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Summary

We compare seven Particle Swarm Optimization (PSO) algorithms using Run-Length Distributions (RLDs). RLDs measure the probability of finding a
solution of a certain quality after some specific number of function evaluations. Hence, RLDs completely characterize the performance of a stochastic
optimization algorithm on a particular problem. The analysis of RLDs suggests ways of improving the performance of the studied variants.

Motivation and Goal

•Since the introduction of the first PSO algorithm, many algorithmic vari-
ants have been proposed.
•For years, authors have been comparing their variants only with one

PSO algorithm (i.e., with the original one, or – more recently – with the
so-called canonical PSO algorithm).
•To the best of our knowledge, there are no comparisons among variants

reported in the literature.
•Consequently, the field lacks a clear definition of the set of algorithmic

variants that can be considered the state-of-the-art.

We compared some of the most influential PSO variants in order to
identify the best performing ones among them. In this way, we con-
tribute to the definition of the state-of-the-art in the field.

Run-Length Distributions

Let Tq be a random variable modeling the time needed by a stochastic op-
timization algorithm to find a solution of quality q. The run-time distribution
of the algorithm is defined as

RTq(t) = P (Tq ≤ t) .

It is the cumulative distribution function of Tq. When run-times are mea-
sured in terms of objective function evaluations, a run-time distribution is
called run-length distribution.
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Experiments and Results

Experimental Setup

We compared seven PSO variants in 5 benchmark functions
(Sphere, Rosenbrock, Rastrigin, Griewank, and Schaffer’s F6
functions in 30 dimensions). The compared variants are:

Compared PSO variants

Canonical (Clerc and Kennedy, 2002)
Time-decreasing inertia weight (DEC-IW) (Shi and Eberhart,
1998)
Time-increasing inertia weight (INC-IW) (Zheng et al., 2003)
Stochastic inertia weight (Stochastic-IW) (Eberhart and Shi,
2001)
Fully informed PSO (FIPS) (Mendes et al., 2004)
Self-Oganizing Hierarchical PSO with time-varying accelera-
tion coefficients (HPSOTVAC) (Ratnaweera et al., 2004)
Adaptive Hierarchical PSO (AHPSO) (Janson and Middendorf,
2005)

We ran 100 independent trials of 1 000 000 function evaluations.
We used swarms of 20 particles using fully connected (FC) and
ring (R) topologies.

We tested all the algorithms under the assumption that no a pri-
ori knowledge about the structure of the problem was available.
Thus, each algorithm used the same parameterization across all
benchmark problems.

Results
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Conclusions
•No algorithm dominates all the others.

•Different algorithms exhibit a stagnating behavior with different degrees of severity, which can be allevi-
ated by changing the population topology to a loosely connected one.

•Different algorithms are sensitive to a change in the population topology in different degrees.

• For short runs, PSOs with convergent properties get the best results. For medium-long and long runs,
PSOs with explorative properties are the best performing.

We hope that in the future authors consider more than just one reference PSO to assess the signif-
icance of their results. For different conditions (e.g. the maximum number of function evaluations),
this reference set should consider different PSO variants.
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