Meta-learning

How to select the right learning algorithm for a given dataset?

"Traditional" approach

Dataset characteristics			Performance measures			
Size	nb. Attr.		Algorithm	Acc	RunT	
2300	34		C4.5	.92	43	
Publicly a	available datasets	Often only defau	lt			

narameter settings

Towards Descriptive Meta-learning

Limitations:

- 1) The Curse of Dimensionality \rightarrow We need many more datasets
- 2) Generalisation over algorithms?→ Algorithms should be characterized
- 3) Only when, not why...
- 4) What about preprocessing?
- → More thorough investigation needed
 - → Effects should be included

Joaquin Vanschoren

Experiment databases

Make experiments reusable, reproducible: log all experiment details and results Querying or datamining on stored results

→ Thorough investigation of interactions between algorithm parameters, dataset characteristics and performance measures

Synthetic datasets

- Unbiased: hide a large range of different kinds of concepts in the data, and characterise: model characteristics, concept variation, example cohesiveness,...
- "Natural": approximate characteristics of natural datasets: complex relations between attributes, noise, irrelevant attributes, missing values,...
- Coverage: control characteristics to cover meta-feature space: experiment design

Algorithm characterization

- Parameter settings: parameters and techniques used (1 table/algorithm)
- General algorithm properties: representation model,
 - dependency on linear separability or conditional independence,
 - use of data fragmentation or attribute summations,
 - ability to handle fine-grained concepts or local relevance,...

Understanding inductive performance

Averaged perf. measures do not explain *why* an algorithm failed/succeeded \rightarrow Decompose the misclassification error: *bias error* vs. *variance error*

repr. bias	comp. bias	bias error	variance error
appropriate	too strong	high	low
appropriate	ok	low	low
appropriate	too weak	low	high
inappropriate	too strong	high	low
inappropriate	ok	high	average
inappropriate	too weak	high	high

link to dataset/ algorithm characteristics → advice possible improvements

Preprocessing steps

Link dataset characteristics to effect of preprocessing techniques → Separate experiment database for preprocessing experiments Characterise dataset and predict changes after preprocessing, or advice useful preprocessing for optimizing performance of specific algorithm Strong link with bias/variance error