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Abstract

Using the Saddle point method and multiseries expansions, we obtain from the generating
function of the Eulerian numbers An,k and Cauchy’s integral formula, asymptotic results in non-
central region. In the region k = n− nα, 1 > α > 1/2, we analyze the dependence of An,k on α.
This paper fits within the framework of Analytic Combinatorics.
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1 Introduction

The Eulerian numbers An,k have been the object of renewed interest recently. They are defined by
the recurrence

An+1,k = (n− k + 2)An,k−1 + kAn,k

where we chose A0,0 = 0, A0,1 = 1. They correspond, for instance, to runs in permutations. The
double exponential generating function is given by

g(z, w) :=
∞∑
n=0

∞∑
k=0

An,k
n!

znkw =
w(1− w)

e(w−1)z − w
.

We have
∞∑
k=0

An,k
n!

= 1,

hence we can define a random variable (RV) Jn such that

P[Jn = k] =
An,k
n!

.

From Flajolet and Sedgewick [5], ch.IX, we know that the roots of the denominator are

hj(w) = f(w)−1 +
2ijπ

w − 1
, j ∈ Z,

with

f(w) =
w − 1

ln(w)
.

As w → 1, f(w)−1 is close to 1, whereas the other poles hj(w) with j 6= 0 escape to infinity. This
fact is consistent with the limit form g(z, 1) = (1 − z)−1 which has only one simple pole at 1. If one
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restricts w to |w| ≤ 2, there is clearly at most one root of the denominator in |z| ≤ 2, given by f(w)−1.
Thus we have for w close enough to 1,

g(z, w) =
1

f(w)−1 − z
+R(z, w)

with R(z, w) analytic in |z| ≤ 2, and

[zn]g(z, w) = f(w)n+1 +O(2−n).

Note that f(w) does not correspond to a discrete RV, but if we set w = et, f(et)n+1 corresponds
to a sum of n + 1 independent RV uniformly distributed on [0, 1]. In the rest of this paper, we set
m := n+ 1, µ :=

√
m. The corresponding mean and variance are given by

M =
m

2
,

σ2 =
m

12
.

The generating function of the mean and second moment are given respectively by

1

2(1− z)2
,

z + 2

6(1− z)3
.

Note that the exact mean and second moment generating functions are derived from g(z, w) as

2− 2z + z2

2(1− z)2
,

6− 12z + 15z2 − 7z3 + z4

6(1− z)3
.

Of course, asymptotically (by classical singularity analysis), exact and asymptotic moments are the
same.

� In the central region k = M + xσ, x = O(1), Jn is asymptotically normal. This has first been
proved by David an Barton [3]. Without being exhaustive (a very complete bibliography can
be found in Janson [9]), let us also mention Bender [1], Carlitz et al. [2], Tanny [13]. The first
two terms of a correction were given in Siraz̃dinov [14] and Nicolas [12]. A complete analysis is
given in Gawronski and Neuschel [6]:

There exists polynomials qν , ν ≥ 1, such that, for any ` ≥ 0 as n→∞, uniformly for all k ∈ Z

An,k
n!

=

√
6

π(n+ 1)
e−x

2/2

(
1 +

∑̀
ν=1

qν(x)

(n+ 1)ν

)
+O

(
n−`−3/2

)
,

qν(x) = 12ν
∑

H2ν+2s(x)6s
ν∏

m=1

(
B2m+2

(m+ 1)(2m+ 2)!

)km
, (1)

summing over all non-negative integers (k1, . . . , kν) with k1 + 2k2 + . . . + νkν and letting s =
k1 + k2 + . . .+ kν .

A very simple proof is given in Janson [9].

� As far as the large deviation is concerned, let us mention Bender [1], Hwang [8]. Esseen [4]
improves Bender’s result as follows:
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Let a := k/(n+ 1) uniformly in all 0 < k < n+ 1. Let t(a) be the solution of

a =
et(a)

et(a) − 1
− 1

t(a)
.

Set

m(a) =
et(a) − 1

t(a)eat(a)
,

σ2(a) =
1

t(a)2
− et(a)

(et(a) − 1)2
.

Then
An,k
n!

=
m(a)n+1√

2π(n+ 1)σ(a)
(1 +O(n−1)).

As noted by Esseen, further terms can be obtained in this asymptotic.

All these papers use the solution ρ of

mwf ′(w)− kf(w) = 0 (2)

which actually corresponds to the Saddle point of the Saddle point method (see Sec.2). In this
paper, we are interested in the extreme large deviation case k = m − mα, 1/2 < α < 1. (the
choice of this range is justified in Sec.3). This range was already the object of our analysis of
Stirling numbers of first and second kind (see Louchard [10], [11]).

Let us summarize the motivation of this paper: (α is chosen such that mα is integer).

� Previous papers simply use ρ as the solution of (2). They don’t compute the detailed dependence
of ρ on α , neither the precise behaviour of functions of ρ they use.

� We will use multiseries expansions: multiseries are in effect power series (in which the powers
may be non-integral but must tend to infinity) and the variables are elements of a scale. The
scale is a set of variables of increasing order. The series is computed in terms of the variable of
maximum order, the coefficients of which are given in terms of the next-to-maximum order, etc.
This is more precise than mixing different terms.

Our work fits within the framework of Analytic Combinatorics.
In Sec.2, we revisit the asymptotic expansion in the central region and in Sec.3, we analyze the

non-central region k = m −mα, α > 1/2. We use Cauchy’s integral formula and the Saddle point
method. Sec.4 provides a justification of the Saddle point technique we use here.

2 Central region

In this section, as a warm-up, we rederive the first terms of the asymptotics (1). We use the Saddle
point technique (for a good introduction to this method, see Flajolet and Sedgewick [5], ch.V III).
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Let ρ be the Saddle point and Ω the circle ρeiθ. By Cauchy’s theorem,

An,k
n!
∼ 1

2πi

∫
Ω

f(z)m

zk+1
dz

=
1

ρk
1

2π

∫ π

−π
f(ρeiθ)me−kiθdθ

=
1

ρk
1

2π

∫ π

−π
em ln(f(ρeiθ))−kiθdθ

=
1

ρk
f(ρ)m

2π

∫ π

−π
exp

[
m

{
−1

2
κ2θ

2 − i

6
κ3θ

3 + . . .

}]
dθ, (3)

κi(ρ) =

(
∂

∂u

)i
ln(f(ρeu))|u=0 . (4)

See Good [7] for an ancient but neat description of this technique.
Let us now turn to the Saddle point computation. ρ is the root (of smallest modulus) of (2) with

k = M + xσ. This amounts to[
w

(
1

ln(w)
− w − 1

ln(w)2w

)
− w − 1

2 ln(w)

]
µ2 − x31/2(w − 1)

6 ln(w)
µ = 0.

The solution is given by the asymptotic expansion (µ→∞)

ρ := 1 +
2x31/2

µ
+

6x2

µ2
+

22x331/2

5µ3
+

42x4

5µ4
+O

(
1

µ5

)
.

In the sequel, we will only give the first terms of our expansions (of course Maple knows much more).
This leads to

T1 = −k ln(ρ)) = −x31/2µ− x2 − x331/2

5µ
− x4

5µ2
+O

(
1

µ3

)
,

T2 = µ2 ln(f(ρ)) = x31/2µ+
x2

2
+
x331/2

5µ
+

3x4

20µ2
+O

(
1

µ3

)
,

T1 + T2 = −x
2

2
− x4

20µ2
− 11x6

1050µ4
+O

(
1

µ6

)
,

T3 = exp(T1 + T2 +
x2

2
) = 1− x4

20µ2
+
−11/1050x6 + x8/800

µ4
+O

(
1

µ6

)
.

Now we turn to the integral in (3). The first κi are given by

κ[2] =
1

12
− x2

20µ2
+

2x4

525µ4
+

2x6

2625µ6
+O

(
1

µ8

)
,

κ[3] = −x31/2

60µ
+

79x331/2

6300µ3
+O

(
1

µ5

)
,

κ[4] = − 1

120
+

x2

42µ2
+O

(
1

µ4

)
,

and similar expressions for the next κi that we don’t detail here. We proceed as in Flajolet and
Sedgewick [5], ch.V III. Let us choose a splitting value θ0 such that mκ2θ

2
0 →∞,mκ3θ

3
0 → 0, n→∞.

For instance, we can use θ0 = µ−1/2. We must prove that the integral

Km,k =

∫ 2π−θ0

θ0

em ln(f(ρeiθ))−kiθdθ

4



is such that |Km,k| is exponentially small. This is done in Appendix 4.
Now we use the classical trick of setting

m

[
−κ2θ

2/2! +
∞∑
l=3

κ`(iθ)
`/`!

]
= −u2/2.

Computing θ as a series in u, this gives, by Lagrange’s inversion,

θ =
6∑
1

uia[i]/µ = 31/2

[
u

(
2 +

3x2

5µ2
+O

(
1

µ4

))
+ u2

(
2ix

5µ2
+

94ix3

525µ4
+O

(
1

µ6

))
+O(u3)

]/
µ.

This expansion is valid in the dominant integration domain

|u| ≤ µ

a1
θ0 = µ1/2.

Setting dθ = dθ
dudu, we integrate on u = [−∞..∞]: this extension of the range is justified as in Flajolet

and Sedgewick [5], ch.V III. This gives

T4 :=
31/221/2

π1/2µ

[
1 +

(
3x2

10
− 3

20

)/
µ2 +

(
157x4

1400
− 27x2

280
− 13

1120

)/
µ4 +O

(
1

µ6

)]
.

Now it remains to compute

T5 := T3T4 =
31/221/2

π1/2µ

[
1 +

(
−x

4

20
+

3x2

10
− 3

20

)/
µ2 +

(
x8

800
− 107x6

4200
+

67x4

560
− 27x2

280
− 13

1120

)/
µ4 +O

(
1

µ6

)]
.

Note that the coefficient of the exponential term is asymptotically equivalent to the dominant term
of 1√

2πσ
, as expected. The first three terms correspond to (1). Note that our derivation is simpler

then Nicolas’ computation in [12].

3 Large deviation, k = m−mα, 1 > α > 1/2, mα integer, m→∞
We have k = m−mα, mα integer. We set

ε := mα−1,

1

ε
= m1−α � µ� exp(1/ε).

The multiseries’ scale is here {m1−α, µ, exp(1/ε)}. Set τ = exp(−1/ε). Our result can be summarized
in the following local limit theorem:

Theorem 3.1 With 1/2 < α < 1,

An,k
n!

= emεmT5(1 + T6τ + T7τ
2 +O(τ3)), (5)

with (6)

T5 =
1√
2π

(
1

εµ
− 1

12εµ3

)
,

T6 = −µ2 − 1

ε
+

1

2ε2
+

(
− 1

8ε4
+

5

6ε3
− 1

ε2

)/
µ2 +O

(
1

µ4

)
,

T7 =
µ4

2
+

(
− 1

ε2
+

1

ε
− 1

2

)
µ2 +

1

ε4
− 10

3ε3
+

3

ε2
− 1

ε
+O

(
1

µ2

)
.
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Proof. We have
k = m−mα = m(1− ε).

The Saddle point equation (2) becomes

−w + 1 + ln(w) + ln(w)εw − ln(w)ε = 0. (7)

To first order, we have ln(w) ∼ 1/ε. So we set

ρ = eξ, ξ =
1

ε
(1 + η),

we now have to the next order

ε(ρ−1 − 1)(1− η) + ρ−1 + (1− ρ−1)ε = 0,

or
−ηερ−1 + ηε+ ρ−1 = 0,

hence

η ∼ −ρ
−1

ε
� ε.

This gives

ρ−1 = e−ξ = e−1/ε−η/ε ∼ τ(1− η

ε
),

hence

η ∼ −
τ(1− η

ε )

ε
∼ −τ

ε
(1 +

τ

ε2
) = −τ

ε
− τ2

ε3
.

We derive, by bootstrapping from (7) (again we only provide a few terms here, we use more terms in
our expansions)

η = −1

ε
τ +

(
− 1

ε3
+

1

ε2
− 1

ε

)
τ2 +

(
− 3

2ε5
+

3

ε4
− 4

ε3
+

2

ε2
− 1

ε

)
τ3 +O(τ4),

and, successively,

ρ =
exp(η/ε)

τ
, i.e.

ρ =
1

τ
− 1

ε2
+

(
− 1

2ε4
+

1

ε3
− 1

ε2

)
τ +

(
− 2

2ε6
+

2

ε5
− 3

ε4
+

2

ε3
− 1

ε2

)
τ2 +O(τ3),

ln(ρ) =
1

ε
(1 + η), i.e.

ln(ρ) =
1

ε
− 1

ε2
τ +

(
− 1

ε4
+

1

ε3
− 1

ε2

)
τ2 +

(
− 3

2ε6
+

3

ε5
− 4

ε4
+

2

ε3
− 1

ε2

)
τ3 +O(τ4),

f(ρ) =
1

τ
+ 1− ε− 1

ε
+

(
− 1

2ε3
+

1

ε2
− 1

ε

)
τ +O(τ2),

ln(f(ρ)) = ln(ε) +
1

ε
+

(
− 1

ε2
+

1

ε
− 1

)
τ +O(τ2).

For the first part of the Cauchy’s integral, we have

T1 = ln(f(ρ))− (1− ε) ln(ρ) = ln(ε) + 1− τ +

(
− 1

2ε2
− 1

2

)
τ2 +O(τ3),

now we extract the dominant part ln(ε) + 1,

T2 = exp(µ2(T1 − (ln(ε) + 1))) = 1− µ2τ +

(
−1 + ε2

2ε2
µ2 +

1

2
µ4

)
τ2 +O(τ3).
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Also

κ[2] = ε2 + (−1 + 2ε) τ +O(τ2),

κ[3] = −2ε3 + (1− 6ε2)τ +O(τ2).

Again we must choose a splitting value θ0 = mβ, β < 0 such that mκ2θ
2
0 → ∞,mκ3θ

3
0 → 0, n → ∞.

This leads to

β >
1

2
− α, β < 2

3
− α,

that is why we restrict the range to 1/2 < α < 1. We can then use θ0 = m1/2−α. We must prove that
the integral

Km,k =

∫ 2π−θ0

θ0

em ln(f(ρeiθ))−kiθdθ

is such that |Km,k| is exponentially small. This is done in Appendix 4. Proceeding further, we derive

θ =

∞∑
1

uia[i]/µ =
u

εµ
+

iu2

3εµ2
− u3

36εµ3
+

iu4

270εµ4
+O(τ).

This expansion is valid in the dominant integration domain

|u| ≤ θ0µ

a1
= m.

Setting dθ = dθ
dudu, we integrate on u = [−∞..∞] This gives successively

T3 =
1√
2π

[(
1

εµ
− 1

12εµ3

)
+

(
1

2ε3
− 1

ε2

µ
+
− 1

8ε5
+ 5

6ε4
− 25

24ε3
+ 1

12ε2

µ3

)
τ

]
+O(τ2),

T4 = T3T2 = T5(1 + T6τ + T7τ
2 +O(τ3)),

with

T5 =
1√
2π

(
1

εµ
− 1

12εµ3

)
,

T6 = −µ2 − 1

ε
+

1

2ε2
+

(
− 1

8ε4
+

5

6ε3
− 1

ε2

)/
µ2 +O

(
1

µ4

)
,

T7 =
µ4

2
+

(
− 1

ε2
+

1

ε
− 1

2

)
µ2 +

1

ε4
− 10

3ε3
+

3

ε2
− 1

ε
+O

(
1

µ2

)
.

This concludes the proof. Given some desired precision, how many terms must we use in our expan-
sions? It depends on α. For instance, in T7, we encounter terms like 1

ε2
µ2 and 1

ε4
. So we must compare

(1− α) + 1 with 4(1− α). The critical value is α = 2/3.

To check the quality of our asymptotic, we have chosen m ∈ [90, 500] and α = 2/3. Figure 1 shows
ln(An,k) (circle) and the ln of expression (5) (line). Figure 2 shows the quotient of ln(An,k) by the
ln of expression (5), without the τ term in (5) (line) and with this term (circle). Of course the good
influence of the τ term is less effective for large m.

Another way is to fix m, to 1001 for instance (n = 1000). The maximum value for k is bm−m1/2c =
969. We must set k larger than the central domain, for instance larger than bm2 + 2

√
m/12c = 518.

But note that the term T6 start with two negative terms, −µ2 − 1
ε , so k must be large so that τ is

small enough to compensate these negative terms. It appears that k = 860 is large enough in our
case. So our α range is [1/2, 0.71]. Figure 3 shows ln(An,k) (circle) and the ln of expression (5) (line).
Figure 4 shows the quotient of ln(An,k) by the ln of expression (5), without the τ term in (5) (line)
and with this term (circle).

7



–500

–400

–300

–200

–100

100 200 300 400

Figure 1: α = 2/3, ln(An,k) (circle) and the ln of expression (5) (line) as function of m
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Figure 2: α = 2/3, quotient of ln(An,k) by the ln of expression (5), as function of m, without the τ
term in (5) (line) and with this term (circle)
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Figure 3: n = 1000, ln(An,k) (circle) and the ln of expression (5) (line) as function of k
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Figure 4: n = 1000, quotient of ln(An,k) by the ln of expression (5), as function of k, without the τ
term in (5) (line) and with this term (circle)
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4 Appendix. Justification of the integration procedure

4.1 The central region

We must analyze
<(m ln(f(ρeiθ))− kiθ),

but ρ ∼ 1, k ∼ m/2, so to first order, this leads to analyze

<
(

ln

(
eiθ − 1

iθeiθ/2

))
= ln

(
2 sin(θ/2)

θ

)
,

which has a dominant peak at 0.

4.2 The non-central region

Now we must analyze
<(m ln(f(ρeiθ))− k ln(ρeiθ)),

but k ∼ m, so to first order, this leads to analyze

<
(

ln

(
ρeiθ − 1

ln(ρeiθ)2

))
=

1

2
ln

(
1− 2ρ cos(θ) + ρ2

(ln(ρ)2 + θ2)2

)
,

which has a dominant peak at 0.
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