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This research studies the extension of a multiclass logistic regression

technique for the task of phoneme recognition. Herefor, a kernel version is 

derived based on a penalized likelihood criterion. The choice of this

approach over an empirical risk minimization approach as performed by

the Support Vector Machines (SVMs), is that the former yields probabilistic

outcomes instead of a binary decision. This is particularly important in this

subtask of speech recognition as it permits a proper integration of the 

phoneme recognition module in the full sequence. Specifically, it allows

for a proper connection to a Hidden Markov Model (HMM) which makes

different words out of a sequence of phonemes.

Acknowledgements
-(KP): BOF PDM/05/161, FWO grant V4.090.05N; - (SCD:) GOA

AMBioRICS, CoE EF/05/006, (FWO): G.0407.02, G.0197.02, G.0141.03,

G.0491.03, G.0120.03, G.0452.04, G.0499.04, G.0211.05, G.0226.06,

G.0321.06, G.0553.06, (ICCoS, ANMMM, MLDM); (IWT): GBOU (Mc-
Know), Eureka-Flite2 IUAP P5/22,PODO-II,FP5-Quprodis; ERNSI; - (JS)

and (BDM) are full professosr at K.U.Leuven Belgium,

respectively.

Consider a set of samples

Let the inputvectors be speech signal MFCCs and the outputvectors

phonemelabels.
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In multi-class logistic regression the a-posteriori probability of class 

membership is modeled via the linear function.

To be able to interpret the output f(x) as a probability

estimate logit stochastic models are used

f(x) = βTx

where the                  denote the different parameters of the C-1 linear 

models.

The class membership of a new point x' can be made by the Bayesian

classification rule which is given by 

{βc}
C−1
c=1

argmaxc∈1,2,...,C P (Y = c|X = x′)

The common method to infer the parameters is via the use of 

penalized maximum likelihood which can be written as

Most often, a Newton-Raphson based strategy is used to optimize the loglikelihood. It 

is well-known that this procedure can be rewritten in terms of an iteratively re-weighted 

least squares (IRLS) algorithm which consists of two steps:

For k = 1, … , L 

1. Compute regularized WLS

2. Recompute weights W

ϕ(·)
Here we study the nonlinear extension to kernel machines where the inputs x are 

mapped to a high dimensional space via         .

Now, both steps can be easily reformulated in terms of a weighted LS-SVM.

The dual solution can be represented by

where is solved by a linear system

Φ = [ϕ(x1); ...;ϕ(xN )] where ϕ : Rd → R
Dϕ
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such that zk = Φsk + ek

with sk the k’th Newton-Raphson step, βL =
∑L

k=1 s
k and

The main drawback of kernel logistic regression is that all training vectors are

necessary in the final model. To become a sparse solution we have to achieve a 

resulting kernel expansion based on only a subset S of the training data. 

The size of the Hessian in the dual form is proportional to the number of 

datapoints, we suggest an approach where each optimization step is based on a 

well-chosen subset of the available dataset (equivalent to stochastic gradient 

descent). This automatically leads to a sparse solution.

While IRLS performs a Newton-Raphson optimization strategy, we resort to a 

version where one descends per parameterset . Though the convergence 

becomes slightly worse, each step can be calculated much faster when using the 

dual representation.

βc

Experiments are carried out on the TIMIT dataset which consists of quasi-

phonetically balanced American English training sentences, segmented on the 

phoneme level. 

The confusion matrix is used to evaluate the discriminative ability of the 

classifier.
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