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@ Itis not clear what we are optimizing when doing spectral
clustering.

@ Due to the lack of a clear optimization problem, the
parameters selection is not straightforward.

@ Clustering of new points should rely on approximation
techniques.
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Spectral Clustering

Spectral Clustering

@ Class of clustering algorithms that use the eigenvectors of
an affinity matrix derived from the data.

@ The data are represented as an undirected graph.

@ The objective is to minimize the cost of cutting the graph
into two disjoint sets A, B.

cut(A,B) = > w(a,b)

ac A,beB

where w(a, b) is the weight between node a and b.
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Spectral Clustering

Spectral Clustering




Spectral Clustering
@000

Cut Criteria

The Mincut
mqin e CIT(D - W)q
such that ge{-1,1}"

D: degree matrix, W: affinity matrix, ¢:
cluster membership indicator.

@ NP-hard!
@ Efficient solution by relaxing
9—qq=1

@ Bias for small sets.

The Mincut Relaxation

Lqg=Aq

L: graph Laplacian.
Solution: Fiedler vector.




Spectral Clustering
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Cut Criteria

Normalized Cut

T
. q Lg
Inqln-]ncut qTDq
Normalized Cut
—b, 1V .
such that q€{-b1} Relaxation
¢"Dly =0 ,
@ Generalized

eigenvalue problem:

@ NP-complete!

@ Efficient solution by relaxing
q—q'qg=1

@ Size of the clusters is taken into
account.

L§ = \Dg
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Spectral Clustering
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Cut Criteria

Markov Random Walks

@ Probabilistic interpretation.

e P=D"'w.

@ ij-th entry of P — probability of moving from node i to node
j.

Pr=¢&r.

Solution is the eigenvector corresponding to the second largest
eigenvalue.

@ Equivalent to the normalized cut:




Spectral Clustering
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Cut Criteria

Kernel Alignment

@ Measure of similarity between a kernel and an objective
function:

maxA(K,q) = ¢'Qq
q

such that ge{-1,1}"

where () is the kernel matrix.

Kernel Alignment Relaxation
After relaxing ¢ the dual solution is an eigenvalue problem:

Qq=Xq

which corresponds to kernel PCA!




Weighted Kernel PCA
°
LS-SVM Approach to Kernel PCA

LS-SVM Approach to Kernel PCA

Clear primal optimization problem to
which kernel PCA is the dual.
Underlying loss function is explicit — L,.

1 T 1 T
nvlv?eXJp(w’e) = g Eigendecomposition of
such that e=d.w the centered kernel
matrix €2,:
®,. is the N x n;, feature matrix:
Qca = A
o)’ — i,
o))" — i,




Weighted Kernel PCA
°
Introducing Weights

Weighted Kernel PCA

Introducing a weighting matrix V into the
formulation:

Non-symmetric

maxJ,(w,e) = fy%eTve — %WTW eigenvalue problem:
w,e

such that e = dw VQa = A\

@ = [p(x1)"; p(x2)75. s 0(n)T], V=V > 0.

Equivalence

If v = D~! then weighted kernel PCA is equivalent to the
random walks algorithm.

%

%,

S
o5

s,




Weighted Kernel PCA
°

Relation with Spectral Clustering

Relation with Spectral Clustering

Changing the weighting matrix V leads to different spectral
clustering algorithms:

Original Relaxed
Method Problem V' | Solution
Alignment Qg = \q Iy o
NCut Lg = \Dq D! a®
Random Dl » @
walks g=dg D @
NOW | D WD :g=Xg| D' | D:a®




Weighted Kernel PCA
°
Out-of-Sample Extension

Clustering New Points

@ No straightforward extensions for out-of-sample data points
in the spectral clustering framework.

@ Extensions can be done via approximation techniques
such as Nystrém [Bengio et al., 2003].

Score Variables

@ No approximation needed! New points can be clustered
using the projection onto the eigenvector solution:

Z(xnew) = xnew § alK xlaxnew

Tinew = SIEN(Z(Xpew) — 9)




Toy Example

Empirical Results
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Empirical Results
L]

Iris Dataset

Mean normalized criterion

Adjusted Rand index / Alignment
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Empirical Results
°

Golub Microarray

o
5

T
1

Adjusted Rand index / Alignment
S
T
1

04t - g
PRt
[ R TP, CR b
y -1 AR
PO e W P pppp
- .
0 h
-0.2 -01 o] 1 02 03 0.4

o
Threshold value 8

] Method \ Nystrom RBF k. H Weighted KPCA RBF k. \
Alignment 0.6 0.6
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Conclusions

Conclusions

@ Unifying view of spectral clustering based on the weighted
kernel PCA formulation.

@ Out-of-sample extension based on the primal-dual
formulation insights.

@ Model selection criterion using the variance of the
projections on a validation set.




Future Work

@ Extensions to K-way clustering (more than two clusters).

@ Semi-supervised clustering (when some training points
have labels).
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