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Abstract. This paper presents a framework allowing to tune continual explo-
ration in an optimal way. It first quantifies the rate of exploration by defining
the degree of exploration of a state as the probability-distribution entropy
for choosing an admissible action. Then, the exploration/exploitation tradeoff
is stated as a global optimization problem: find the exploration strategy
that minimizes the expected cumulated cost, while maintaining fixed degrees
of exploration at same nodes. In other words, “exploitation” is maximized for
constant “exploration”. This formulation leads to a set of nonlinear updating
rules reminiscent of the value-iteration algorithm. Convergence of these rules to
a local minimum can be proved for a stationary environment. Interestingly, in
the deterministic case, when there is no exploration, these equations reduce to
the Bellman equations for finding the shortest path while, when it is maximum,
a full “blind” exploration is performed.

1. Introduction

One of the specific challenges of reinforcement learning is the tradeoff between explo-
ration and exploitation. Exploration aims to continually try new ways of solving the
problem, while exploitation aims to capitalize on already well-established solutions.
Exploration is especially relevant when the environment is changing, i.e. nonstationary.
In this case, good solutions can deteriorate over time and better solutions can appear.
Without exploration, the system sends agents only along the up-to-now best path
without exploring alternative paths. The system is therefore unaware of the changes
and its performance inevitably deteriorates with time. One of the key features of re-
inforcement learning is that it explicitly addresses the exploration/exploitation issue
as well as the online estimation of the probability distributions in an integrated way
[18].

This work makes a clear distinction between “preliminary” or “initial exploration”,
and “continual online exploration”. The objective of preliminary exploration is to
discover relevant goals, or destination states, and to estimate a first optimal policy for
exploiting them. On the other hand, continual online exploration aims to continually
explore the environment, after the preliminary exploration stage, in order to adjust
the policy to changes in the environment.

In the case of preliminary exploration, two further distinctions are often made [19–
22]. A first group of strategies uses randomness for exploration and is often referred
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to as undirected exploration. Control actions are selected with a probability distribu-
tion, taking the expected cost into account. The second group, referred to as directed

exploration, uses domain-specific knowledge for guiding exploration [19–22]. Usually,
directed exploration provides better results in terms of learning time and cost.

On the other hand, “continual online exploration” can be performed by, for in-
stance, re-exploring the environment either periodically or continually [6, 15] by using
a ǫ-greedy or a Boltzmann exploration strategy. For instance, joint estimation of the
exploration strategy and the state-transition probabilities for continual online explo-
ration can be performed within the SARSA framework [14, 16, 18].

This work presents a unified framework integrating exploitation and exploration for
undirected, continual, exploration. Exploration is formally defined as the association of
a probability distribution to the set of admissible control actions in each state (choice
randomization). The rate of exploration is quantified with the concept of degree of

exploration, defined as the (Shannon) entropy [10] of the probability distribution for
the set of admissible actions in a given state. If no exploration is performed, the agents
are routed on the best path with probability one – they just exploit the solution. With
exploration, the agents continually explore a possibly changing environment to keep
current with it. When the entropy is zero in a state, no exploration is performed from
this state, while, when the entropy is maximal, a full, blind exploration with equal
probability of choosing any action is performed.

The online exploration/exploitation issue is then stated as a global optimization

problem: learn the exploration strategy that minimizes the expected cumulated cost
from the initial state to the goal while maintaining a fixed degree of exploration. In
other words, “exploitation” is maximized for constant “exploration”. This problem
leads to a set of nonlinear equations defining the optimal solution. These equations
can be solved by iterating them until convergence, which is proved for a stationary
environment and a particular initialization strategy. They provide the action policy
(the probability distribution of choosing an action in a given state) that minimizes
the average cost from the initial state to the destination states, given the degree of
exploration in each state. Interestingly, when the degree of exploration is zero in all
states, which corresponds to the deterministic case, the nonlinear equations reduce
to the Bellman equations for finding the shortest path from the initial state to the
destination states. The main drawback of this method is that it is computationally
demanding since it relies on iterative algorithms like the value-iteration algorithm.

For the sake of simplicity, we first concentrate here on “deterministic shortest-path

problem”, as defined for instance in [5], where any chosen control action determinis-
tically drives the agent to a unique successor state. On the other hand, if the actions
have uncertain effects, the resulting state is given by a probability distribution and
one speaks of “stochastic shortest-path problems”. In this case, a probability distri-
bution on the successor states is introduced and it must be estimated by the agents;
stochastic shortest-path problems are studied in Section 4.

Section 2 introduces the notations, the standard deterministic shortest-path prob-
lem, and the management of continual exploration. Section 3 describes our procedure
for solving the deterministic shortest-path problem with continual exploration, while
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the stochastic shortest-path problem is discussed in Section 4. Section 5 is the conclu-
sion.

2. Statement of the problem and notations

2.1. Statement of the problem

During every state transition, a finite cost c(k, u) is incurred when leaving state k
∈ {1, 2, . . . , n} while executing a control action u selected from a set U(k) of admissible
actions, or choices, available in state k. The cost can be positive (penalty), negative
(reward), or zero provided that no cycle exists whose total cost is negative. This is
a standard requirement in shortest-path problems [8]; indeed, if such a cycle exists,
then traversing it an arbitrary large number of times would result in a path with an
arbitrary small cost so that a best path could not be defined. In particular, this implies
that, if the graph of the states is nondirected, all costs are nonnegative.

The control action u is chosen according to a policy Π that maps every state
k to the set U(k) of admissible actions with a certain probability distribution, πk(u),
with u ∈ U(k). Thus the policy associates to each state k a probability distribution
on the set of admissible actions U(k): Π ≡ {πk(u), k = 1, 2, . . . , n}. For instance, if
the admissible actions in state k are U(k) = {u1, u2, u3}, the distribution πk(u) spec-
ifies three probabilities πk(u1), πk(u2), and πk(u3). The degree of exploration is
quantified as the entropy of this probability distribution (see next section). Random-
ized choices are common in a variety of fields, for instance decision sciences [13] or
game theory, where they are called mixed strategies (see, e.g., [12]). Thus, the problem
tackled in this section corresponds to a randomized shortest-path problem.

Moreover, we assume that once the action has been chosen, the next state k′ is
known deterministically, k′ = fk(u) where f is a one-to-one mapping between (states,
actions) and resulting state. We assume that different actions lead to different states.
This framework corresponds to a deterministic shortest-path problem. A simple mod-
eling of this problem would do without actions and directly defined state-transition
probabilities. The more general formalism fits full stochastic problems for which both
the choice of actions and the state transitions are governed by probability distributions
(see Section 4).

We assume, as in [5], that there is a special cost-free destination or goal state;
once the system has reached that state, it remains there at no further cost. The goal
is to minimize the total expected cost VΠ(k0) (Equation (2.1)) accumulated over a
path k0, k1, ... in the graph starting from an initial (or source) state k0:

VΠ(k0) = EΠ

[
∞∑

i=0

c(ki, ui)

]
(2.1)

The expectation EΠ is taken on the policy Π that is, on all the random choices of
action ui in state ki.

Moreover, we consider a problem structure such that termination is guaranteed, at
least under an optimal policy. Thus, the horizon is finite, but its length is random and
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it depends on the policy. The conditions for which termination holds are equivalent to
establishing that the destination state can be reached in a finite number of steps from
any potential initial state; for a rigorous treatment, see [3, 5].

2.2. Controling exploration by defining entropy at each state

The degree of exploration Ek at each state k is defined by

Ek = −
∑

i∈U(k)

πk(i) log πk(i) (2.2)

which is simply the entropy of the probability distribution of the control actions in
state k [9, 10]. Ek characterizes the uncertainty about the choice at state k. It is equal
to zero when there is no uncertainty at all (πk(i) reduces to a Kronecker delta); it is
equal to log(nk), where nk is the number of admissible choices at node k, in the case
of maximum uncertainty, πk(i) = 1/nk (a uniform distribution).

The exploration rate Er
k = Ek/ log(nk) is the ratio between the actual value of

Ek and its maximum value. It takes its values in the interval [0, 1]. Fixing the entropy
at a state sets the exploration level out of this state; increasing the entropy increases
exploration up to the maximal value, in which case there is no more exploitation since
the next action is chosen completely at random, with a uniform distribution, without
taking the costs into account. This way, the agents can easily control their exploration
by adjusting the exploration rates.

3. Optimal policy under exploration constraints for determinis-

tic shortest-path problems

3.1. Optimal policy and expected cost

We turn to the determination of the optimal policy under exploration constraints.
More precisely, we will seek the policy Π ≡ {πk(u), k = 1, 2, . . . , n}, for which the
expected cost VΠ(k0) from initial state k0 is minimal while maintaining a given degree
of exploration at each state k. The destination state is an absorbing state, i.e., with
no outgoing link. Computing the expected cost (2.1) from any state k is similar to
computing the average first-passage time in the associated Markov chain [11]. The
problem is thus to find the transition probabilities leading to the minimal expected
cost, V ∗(k0) = min

Π
(VΠ(k0)). It can be formulated as a constrained optimization prob-

lem involving a Lagrange function.

In [1], we derive the optimal probability distribution of control actions in state k,
which is a logit distribution:

π∗

k(i) =
exp [−θk (c(k, i) + V ∗(k′

i))]∑

j∈U(k)

exp
[
−θk

(
c(k, j) + V ∗(k′

j)
)] , (3.1)
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where k′

i = fk(i) is a following state and V ∗ is the optimal (minimum) expected cost
given by






V ∗(k) =
∑

i∈U(k)

π∗

k(i) [c(k, i) + V ∗(k′

i)], with k′

i = fk(i) and k 6= d

V ∗(d) = 0, for the destination state d

(3.2)

The control actions probability distribution (3.1) is often called “Boltzmann dis-
tributed exploration”. In Equation (3.1), θk must be chosen in order to satisfy

∑

i∈U(k)

πk(i) log πk(i) = −Ek (3.3)

for each state k and given Ek. It takes its values in [0,∞]. Of course if, for some state,
the number of possible control actions reduces to one (no choice), no entropy constraint
is introduced. Since Equation (3.3) has no analytical solution, θk must be computed
numerically in terms of Ek. This is in fact quite easy since it can be shown that the
function θk(Ek) is strictly monotonic decreasing, so that a line search algorithm (such
as the bisection method, see [2]) or a simple binary search can efficiently find the θk

value corresponding to a given Ek value.

Equation (3.1) has a simple appealing interpretation: choose preferably (with high-
est probability) action i leading to state k′

i of lowest expected cost, including the cost
of performing the action, c(k, i) + V ∗(k′

i). Thus, the agent is routed preferably to the
state which is nearest (on average) to the destination state.

The same necessary optimality conditions can also be expressed in terms of the
Q-values coming from the popular Q-learning framework [18, 23, 24]. Indeed, in the
deterministic case, the Q-value represents the expected cost from state k when choosing
action i, Q(k, i) = c(k, i) + V (k′

i). The relationship between Q and V is thus simply
V (k) =

∑
i∈U(k) πk(i) Q(k, i); we thus easily obtain






Q∗(k, i) = c(k, i) +
∑

i∈U(k′

i
)

π∗

k′

i

(i) Q∗(k′

i, i), with k′

i = fk(i) and k 6= d

Q∗(d, i) = 0, for the destination state d

(3.4)

and the π∗

k(i) are given by

π∗

k(i) =
exp [−θkQ∗(k, i)]∑

j∈U(k)

exp [−θkQ∗(k, j)]
(3.5)

which corresponds to a Boltzmann exploration involving the Q-value. Thus, a Boltz-
mann exploration involving the Q-value may be considered as “optimal” since it pro-
vides the best expected performances for fixed degrees of exploration.

3.2. Computation of the optimal policy

Equations (3.1) and (3.2) suggest an iterative procedure very similar to the well-known
value-iteration algorithm for the computation of both the expected cost and the policy.
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More concretely, we consider that agents are sent from the initial state and that
they choose an action i in each state k with probability distribution πk(u = i). The
agent then performs the chosen action, say action i, and incurs the associated cost,
c(k, i) (which, in a non-stationary environment, may vary over time), together with
the new state, k′. This allows the agent to update the estimates of the cost, of the
policy, and of the average cost until destination; these estimates will be denoted by
ĉ(k, i), π̂k(i) and V̂ (k) and are known (shared) by all the agents.

1. Initialization phase:

– Choose an initial policy, π̂k(i), ∀i, k, satisfying the exploration rate constraints
(3.3) and

– Compute the corresponding expected cost until destination V̂ (k) by using any
procedure for solving the set of linear equations (3.2) where we substitue V ∗(k),

π∗

k(i) by V̂ (k), π̂k(i). The π̂k(i) are kept fixed in the initialization phase. Any
standard iterative procedure (for instance, a Gauss-Seidel like algorithm) for
computing the expected cost until absorption in a Markov chain could be used
(see [11]).

2. Computation of the policy and the expected cost under exploration

constraints:
For each visited state k, do until convergence:

– Choose an action i with current probability estimate π̂k(i), observe the current
cost c(k, i) for performing this action, update its estimate ĉ(k, i), and jump to
the next state, k′

i

ĉ(k, i)← c(k, i) (3.6)

– Update the probability distribution for state k as:

π̂k(i)←
exp

[
−θ̂k

(
ĉ(k, i) + V̂ (k′

i)
)]

∑

j∈U(k)

exp
[
−θ̂k

(
ĉ(k, j) + V̂ (k′

j)
)] , (3.7)

where k′

i = fk(i) and θ̂k is set in order to respect the given degree of entropy
(see Equation (3.3)).

– Update the expected cost of state k:






V̂ (k)←
∑

i∈U(k)

π̂k(i) [ĉ(k, i) + V̂ (k′

i)], with k′

i = fk(i) and k 6= d

V̂ (d)← 0, where d is the destination state

(3.8)

The convergence of these updating equations is proved for a stationary environment
in [1]. However, the described procedure is computationally demanding since it relies
on iterative procedures like the value-iteration algorithm in Markov decision processes.

Thus, the above procedure allows to optimize the expected cost V (k0) and to
obtain a local minimum of this criterion. It does not guarantee to converge to a
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global minimum, however. Whether V (k0) has only one global minimum or many
local minima remains an open question.

Notice also that, while the initialization phase is necessary in our convergence proof,
other simpler initialization schemes could also be applied. For instance, set initially
ĉ(k, i) = 0, π̂k(i) = 1/nk, V̂ (k) = 0, where nk is the number of admissible actions
in state k; then proceed by directly applying updating rules (3.7) and (3.8). While
convergence is not proved in this case, we observed that this updating rule works well
in practice; in particular, we did not observe any convergence problem. This rule is
used in the experiments presented in [1].

3.3. Some limit cases

We will now show that when the degree of exploration is zero for all states, the
nonlinear equations reduce to Bellman’s equations for finding the shortest path from
the initial state to the destination state.

Indeed, from Equations (3.7)-(3.8), if the parameter θ̂k is very large, which corre-
sponds to a near-zero entropy, the probability of choosing the action with the lowest
value of (ĉ(k, i) + V̂ (k′

i)) dominates all the others. In other words, π̂k(j) ≃ 1 for the
action j corresponding to the lowest average cost (including the action cost), while
π̂k(i) ≃ 0 for the other alternatives i 6= j. Equations (3.8) can therefore be rewritten
as {

V̂ (k)← min
i∈U(k)

[ĉ(k, i) + V̂ (k′

i)], with k′

i = fk(i) and k 6= d

V̂ (d)← 0, where d is the destination state
(3.9)

which are Bellman’s updating equations for finding the shortest path to the destination
state [4, 5]. In terms of Q-values, the optimality conditions reduce to

{
Q∗(k, i) = c(k, i) + min

i∈U(k)
Q∗(k′

i, i), with k′

i = fk(i) and k 6= d

Q∗(d, i) = 0, for the destination state d
(3.10)

On the other hand, when θ̂k = 0, the choice probability distribution reduces to
π̂k(i) = 1/nk, and the degree of exploration is maximum for all states. In this case, the
nonlinear equations reduce to the linear equations allowing to compute the average
cost for reaching the destination state from the initial state in a Markov chain with
transition probabilities equal to 1/nk. In other words, we then perform a “blind”
random exploration, for the choice probability distribution.

Any intermediary setting 0 < Ek < log(nk) leads to an optimal exploration vs.
exploitation strategy minimizing the expected cost, and favoring short paths to the
solution. In [1], we further show that, if the graph of states is directed and acyclic, the
nonlinear equations can easily be solved by performing a single backward pass from
the destination state.

Experimental simulations illustrating the behaviour of the algorithm, as well as
comparisons with a naive Boltzmann and a ǫ-greedy exploration strategy, are provided
in [1].
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4. Optimal policy under exploration constraints for stochastic

shortest path problems

We now consider stochastic shortest path problems for which, once an action
has been performed, the transition to the next state is no longer deterministic but
stochastic [5]. More precisely, when an agent chooses action i in state k, it jumps to
state k′ with a probability P(s = k′|u = i, s = k) = pkk′(i) (transition probabilities).
Notice that there are now two different probability distributions associated to the
system: the probability of choosing an action i within the state k, πk(i), and the
probability of jumping to a state s = k′ after having chosen the action i within the
state k, pkk′(i).

By first-step analysis (see [1]), the recurence relations allowing to compute the
expected cost VΠ(k), given policy Π are easily found:






VΠ(k) =
∑

i∈U(k)

πk(i) [c(k, i) +

n∑

k′=1

pkk′(i) VΠ(k′)],

VΠ(d) = 0, where d is the destination state

(4.1)

Furthermore, by defining the average cost when having chosen control action i in
state k by V

Π
(k, i) =

∑
k′ pkk′(i)VΠ(k′), Equation (4.1) can be rewritten as






VΠ(k) =
∑

i∈U(k)

πk(i) [c(k, i) + V
Π

(k, i)],

VΠ(d) = 0, where d is the destination state

(4.2)

Thus, the optimal policy is obtained by substituting VΠ(k′

i) by V
∗

(k, i) in both
(3.1) and (3.2):

π∗

k(i) =
exp

[
−θk

(
c(k, i) + V

∗

(k, i)
)]

∑

j∈U(k)

exp
[
−θk

(
c(k, j) + V

∗

(k, j)
)] (4.3)

The details are provided in [1]. The additional difficulty here, in comparison with
a deterministic problem, is that the probability distributions pkk′(i), if unknown, have
to be estimated on-line, together with the costs and the distribution of the randomized
control actions [18].

4.1. On-line estimation of the transition probabilities

The transition probabilities pkk′(i) might be unknown and, consequently, should be
estimated on-line, together with the costs and the distribution of the randomized
control actions [18]. An alternative solution is to directly estimate the average cost
V Π(k, i) =

∑
k′ pkk′(i)VΠ(k′) based on the observation of the value of VΠ in the

next state k′. There is a large range of potential techniques for solving this issue,
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depending on the problem at hand (see for example [7]). One could simply use an

exponential smoothing, leading to V̂ (k, i) ← αV̂ (k′) + (1 − α)V̂ (k, i), or a stochastic

approximation scheme, V̂ (k, i)← V̂ (k, i) + α
[
V̂ (k′)− V̂ (k, i)

]
, which converges for a

suitable decreasing policy of α [17].

This leads to the following updating rules:

For each visited state k, do until convergence:

– Choose an action i with current probability estimate π̂k(i), observe the current
cost c(k, i) for performing this action, update its estimate ĉ(k, i) by

ĉ(k, i)← c(k, i) (4.4)

– Perform the action i and observe the current value V̂ (k′) of the next state k′.

Update V̂ (k, i) accordingly (here, we choose the exponential smoothing scheme),

V̂ (k, i)← αV (k′) + (1− α)V̂ (k, i) (4.5)

– Update the probability distribution for state k as:

π̂k(i)←
exp

[
−θ̂k

(
ĉ(k, i) + V̂ (k, i)

)]

∑

j∈U(k)

exp
[
−θ̂k

(
ĉ(k, j) + V̂ (k, j)

)] , (4.6)

where θ̂k is set in order to respect the prescribed degree of entropy (see Equation
(3.3)).

– Update the expected cost of state k asynchronously:





V̂ (k) =
∑

i∈U(k)

πk(i) [ĉ(k, i) + V̂ (k, i)],

V̂ (d) = 0, where d is the destination state

(4.7)

This iterative scheme is closely linked to the SARSA on-policy control algorithm
[14, 16, 18]; a discussion of these relationships is provided in [1].

5. Conclusions

We have presented a model integrating continual exploration and exploitation in a
common framework. The exploration rate is controlled by the entropy of the choice
probability distribution defined on the states of the system. When no exploration
is performed (zero entropy on each node), the model reduces to the common value-
iteration algorithm computing the minimum cost policy. On the other hand, when full
exploration is performed (maximum entropy on each node), the model reduces to a
“blind” exploration, without considering the costs. The main drawback of the present
approach is that it is computationally demanding since it relies on iterative procedures
such as the value-iteration algorithm.

Further work will investigate the relationships with SARSA, as well as alternative
cost formulations, such as the “average cost per step”. We also plan to exploit the
proposed exploration framework in Markov games.
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