Stylometry research using syntax-based features and Machine Learning techniques

Kim Luyckx (promotor Walter Daelemans) CNTS Language Technology Group

September 25, 2006 CIL Research Contact Day

6

Outline

- PhD research
- Stylometry?
- Methodology
- Exploratory experiments
 - Corpus
 - Results & discussion
 - Conclusions
- PhD: Expected results

6

PhD Research (begin 2007 – end 2010)

- Technical & methodological infrastructure for applied stylometry for Dutch
- Development of tools
 - Corpora
 - Benchmarks
 - Software for linguistic analysis
- Main facets
 - Automatic linguistic analysis
 - (un)superised learning
 - Evaluation

Stylometry?

- 'Stylistic genome' (author, period, genre, register)
 - Style characteristics (invariants): lexical, morphological & syntactic
 - Fiction vs. non-fiction
 - Sex and age groups
- Applications
 - Disputed authorship
 - Historical changes in style Document dating
 - Gender detection
 - Forensic linguistics
 - Plagiarism detection (students, internet, programs)

6

4

Universiteit Antwerpen

6

• <u>Memory-Based</u> <u>Shallow</u> <u>Parsing</u>

- Part-of-speech tagging

[NP1^{Subject} The/DT current/J] advances/NNS NP1^{Subject}]
{PNP [P in/IN P] [NP shallow/NN parsing//NN NP] PNP}
[VP1 allow/VB VP1] [NP2^{Subject} us/PRP NP2^{Subject}]
[VP2 to/TO use/VB VP2] [NP2^{Object} insights/NNS NP2^{Object}]
{PNP [P from/IN P] [NP this/DT field/NN NP] PNP}
{PNP [P in/IN P] [NP stylometry//NN research/NN
NP] PNP} ./.

• <u>Memory-Based</u> <u>Shallow</u> <u>Parsing</u>

- Part-of-speech tagging
- Chunking

[NP1^{Subject} The/DT current/JJ advances/NNS NP1^{Subject}]
{PNP [P in/IN P] [NP shallow/NN parsing//NN NP] PNP}
[VP1 allow/VB VP1] [NP2^{Subject} us/PRP NP2^{Subject}]
[VP2 to/TO use/VB VP2] [NP2^{Object} insights/NNS NP2^{Object}]
{PNP [P from/IN P] [NP this/DT field/NN NP] PNP}
{PNP [P in/IN P] [NP stylometry//NN research/NN
NP] PNP} ./.

• <u>Memory-Based</u> <u>Shallow</u> <u>Parsing</u>

- Part-of-speech tagging
- Chunking
- Identification of syntactic relations

[NP1^{Subject} The/DT current/JJ advances/NNS NP1^{Subject}]
{PNP [P in/IN P] [NP shallow/NN parsing//NN NP] PNP}
[VP1 allow/VB VP1] [NP2^{Subject} us/PRP NP2^{Subject}]
[VP2 to/TO use/VB VP2] [NP2^{Object} insights/NNS NP2^{Object}]
{PNP [P from/IN P] [NP this/DT field/NN NP] PNP}
{PNP [P in/IN P] [NP stylometry//NN research/NN
NP] PNP} ./.

6

- <u>Memory-Based</u> <u>Shallow</u> <u>Parsing</u>
 - Part-of-speech tagging
 - Chunking
 - Identification of syntactic relations
- Feature vectors (f₁,f₂,...,f_n,class)
 - One vector per document
 - Comma-separated features
 - Class label

Learning/Classification

- Training and test phase
- Machine Learning algorithms
 - WEKA (Naive Bayes, Decision Trees, kNN, Neural Networks)
 - TiMBL: weighted kNN
- Ensemble methods (bagging & boosting)
- Feature weighting & selection

Exploratory experiments in Authorship Attribution

Corpus

- Texts from *De Standaard*
- National politics section
- Similar genre and topics
- Average document length: ± 600 words

Class	Training corpus	# words	Test corpus	# words
A (Anja Otte)	100 articles	57,682	34 articles	20,739
B (Bart Brinckman)	100 articles	54,479	34 articles	25,684
O (The Others)	100 articles	62,531	32 articles	21,871

Possible markers of style

- Type-token ratio
- Word length
- Readability (Flesch-Kincaid metric)

$$206.835 - 1.015 \left(\frac{\# words}{\# sentences}\right) - 84.6 \left(\frac{\# syllables}{\# words}\right)$$

- Distribution of parts-of-speech & chunks
- Distribution of frequent function words
- NP and VP chunk internal variation

Results

- 3 authors: A vs. B vs. O
- 2 authors: A vs. B
- TIMBL & WEKA NNet
- F-score: weighted harmonic mean of precision & recall

$$F_{\beta} = \frac{(\beta^2 + 1) * \pi_i * \rho_i}{\beta^2 * \pi_i * \rho_i}$$

6

Performance on three author classes (TiMBL)

Conclusions I: A vs. B vs. O

- Best feature sets: *verbbasic*: 52% *lexical*: 54%
- All feature sets *combined*: 71% F-score
- Syntax-based features: 54% F-score
- WEKA NNet: best feature set: *lexical* (63.63%) *combine* 57.40% *syntax-based* 54.87%

Performance on two author classes (TiMBL)

Feature sets

Conclusions II: A vs. B

- Best feature sets: *patternbin: 65% lexical*: 73%
- All features *combined*: 81% F-score
- Syntax-based features: 66% F-score
- WEKA NNet: combine 65.25% syntax-based 64.45%

- Syntax-based, lexical and token-level feeatures are able to successfully tackle Authorship Attribution problems
- Syntax-based features perform equally well or sometimes even better!

PhD research: Expected results

- Operationalization of methodology (software package)
 - Text analysis tools
 - Tools for style feature extraction by means of Machine Learning
- Corpora for future research
- Answer fundamental research questions
 - Methodology vs. (non-)constant theme & register
 - Methodology vs. manual style analysis
 - Predictive power of different syntactic features
 - Applicability to authorship attribution & gender identification

6

Contact

• Project URL

http://www.cnts.ua.ac.be/~kim/Stylometry.html

• Kim Luyckx

- kim.luyckx@ua.ac.be
- http://www.cnts.ua.ac.be/~kim

• Walter Daelemans

- walter.daelemans@ua.ac.be
- http://www.cnts.ua.ac.be/~walter_

6

Questions?

