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Motivation
It is not clear what we are optimizing when doing spectral
clustering.
Due to the lack of a clear optimization problem, the
parameters selection is not straightforward.
Clustering of new points should rely on approximation
techniques.



Spectral Clustering Weighted Kernel PCA Empirical Results Conclusions Future Work

Spectral Clustering

Class of clustering algorithms that use the eigenvectors of
an affinity matrix derived from the data.
The data are represented as an undirected graph.
The objective is to minimize the cost of cutting the graph
into two disjoint sets A,B.

The Cut

cut(A,B) =
∑

a∈A,b∈B
w(a, b)

where w(a, b) is the weight between node a and b.
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Spectral Clustering
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Cut Criteria

The Mincut

min
q

Jmincut = qT(D−W)q

such that q ∈ {−1, 1}N

D: degree matrix, W: affinity matrix, q:
cluster membership indicator.

NP-hard!
Efficient solution by relaxing
q → q̃T q̃ = 1

Bias for small sets.

The Mincut Relaxation

Lq̃ = λq̃

L: graph Laplacian.
Solution: Fiedler vector.
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Cut Criteria

Normalized Cut

min
q

Jncut =
qTLq
qTDq

such that

{
q ∈ {−b, 1}N

qTD1N = 0

NP-complete!
Efficient solution by relaxing
q → q̃T q̃ = 1

Size of the clusters is taken into
account.

Normalized Cut
Relaxation

Generalized
eigenvalue problem:

Lq̃ = λDq̃
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Cut Criteria

Markov Random Walks
Probabilistic interpretation.
P = D−1W.
ij-th entry of P → probability of moving from node i to node
j.

Solution

Pr = ξr.

Solution is the eigenvector corresponding to the second largest
eigenvalue.

Equivalent to the normalized cut:

r = q̃, λ = 1− ξ
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Cut Criteria

Kernel Alignment

Measure of similarity between a kernel and an objective
function:

max
q

A(K, q) = qTΩq

such that q ∈ {−1, 1}N

where Ω is the kernel matrix.

Kernel Alignment Relaxation

After relaxing q the dual solution is an eigenvalue problem:

Ωq̃ = λq̃

which corresponds to kernel PCA!
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LS-SVM Approach to Kernel PCA

LS-SVM Approach to Kernel PCA
Clear primal optimization problem to
which kernel PCA is the dual.
Underlying loss function is explicit → L2.

max
w,e

Jp(w, e) = γ
1
2

eTe− 1
2

wTw

such that e = Φcw

Φc is the N × nh feature matrix:

Φc =


ϕ(x1)T − µ̂T

ϕ

ϕ(x2)T − µ̂T
ϕ

...
ϕ(xN)T − µ̂T

ϕ



Dual
Eigendecomposition of
the centered kernel
matrix Ωc:

Ωcα = λα
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Introducing Weights

Weighted Kernel PCA
Introducing a weighting matrix V into the
formulation:

max
w,e

Jp(w, e) = γ
1
2

eTVe− 1
2

wTw

such that e = Φw

Φ = [ϕ(x1)T ;ϕ(x2)T ; . . . ;ϕ(xN)T ], V = VT > 0.

Dual
Non-symmetric
eigenvalue problem:

VΩα = λα

Equivalence

If V = D−1 then weighted kernel PCA is equivalent to the
random walks algorithm.
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Relation with Spectral Clustering

Relation with Spectral Clustering

Changing the weighting matrix V leads to different spectral
clustering algorithms:

Method
Original

V
Relaxed

Problem Solution
Alignment Ωq = λq IN α(1)

NCut Lq = λDq D−1 α(2)

Random
D−1Wq = λq D−1 α(2)

walks
NJW D−

1
2 WD−

1
2 q = λq D−1 D

1
2 α(2)
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Out-of-Sample Extension

Clustering New Points

No straightforward extensions for out-of-sample data points
in the spectral clustering framework.
Extensions can be done via approximation techniques
such as Nyström [Bengio et al., 2003].

Score Variables
No approximation needed! New points can be clustered
using the projection onto the eigenvector solution:

z(xnew) = wTϕ(xnew) =
N∑

l=1

αlK(xl, xnew).

qxnew = sign(z(xnew)− θ)
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Toy Example
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Iris Dataset
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Golub Microarray

Method Nyström RBF k. Weighted KPCA RBF k.
Alignment 0.6 0.6

NCut 0.63 0.72
NJW 0.72 0.86
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Conclusions
Unifying view of spectral clustering based on the weighted
kernel PCA formulation.
Out-of-sample extension based on the primal-dual
formulation insights.
Model selection criterion using the variance of the
projections on a validation set.
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Future Work
Extensions to K-way clustering (more than two clusters).
Semi-supervised clustering (when some training points
have labels).
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