalization over algorithms

• parameter settings
• general algorithm properties

• bias/variance error decomposition

• Idem for effect of preprocessing techniques
• learn when preprocessing useful
• propose machine learning “strategies”
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