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Abstract. In discrete time, ℓ-blocks of red lights are separated by
ℓ-blocks of green lights. Cars arrive at random. We seek the distribution of
maximum line length of idle cars, and justify conjectured probabilistic asymp-
totics for 2 ≤ ℓ ≤ 3.

Assorted expressions emerge for a certain traffic light problem [1]. Let ℓ ≥ 1 be
an integer. Let X0 = 0 and X1, X2, . . . , Xn be a sequence of independent random
variables satisfying

P {Xi = 1} = p, P {Xi = 0} = q if i ≡ 1, 2, . . . , ℓ mod 2ℓ;

P {Xi = 0} = p, P {Xi = −1} = q if i ≡ ℓ+ 1, ℓ+ 2, . . . , 2ℓ mod 2ℓ

for each 1 ≤ i ≤ n. Define S0 = X0 and Sj = max {Sj−1 +Xj, 0} for all 1 ≤ j ≤ n.
Thus cars arrive at a one-way intersection according to a Bernoulli(p) distribution;
when the signal is red (1 ≤ i ≤ ℓ), no cars may leave; when the signal is green
(ℓ+1 ≤ i ≤ 2ℓ), a car must leave (if there is one). The quantity Mn = max0≤j≤n Sj is
the worst-case traffic congestion (as opposed to the average-case often cited). Only
the circumstance when ℓ = 1 is amenable to rigorous treatment [2], as far as is known.
We assume that p < q throughout.

The Poisson clumping heuristic [3], while not a theorem, gives results identical
to exact asymptotic expressions when such exist, and evidently provides excellent
predictions otherwise. Consider an irreducible positive recurrent Markov chain with
stationary distribution π. For sufficiently large k, the maximum of the chain satisfies

P {Mn < k} ∼ exp

(

− πk

E(C)
n

)

as n → ∞, where C is the sojourn time in k during a clump of nearby visits to k.
Here is a simple example: for an asymmetric random walk with weak reflection

at the origin, we have
πj = pπj−1 + qπj+1, j ≥ 1;

π0 = qπ0 + qπ1

1
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hence
π1 =

p

q
π0.

From
π1 = pπ0 + qπ2

we deduce
qπ2 = π1 − pπ0 = (1− q)π1 = pπ1

hence

π2 =
p

q
π1 =

p2

q2
π0.

Defining

F (z) =
∞
∑

j=2

πjz
j = pz

∞
∑

j=2

πj−1z
j−1 +

q

z

∞
∑

j=2

πj+1z
j+1

= pz [F (z) + π1z] +
q

z

[

F (z)− π2z
2
]

,

we have
[

1− pz − q

z

]

F (z) = pπ1z
2 − qπ2z

hence
[

q − z + pz2
]

F (z) = (qπ2 − pπ1z) z

hence

(1− z) (q − pz)F (z) =
p2 (1− z) z

q
π0

hence

F (z) =
p2z

q (q − pz)
π0

hence

L = lim
z→1

F (z) =
p2

q (q − p)
π0.

Because
π0 + π1 + L = 1

it follows that
[

1 +
p

q
+

p2

q (q − p)

]

π0 = 1

therefore

π0 =
q − p

q
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and thus

πj =
q − p

q

(

p

q

)j

, j ≥ 0.

Note that, if k = logq/p(n) + h + 1, we have

(

q

p

)k

= n

(

q

p

)h+1

thus

πkn =
q − p

q

(

p

q

)k

n =
q − p

q

(

q

p

)−(h+1)

=
p(q − p)

q2

(

q

p

)−h

.

By [3],

E(C) = 1 + pE(C) + q

(

p

q

)

E(C)

equivalently

E(C) =
1

q − p

which implies

P
{

Mn ≤ logq/p(n) + h
}

= P
{

Mn < logq/p(n) + h+ 1
}

∼ exp

[

−p(q − p)2

q2

(

q

p

)−h
]

as n → ∞. This formula appears in [2]. A similar argument gives an analogous
result for random walks with strong reflection at the origin.

1. Traffic Light: ℓ = 1

We separate the walk into two subwalks: i ≡ 0mod 2 and i ≡ 1mod 2. Let

U =



















q p 0 0 0 · · ·
0 q p 0 0 · · ·
0 0 q p 0 · · ·
0 0 0 q p · · ·
0 0 0 0 q · · ·
...

...
...

...
...

. . .



















, P {j + 1| j} = p
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denote the (infinite) transition matrix from 0 to 1, and

V =



















1 0 0 0 0 · · ·
q p 0 0 0 · · ·
0 q p 0 0 · · ·
0 0 q p 0 · · ·
0 0 0 q p · · ·
...

...
...

...
...

. . .



















, P {j − 1| j} = q

denote the transition matrix from 1 to 0.

1.1. Subwalk on Even Times. The subwalk for i ≡ 0mod 2 has transition
matrix

UV =



















(1 + p)q p2 0 0 0 · · ·
q2 2pq p2 0 0 · · ·
0 q2 2pq p2 0 · · ·
0 0 q2 2pq p2 · · ·
0 0 0 q2 2pq · · ·
...

...
...

...
...

. . .



















thus
πj = p2πj−1 + 2pqπj + q2πj+1, j ≥ 1;

π0 = (1 + p)qπ0 + q2π1

hence
q2π1 = [1− (1 + p)q]π0 =

[

1−
(

1− p2
)]

π0

hence

π1 =
p2

q2
π0.

From
π1 = p2π0 + 2pqπ1 + q2π2

we deduce
q2π2 = (1− 2pq)π1 − p2π0 =

(

1− 2pq − q2
)

π1 = p2π1

hence

π2 =
p2

q2
π1 =

p4

q4
π0.
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Defining

F (z) =
∞
∑

j=2

πjz
j

= p2z

∞
∑

j=2

πj−1z
j−1 + 2pq

∞
∑

j=2

πjz
j +

q2

z

∞
∑

j=2

πj+1z
j+1

= p2z [F (z) + π1z] + 2pqF (z) +
q2

z

[

F (z)− π2z
2
]

we have
[

1− p2z − 2pq − q2

z

]

F (z) = p2π1z
2 − q2π2z

hence
[

q2 − (1− 2pq)z + p2z2
]

F (z) =
(

q2π2 − p2π1z
)

z2

hence

(1− z)
(

q2 − p2z
)

F (z) =
p4 (1− z) z2

q2
π0

hence

F (z) =
p4z2

q2 (q2 − p2z)
π0

hence

L = lim
z→1

F (z) =
p4

q2 (q2 − p2)
π0 =

p4

q2 (q − p)
π0.

Because
π0 + π1 + L = 1

it follows that
[

1 +
p2

q2
+

p4

q2 (q − p)

]

π0 = 1

therefore

π0 =
q − p

q2

and thus

πj =
q − p

q2

(

p2

q2

)j

, j ≥ 0.

Note that, if k = logq2/p2(n) + h+ 1, we have

(

q2

p2

)k

= n

(

q2

p2

)h+1
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thus

πk
n

2
=

q − p

2q2

(

p2

q2

)k

n =
q − p

2q2

(

q2

p2

)−(h+1)

=
p2(q − p)

2q4

(

q2

p2

)−h

.

By [3],

E(C) =
1

q2 − p2
=

1

q − p

as before, which implies

P
{

Mn ≤ logq2/p2(n) + h
}

= P
{

Mn < logq2/p2(n) + h+ 1
}

∼ exp

[

−p2(q − p)2

2q4

(

q2

p2

)−h
]

as n → ∞.

1.2. Subwalk on Odd Times. The subwalk for i ≡ 1mod2 has transition ma-
trix

V U =



















q p 0 0 0 · · ·
q2 2pq p2 0 0 · · ·
0 q2 2pq p2 0 · · ·
0 0 q2 2pq p2 · · ·
0 0 0 q2 2pq · · ·
...

...
...

...
...

. . .



















thus
πj = p2πj−1 + 2pqπj + q2πj+1, j ≥ 2;

π1 = pπ0 + 2pqπ1 + q2π2;

π0 = qπ0 + q2π1

hence
q2π1 = (1− q)π0 = pπ0

hence
π1 =

p

q2
π0.

Also
q2π2 = (1− 2pq)π1 − pπ0 =

(

1− 2pq − q2
)

π1 = p2π1

hence

π2 =
p2

q2
π1 =

p3

q4
π0.
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As earlier, we have

[

q2 − (1− 2pq)z + p2z2
]

F (z) =
(

q2π2 − p2π1z
)

z2

hence

(1− z)
(

q2 − p2z
)

F (z) =
p3 (1− z) z2

q2
π0

hence

F (z) =
p3z2

q2 (q2 − p2z)
π0

hence

L = lim
z→1

F (z) =
p3

q2 (q2 − p2)
π0 =

p3

q2 (q − p)
π0.

Because
π0 + π1 + L = 1

it follows that
[

1 +
p

q2
+

p3

q2 (q − p)

]

π0 = 1

therefore

π0 =
q − p

q

and thus

πj =
q − p

pq

(

p2

q2

)j

, j ≥ 1.

With k as before,

πk
n

2
=

q − p

2pq

(

p2

q2

)k

n =
q − p

2pq

(

q2

p2

)−(h+1)

=
p(q − p)

2q3

(

q2

p2

)−h

and

P
{

Mn ≤ logq2/p2(n) + h
}

∼ exp

[

−p(q − p)2

2q3

(

q2

p2

)−h
]

.

This latter formula is the one we desire and also appears in [2]. Observe that
the subwalk exponential coefficient ε0 for i ≡ 0mod 2 possesses an extra p/q factor
compared to the coefficient ε1 for i ≡ 1mod 2, equivalently,1

ε1 =
1

2
· p

2

q2
· q
p
· (q − p)2

q2
=

p(q − p)2

2q3
.

Of course, the two maxima are not independent.
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1.3. Expected Sojourn Time. In our treatment of the subwalk represented by
UV , we indicated that E(C) = 1/(q − p) without comment [4]. Let us elaborate on
this point. Consider a random walk on the integers consisting of incremental steps
satisfying







−1 with probability q2,
0 with probability 2pq,
1 with probability p2.

2For nonzero j, let νj denote the probability that, starting from −j, the walker
eventually hits 0. Let ν0 denote the probability that, starting from 0, the walker
eventually returns to 0 (at some future time). We have two values for ν0: when it
is used in a recursion, it is equal to 1; when it corresponds to a return probability, it
retains the symbol ν0. Using

νj = p2νj−1 + 2pqνj + q2νj+1, j ≥ 1;

ν0 = p2ν−1 + 2pq + q2ν1

define

F̃ (z) =

∞
∑

j=1

νjz
j

= p2z
∞
∑

j=1

νj−1z
j−1 + 2pq

∞
∑

j=1

νjz
j +

q2

z

∞
∑

j=1

νj+1z
j+1

= p2z
[

F̃ (z) + 1
]

+ 2pqF̃ (z) +
q2

z

[

F̃ (z)− ν1z
]

equivalently
[

1− p2z − 2pq − q2

z

]

F̃ (z) = p2z − q2ν1

equivalently
[

q2 − (1− 2pq)z + p2z2
]

F̃ (z) =
(

q2ν1 − p2z
)

z

equivalently

(1− z)
(

q2 − p2z
)

F̃ (z) =
(

ν0 − p2ν−1 − 2pq − p2z
)

z.

Only the first of the zeroes 1, q2/p2 is of interest (the second is > 1). Substituting
z = 1 into the numerator of F̃ (z) gives an equation

Eq1 : ν0 − p2ν−1 − 2pq − p2 = 0.
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Also, using
ν−j = p2ν−j−1 + 2pqν−j + q2ν−j+1, j ≥ 1

we deduce that3

ν−j = νj

(

q2

p2

)j

since multiplying both sides of

νj

(

q2

p2

)j

= p2νj+1

(

q2

p2

)j+1

+ 2pqνj

(

q2

p2

)j

+ q2νj−1

(

q2

p2

)j−1

by p2j/q2j gives an identity. Replacing q2ν1 by p2ν−1 in our initial expression for ν0
gives another equation

Eq2 : ν0 = 2p2ν−1 + 2pq.

Solving Eq1 and Eq2 simultaneously yields ν0 = 2p and ν−1 = 1. More generally,
ν−j = 1 for j ≥ 1. Most importantly,

E(C) =
1

1− ν0
=

1

q − p

as was to be shown.
We will similarly study random walks























−2 with probability q4,
−1 with probability 4pq3,
0 with probability 6p2q2,
1 with probability 4p3q,
2 with probability p4;







































−3 with probability q6,
−2 with probability 6pq5,
−1 with probability 15p2q4

0 with probability 20p3q3,
1 with probability 15p4q2,
2 with probability 6p5q,
3 with probability p6

in Sections 2.2 and 3.2 respectively. The formulas for E(C), however, will be some-
what more complicated.
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2. Traffic Light: ℓ = 2

We have four subwalks. Let us consider the subwalk represented by U2V 2:























(1 + 2p+ 3p2) q2 4p3q p4 0 0 0 · · ·
(1 + 3p)q3 6p2q2 4p3q p4 0 0 · · ·

q4 4pq3 6p2q2 4p3q p4 0 · · ·
0 q4 4pq3 6p2q2 4p3q p4 · · ·
0 0 q4 4pq3 6p2q2 4p3q · · ·
0 0 0 q4 4pq3 6p2q2 · · ·
...

...
...

...
...

...
. . .























2.1. Stationary Distribution. For j ≥ 2, we have

πj = p4πj−2 + 4p3qπj−1 + 6p2q2πj + 4pq3πj+1 + q4πj+2;

π0 =
(

1 + 2p+ 3p2
)

q2π0 + (1 + 3p)q3π1 + q4π2

hence

π2 =
(1− q2 − 2pq2 − 3p2q2)π0 − (1 + 3p)q3π1

q4
;

π1 = 4p3qπ0 + 6p2q2π1 + 4pq3π2 + q4π3

hence

π3 =
−4p3qπ0 + (1− 6p2q2)π1 − 4pq3π2

q4
.

Defining

F (z) =
∞
∑

j=2

πjz
j

= p4z2
∞
∑

j=2

πj−2z
j−2 + 4p3qz

∞
∑

j=2

πj−1z
j−1 + 6p2q2

∞
∑

j=2

πjz
j

+
4pq3

z

∞
∑

j=2

πj+1z
j+1 +

q4

z2

∞
∑

j=2

πj+2z
j+2

= p4z2 [F (z) + π0 + π1z] + 4p3qz [F (z) + π1z] + 6p2q2F (z)

+
4pq3

z

[

F (z)− π2z
2
]

+
q4

z2
[

F (z)− π2z
2 − π3z

3
]
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we deduce
[

1− p4z2 − 4p3qz − 6p2q2 − 4pq3

z
− q4

z2

]

F (z)

= p4z2 (π0 + π1z) + 4p3qz (π1z)−
4pq3

z

(

π2z
2
)

− q4

z2
(

π2z
2 + π3z

3
)

hence

[

q4 + 4pq3z −
(

1− 6p2q2
)

z2 + 4p3qz3 + p4z4
]

F (z)

= −p4z4 (π0 + π1z)− 4p3qz3 (π1z) + 4pq3z
(

π2z
2
)

+ q4
(

π2z
2 + π3z

3
)

.

Replacing π2 and π3 by expressions in π0 and π1, then cancelling the common factor
1− z between numerator and denominator, yields

F (z) =
{p3(4− 3p+ pz)π0 + [−1 + 6p2 − 8p3 + 3p4 + (4− 3p)p3z + p4z2] π1} z2

(q2 − p2z) [q2 + (1 + 2pq)z + p2z2]

hence

L = lim
z→1

F (z) =
2p3(1 + q)π0 − [2(q − p)− q4] π1

2(q − p)
.

We observe three zeroes in the denominator D(z) of F (z). The first zero, of smallest
modulus < 1, is negative and given by

z1 =
−1 − 2pq + θ

2p2

where θ =
√
1 + 4pq. The second zero, of intermediate modulus, is positive and

given by

z2 =
q2

p2
> 1.

The third zero, of largest modulus > 1, is negative and given by

z3 =
−1− 2pq − θ

2p2
.

Finding the unknowns π0 and π1 is achieved by solving two simultaneous equations:

Eq1 : subst (z = z1, N) = 0

(substituting z1 for z in the numerator N(z) for F (z) and setting this equal to zero)

Eq2 : π0 + π1 + L = 1



Traffic Light Queues and the Poisson Clumping Heuristic 12

which yields

π0 =
(q − p) (3− 2p− θ)

2q4
,

π1 =
(q − p) [−1− p− 2pq + (1 + p)θ]

q5
.

Thus we have a complete description of the stationary distribution. An exact expres-
sion for πj is infeasible; therefore asymptotics as j → ∞ are necessary. The second
zero z2 leads, by classical singularity analysis, to [5]

A(p) = − N(z2)

z2D′(z2)
=

(q − p) [1 + (q − p)θ]

4q4
,

πj ∼ A(p)

(

p2

q2

)j

.

This is the expression that we shall use in the clumping heuristic.

2.2. Clump Rate. Using

νj = p4νj−2 + 4p3qνj−1 + 6p2q2νj + 4pq3νj+1 + q4νj+2, j ≥ 1;

ν0 = p4ν−2 + 4p3qν−1 + 6p2q2 + 4pq3ν1 + q4ν2

define

F̃ (z) =

∞
∑

j=1

νjz
j

= p4z2
∞
∑

j=1

νj−2z
j−2 + 4p3qz

∞
∑

j=1

νj−1z
j−1 + 6p2q2

∞
∑

j=1

νjz
j

+
4pq3

z

∞
∑

j=1

νj+1z
j+1 +

q4

z2

∞
∑

j=1

νj+2z
j+2

= p4z2
[

F̃ (z) + ν−1z
−1 + 1

]

+ 4p3qz
[

F̃ (z) + 1
]

+ 6p2q2F̃ (z)

+
4pq3

z

[

F̃ (z)− ν1z
]

+
q4

z2

[

F̃ (z)− ν1z − ν2z
2
]

equivalently
[

1− p4z2 − 4p3qz − 6p2q2 − 4pq3

z
− q4

z2

]

F̃ (z)

= p4z2
(

ν−1z
−1 + 1

)

+ 4p3qz − 4pq3

z
(ν1z)−

q4

z2
(

ν1z + ν2z
2
)
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equivalently

[

q4 + 4pq3z −
(

1− 6p2q2
)

z2 + 4p3qz3 + p4z4
]

F̃ (z)

= −p4z4
(

ν−1z
−1 + 1

)

− 4p3qz3 + 4pq3z (ν1z) + q4
(

ν1z + ν2z
2
)

equivalently

(1− z)(q2 − p2z)
[

q2 + (1 + 2pq)z + p2z2
]

F̃ (z)

= −p4z3ν−1 − p4z4 − 4p3qz3 + 4pq3z2ν1 + q4zν1

+ z2
(

ν0 − p4ν−2 − 4p3qν−1 − 6p2q2 − 4pq3ν1
)

= z2ν0 + q4zν1 − p4z3ν−1 − 4p3qz2ν−1 − p4z2ν−2 − 6p2q2z2 − 4p3qz3 − p4z4.

Only the first two of the four zeroes z1, 1, z2, z3 are of interest. Let Ñ(z) denote the
numerator for F̃ (z). We have

Ẽq1 : subst
(

z = z1, Ñ
)

= 0,

Ẽq2 : subst
(

z = 1, Ñ
)

= 0.

Replacing q4ν2 by p4ν−2 in our initial expression for ν0 gives

Ẽq3 : ν0 = 2p4ν−2 + 4p3qν−1 + 6p2q2 + 4pq3ν1.

Also, replacing q2ν1 by p2ν−1 throughout Ẽq1, Ẽq2 and Ẽq3 reduces the number of
variables to three. The simultaneous solution is

ν0 =
−1 + 2p+ 8p2 − 8p3 + (q − p)2θ

4pq
,

ν−1 =
1− 8p2 + 16p3 − 8p4 − (q − p)θ

8p3q
,

ν−2 =
−1− 2p+ 12p2 − 24p4 + 24p5 − 8p6 + (q − p)(1 + 2p− 4p2)θ

8p5q

yielding

ν1 =
1− 8p2 + 16p3 − 8p4 − (q − p)θ

8pq3

in particular.
4Readers might be tempted to use {0} as the absorbing set Ω, imitating what we

did in Section 1.3. But, starting from a negative integer, the walker could stray into
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the positive integers without ever touching 0 due to the transition p4. We must take
Ω = {0,−1}: no walk can venture above 0 without touching at least one of 0 or −1.

An idea of Aldous [3] now comes crucially into play. The rate λ of clumps of
visits to Ω is equal to λ0 + λ−1 where parameters λ0 and λ−1 are solutions of the
system

λ0 + λ−1ν−1 = (1− ν0)πj ,

λ0ν1 + λ−1 = (1− ν0) πj+1 ∼
p2

q2
(1− ν0)πj .

In words, for nonzero j, the ratio νj/ (1− ν0) is the expected sojourn time in {0},
given that the walk started at −j. The total clump rate is consequently

λ ∼ (q − p) [1 + (q − p)θ]

2q2
πj

and thus the exponential coefficient is

ε1 =
1

4
· p

2

q2
· q

2

p2
· λ

πj
· A(p) ∼ (q − p)2 [1 + (q − p)θ]2

32q6
=

χ2(p)

4

where

χ2(p) =
(q − p)2

4q6
[(

1− 8p2 + 16p3 − 8p4
)

+ (q − p)θ
]

was conjectured in [1]. What was missed previously, however, is the expression for
ε0 as a perfect square. This fact is a corollary of the hidden relation

λ

πj
= 2q2A(p)

(“hidden” in the sense that our experimental methods in [1] overlooked this intriguing
formula).

3. Traffic Light: ℓ = 3

We have six subwalks. Let us consider the subwalk represented by U3V 3:




























(

1 + 3p + 6p2 + 10p3
)

q3 15p4q2 6p5q p6 0 0 0 0 · · ·
(

1 + 4p + 10p2
)

q4 20p3q3 15p4q2 6p5q p6 0 0 0 · · ·
(1 + 5p)q5 15p2q4 20p3q3 15p4q2 6p5q p6 0 0 · · ·

q6 6pq5 15p2q4 20p3q3 15p4q2 6p5q p6 0 · · ·
0 q6 6pq5 15p2q4 20p3q3 15p4q2 6p5q p6 · · ·
0 0 q6 6pq5 15p2q4 20p3q3 15p4q2 6p5q · · ·
0 0 0 q6 6pq5 15p2q4 20p3q3 15p4q2 · · ·
0 0 0 0 q6 6pq5 15p2q4 20p3q3 · · ·
...

...
...

...
...

...
...

...
. . .




























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3.1. Stationary Distribution. For j ≥ 3, we have

πj = p6πj−3 + 6p5qπj−2 + 15p4q2πj−1 + 20p3q3πj + 15p2q4πj+1 + 6pq5πj+2 + q6πj+3;

π0 =
(

1 + 3p+ 6p2 + 10p3
)

q3π0 +
(

1 + 4p+ 10p2
)

q4π1 + (1 + 5p)q5π2 + q6π3

hence

π3 =
(1− q3 − 3pq3 − 6p2q3 − 10p3q3) π0 − (1 + 4p+ 10p2)q4π1 − (1 + 5p)q5π2

q6
;

π1 = 15p4q2π0 + 20p3q3π1 + 15p2q4π2 + 6pq5π3 + q6π4

hence

π4 =
−15p4q2π0 + (1− 20p3q3)π1 − 15p2q4π2 − 6pq5π3

q6
;

π2 = 6p5qπ0 + 15p4q2π1 + 20p3q3π2 + 15p2q4π3 + 6pq5π4 + q6π5

hence

π5 =
−6p5qπ0 − 15p4q2π1 + (1− 20p3q3)π2 − 15p2q4π3 − 6pq5π4

q6
.

Defining

F (z) =

∞
∑

j=3

πjz
j

= p6z3
∞
∑

j=3

πj−3z
j−3 + 6p5qz2

∞
∑

j=3

πj−2z
j−2

+ 15p4q2z

∞
∑

j=3

πj−1z
j−1 + 20p3q3

∞
∑

j=3

πjz
j +

15p2q4

z

∞
∑

j=3

πj+1z
j+1

+
6pq5

z2

∞
∑

j=3

πj+2z
j+2 +

q6

z3

∞
∑

j=3

πj+3z
j+3

= p6z3
[

F (z) + π0 + π1z + π2z
2
]

+ 6p5qz2
[

F (z) + π1z + π2z
2
]

+ 15p4q2z
[

F (z) + π2z
2
]

+ 20p3q3F (z) +
15p2q4

z

[

F (z)− π3z
3
]

+
6pq5

z2
[

F (z)− π3z
3 − π4z

4
]

+
q6

z3
[

F (z)− π3z
3 − π4z

4 − π5z
5
]
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we deduce
[

1− p6z3 − 6p5qz2 − 15p4q2z − 20p3q3 − 15p2q4

z
− 6pq5

z2
− q6

z3

]

F (z)

= p6z3
(

π0 + π1z + π2z
2
)

+ 6p5qz2
(

π1z + π2z
2
)

+ 15p4q2z
(

π2z
2
)

− 15p2q4

z

(

π3z
3
)

− 6pq5

z2
(

π3z
3 + π4z

4
)

− q6

z3
(

π3z
3 + π4z

4 + π5z
5
)

hence

[

q6 + 6pq5z + 15p2q4z2 −
(

1− 20p3q3
)

z3 + 15p4q2z4 + 6p5qz5 + p6z6
]

F (z)

= −p6z6
(

π0 + π1z + π2z
2
)

− 6p5qz5
(

π1z + π2z
2
)

− 15p4q2z4
(

π2z
2
)

+ 15p2q4z2
(

π3z
3
)

+ 6pq5z
(

π3z
3 + π4z

4
)

+ q6
(

π3z
3 + π4z

4 + π5z
5
)

.

Replacing π3, π4 and π5 by expressions in π0, π1 and π2, then cancelling the common
factor 1− z between numerator and denominator, yields F (z) to be

{p4 [b+ apz + p2z2]π0 + [c+ bp4z + ap5z2 + p6z3]π1 + [d+ cz + bp4z2 + ap5z3 + p6z4] π2} z3
(q2 − p2z) [q4 + q2(1 + 4pq)z + (1 + 2pq + 6p2q2)z2 + p2(1 + 4pq)z3 + p4z4]

where
a = 6− 5p, b = 15− 24p+ 10p2,

c = − (1− 20p3 + 45p4 − 36p5 + 10p6) , d = − (1− 15p2 + 40p3 − 45p4 + 24p5 − 5p6)

hence

L = lim
z→1

F (z) =
3p4 (1 + 2q + 2q2) π0 − [3(q − p)− 2(1 + 2p)q5]π1 − [3(q − p)− q6] π2

3(q − p)
.

We observe five zeroes in the denominator D(z) of F (z). Two (complex conjugate)
zeroes have modulus < 1:

z1 =
−1− i

√
3− 4pq +

√

−2 + 2i
√
3 + 8

(

1 + i
√
3
)

pq

4p2
,

z2 =
−1 + i

√
3− 4pq +

√

−2− 2i
√
3 + 8

(

1− i
√
3
)

pq

4p2
;

two zeroes have modulus > 1:

z4 =
−1 − i

√
3− 4pq −

√

−2 + 2i
√
3 + 8

(

1 + i
√
3
)

pq

4p2
,
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z5 =
−1 + i

√
3− 4pq −

√

−2− 2i
√
3 + 8

(

1− i
√
3
)

pq

4p2
;

and the remaining (real) zero is

z3 =
q2

p2
> 1.

Finding the unknowns π0, π1 and π2 is achieved by solving three simultaneous equa-
tions (two involving the numerator N(z) of F (z)):

Eq1 : subst (z = z1, N) = 0

Eq2 : subst (z = z2, N) = 0

Eq3 : π0 + π1 + π2 + L = 1

which yields

π0 =
(q−p)

[

7−10p+4p2+θ−
√
2
√

1+28p−60p2+40p3−8p4+(7−10p+4p2)θ
]

4q6
,

π1 =
(q−p)[−3(1+7p−10p2+4p3)−3(1+p)θ+

√
6

·
√

−1+30p+71p2−84p3−100p4+120p5−24p6+(7+16p−5p2−18p3+12p4)θ
]

4q7
,

π2 =
(q−p)[3(−1+6p+14p2−20p3+8p4)+3(1+4p+2p2)θ−

√
6

·
√

−1−16p+64p2+656p3+52p4−1072p5+80p6+480p7−96p8+(1+14p+120p2+80p3−92p4−24p5+48p6)θ
]

4q8

where θ =
√

1 + 4pq + 16p2q2. Thus we have a complete description of the stationary
distribution. An exact expression for πj is again infeasible. The third zero z3 leads
to

A(p) = − N(z3)

z3D′(z3)
=

(q − p)u+ (q − p)3θ +
√
2(q − p)2

√
v + uθ

12q6
,

πj ∼ A(p)

(

p2

q2

)j

where

u = 1− 2p+ 6p2 − 8p3 + 4p4, v = 1 + 6p2 − 28p3 + 54p4 − 48p5 + 16p6.

This is the expression that we shall use in the clumping heuristic.
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3.2. Clump Rate. Using

νj = p6νj−3 + 6p5qνj−2 + 15p4q2νj−1 + 20p3q3νj + 15p2q4νj+1 + 6pq5νj+2 + q6νj+3, j ≥ 1;

ν0 = p6ν−3 + 6p5qν−2 + 15p4q2ν−1 + 20p3q3 + 15p2q4ν1 + 6pq5ν2 + q6ν3

define

F̃ (z) =
∞
∑

j=1

νjz
j

= p6z3
∞
∑

j=1

νj−3z
j−3 + 6p5qz2

∞
∑

j=1

νj−2z
j−2

+ 15p4q2z
∞
∑

j=1

νj−1z
j−1 + 20p3q3

∞
∑

j=1

νjz
j +

15p2q4

z

∞
∑

j=1

νj+1z
j+1

+
6pq5

z2

∞
∑

j=1

νj+2z
j+2 +

q6

z3

∞
∑

j=1

νj+3z
j+3

= p6z3
[

F̃ (z) + ν−2z
−2 + ν−1z

−1 + 1
]

+ 6p5qz2
[

F̃ (z) + ν−1z
−1 + 1

]

+ 15p4q2z
[

F̃ (z) + 1
]

+ 20p3q3F̃ (z) +
15p2q4

z

[

F̃ (z)− ν1z
]

+
6pq5

z2

[

F̃ (z)− ν1z − ν2z
2
]

+
q6

z3

[

F̃ (z)− ν1z − ν2z
2 − ν3z

3
]

equivalently

[

1− p6z3 − 6p5qz2 − 15p4q2z − 20p3q3 − 15p2q4

z
− 6pq5

z2
− q6

z3

]

F̃ (z)

= p6z3
(

ν−2z
−2 + ν−1z

−1 + 1
)

+ 6p5qz2
(

ν−1z
−1 + 1

)

+ 15p4q2z

− 15p2q4

z
(ν1z)−

6pq5

z2
(

ν1z + ν2z
2
)

− q6

z3
(

ν1z + ν2z
2 + ν3z

3
)

equivalently

[

q6 + 6pq5z + 15p2q4z2 −
(

1− 20p3q3
)

z3 + 15p4q2z4 + 6p5qz5 + p6z6
]

F̃ (z)

= −p6z6
(

ν−2z
−2 + ν−1z

−1 + 1
)

− 6p5qz5
(

ν−1z
−1 + 1

)

− 15p4q2z4

+ 15p2q4z2 (ν1z) + 6pq5z
(

ν1z + ν2z
2
)

+ q6
(

ν1z + ν2z
2 + ν3z

3
)
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equivalently

(1− z)(q2 − p2z)
[

q4 + q2(1 + 4pq)z + (1 + 2pq + 6p2q2)z2 + p2(1 + 4pq)z3 + p4z4
]

F̃ (z)

= −p6z4ν−2 − p6z5ν−1 − p6z6 − 6p5qz4ν−1 − 6p5qz5 − 15p4q2z4

+ 15p2q4z3ν1 + 6pq5z2ν1 + 6pq5z3ν2 + q6zν1 + q6z2ν2

+ z3
(

ν0 − p6ν−3 − 6p5qν−2 − 15p4q2ν−1 − 20p3q3 − 15p2q4ν1 − 6pq5ν2
)

= z3ν0 + q6zν1 + 6pq5z2ν1 + q6z2ν2 − 15p4q2z3ν−1 − 6p5qz4ν−1 − p6z5ν−1

− 6p5qz3ν−2 − p6z4ν−2 − p6z3ν−3 − 20p3q3z3 − 15p4q2z4 − 6p5qz5 − p6z6.

Only the first three of the six zeroes z1, z2, 1, z3, z4, z5 are of interest. Let Ñ(z)
denote the numerator for F̃ (z). We have

Ẽq1 : subst
(

z = z1, Ñ
)

= 0,

Ẽq2 : subst
(

z = z2, Ñ
)

= 0,

Ẽq3 : subst
(

z = 1, Ñ
)

= 0.

Replacing q6ν3 by p6ν−3 in our initial expression for ν0 gives

Ẽq4 : ν0 = 2p6ν−3 + 6p5qν−2 + 15p4q2ν−1 + 20p3q3 + 15p2q4ν1 + 6pq5ν2.

Also, replacing q2ν1 by p2ν−1 and q4ν2 by p4ν−2 throughout Ẽq1, Ẽq2, Ẽq3 and Ẽq4
reduces the number of variables to four. The simultaneous solution is

ν0 =
−2p(−3−18p+92p2−120p3+816p4−2816p5+3840p6−2304p7+512p8)

+2(q−p)3(1+4p+12p2−32p3+16p4)θ−(q−p)2θ
√
2

·[(−1−8p+8p2)(−1−2p−46p2−32p3+848p4−2432p5+3200p6−2048p7+512p8)

+(1+8p+88p2−448p3+1888p4−4864p5+6400p6−4096p7+1024p8)θ]
1/2

1−256p3+768p4−768p5+256p6
,

ν−1 =
−6pq−(q−p)2(1+32p2−64p3+32p4)θ+(q−p)θ

·[(q−p)2(−1−8p+8p2)(1−8p−56p2−128p3+704p4−768p5+256p6)

+2(1−32p2+64p3+992p4−4096p5+6144p6−4096p7+1024p8)θ]
1/2

2p2(1−256p3+768p4−768p5+256p6)
,
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ν−2 =
−6p2q2(5−256p3+768p4−768p5+256p6)−(q−p)4(1+8p+24p2−64p3+32p4)θ+(q−p)θ

·[(−1+8p+8p2+288p3−944p4−3136p5+3776p6−73728p7+712704p8−2445312p9

+4345856p10−4489216p11+2736128p12−917504p13+131072p14)

+2(1+4p+12p2−32p3+16p4)(1−8p+40p2−320p3+1824p4−4864p5+6400p6−4096p7+1024p8)θ]
1/2

2p4(1−256p3+768p4−768p5+256p6)
,

ν−3 =
−2p(−3−18p−33p2+255p3+441p4−643p5−8448p6+28416p7−40448p8+30720p9−12288p10+2048p11)

−(q−p)2(−2−10p−41p2+190p3+89p4−1088p5+1728p6−1152p7+288p8)θ−(q−p)θ

·[(2+24p+186p2+272p3−1239p4−8796p5+43998p6−51924p7−581577p8+3019604p9−4358340p10−6991872p11

+38416256p12−72366336p13+79163136p14−54779904p15+23804928p16−5971968p17+663552p18)

+2(1+10p+69p2−18p3−330p4−3840p5+8160p6+62940p7−250095p8+56320p9+1459360p10

2p6(1−256p3+768p4−768p5+256p6)

−4044096p11+5577696p12−4608000p13+2322432p14−663552p15+82944p16)θ]
1/2

2p6(1−256p3+768p4−768p5+256p6)
,

yielding

ν1 =
−6pq−(q−p)2(1+32p2−64p3+32p4)θ+(q−p)θ

·[(q−p)2(−1−8p+8p2)(1−8p−56p2−128p3+704p4−768p5+256p6)

+2(1−32p2+64p3+992p4−4096p5+6144p6−4096p7+1024p8)θ]
1/2

2(1−256p3+768p4−768p5+256p6)q2
,

ν2 =
−6p2q2(5−256p3+768p4−768p5+256p6)−(q−p)4(1+8p+24p2−64p3+32p4)θ+(q−p)θ

·[(−1+8p+8p2+288p3−944p4−3136p5+3776p6−73728p7+712704p8−2445312p9

+4345856p10−4489216p11+2736128p12−917504p13+131072p14)

+2(1+4p+12p2−32p3+16p4)(1−8p+40p2−320p3+1824p4−4864p5+6400p6−4096p7+1024p8)θ]
1/2

2(1−256p3+768p4−768p5+256p6)q4
,

in particular.
We must take Ω = {0,−1,−2} as the absorbing set. The rate λ of clumps of

visits to Ω is equal to λ0+λ−1+λ−2 where parameters λ0, λ−1 and λ−2 are solutions
of the system

λ0 + λ−1ν−1 + λ−2ν−2 = (1− ν0)πj ,
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λ0ν1 + λ−1 + λ−2ν−1 = (1− ν0) πj+1 ∼
p2

q2
(1− ν0)πj ,

λ0ν2 + λ−1ν1 + λ−2 = (1− ν0)πj+2 ∼
p4

q4
(1− ν0) πj .

The total clump rate is consequently

λ ∼ (q − p)u+ (q − p)3θ +
√
2(q − p)2

√
v + uθ

4q4
πj

where u and v appear at the end of Section 3.1. Thus the exponential coefficient is

ε1 =
1

6
· p

2

q2
· q

3

p3
· λ

πj
·A(p) ∼

[

(q − p)u+ (q − p)3θ +
√
2(q − p)2

√
v + uθ

]2

288pq9
=

χ3(p)

6

where

χ3(p) =
(q − p)2

12pq9

[

α + (q − p)2βθ + (q − p)
√
2
√

γ + αβθ
]

,

α = 1− 4p+ 10p2 − 52p3 + 226p4 − 520p5 + 640p6 − 400p7 + 100p8,

β = 1− 2p+ 6p2 − 8p3 + 4p4,

γ = 1− 4p+ 16p2 − 104p3 + 506p4 − 1808p5 + 5604p6 − 15576p7 + 35574p8

− 61160p9 + 75152p10 − 63440p11 + 34840p12 − 11200p13 + 1600p14

was conjectured in [1]. Again, what was missed previously is the expression for ε0
as a perfect square, a corollary of the hidden relation

λ

πj
= 3q2A(p).

We conjecture, for arbitrary ℓ ≥ 2, that

λ

πj
= ℓq2A(p)

among many possible unsolved problems.56
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Notes

1Looking ahead, in Section 2, ε1 will correspond to the subwalk for i ≡ 2mod 4
and ε0 will correspond to the subwalk for i ≡ 0mod 4, that is, to V 2U2 and U2V 2

respectively. It can be shown that ε0 will possess an extra p2/q2 factor compared
to ε1. In Section 3, ε1 will correspond to the subwalk for i ≡ 3mod 6 and ε0 will
correspond to the subwalk for i ≡ 0mod6, that is, to V 3U3 and U3V 3 respectively.
It can be shown that ε0 will possess an extra p3/q3 factor compared to ε1.

2Defining νj is best done as follows. I am at a large level, say, J . I place the
origin at J and I wish to find the probability νj of returning to J starting from J− j,
equivalently, to 0 now. I reverse the walk direction. Now J − j is j and J + j is −j.
The trend is now towards the positive integers rather than the negative integers.

3The same identity connecting ν−j and νj will be true in Sections 2 and 3 as well,
by the same reasoning.

4Employing the original coordinate axis may aid understanding. Readers might
be tempted to use the level j as the absorbing set S. But the maximum could be
above j without ever touching level j because of the transition p4. So we must use as
S the levels j and j + 1: no maximum can be above j + 1 without touching at least
one of the levels j or j + 1. In the revised notation, this leads to the absorbing set
Ω = {0,−1}.

5In this paper, we imagined a single line of traffic flowing from east to west. In the
following, imagine instead two independent Bernoulli(p) queues with no ℓ parameter
at all. Think of one queue for east-to-west traffic (EW) and one queue for north-
to-south (NS) traffic. The intersection of the two lines of traffic is governed by one
stoplight. An (old) green light for EW traffic turns red precisely when then are no
EW cars left, the (new) green light for NS traffic turns red precisely when then are no
NS cars left, and so on. What is the stationary distribution for this scenario? This
may be a difficult question to answer. From [3], it seems that, if π can be calculated,
then the distribution of the maximum line length of idle EW cars (say) can be readily
found via the clumping heuristic.

6Another conceptualization of the ℓ = 2 scenario involves patients randomly arriv-
ing at a hospital emergency room. One doctor treats a new patient starting at times
≡ 3mod 4; the other likewise at times ≡ 4mod 4. Services lengths are constant.
Allowing these to be nondeterministic complicates the analysis.
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