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Summary
• What? Why?

• Rational choice

• Strategic games

• Nash Equilibrium

• Best  

• Dominance

• Mixed strategies

• Mixed-strategy Nash 
Equilibria

• Support finding

© Tom Lenaerts, 2010

• Lemke-Howson algorithm

• Extensive-form games

• sub-game perfect equilibrium

• Simultaneous moves

• Chance moves

• Bayesian games

• Fictitious play and stimulus 
response learning 
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J. Maynard-Smith

© Tom Lenaerts, 2016

An evolutionary perspective
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Non-rational players: one player for each 
action

Darwinian competition between simple players 
within populations

Success of a player depends on the frequencies of 
the different types of players
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The question of cooperation
© Tom Lenaerts, 2016

Dilbert’s prisoner dilemma

5-1

The question of cooperation
© Tom Lenaerts, 2016

Dilbert’s prisoner dilemma

5-2

Social dilemmas
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 Defining the concept 

R.M. Dawes and D.M. Messick (2000) Social Dilemmas. International Journal of Psychology 
35(2):111-116

P. Kollock (1998) Social Dilemmas: the anatomy of cooperation Ann. Rev. 
Sociol.  24:183-214
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b = benefit
c = cost
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R = reward
S = suckers payoff
T = temptation to defect
P = punishment

 fear = P >S

 greed = T > R

C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma game. Behavioral Science 18:424-428
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C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma 
game. Behavioral Science 18:424-428
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C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma 
game. Behavioral Science 18:424-428
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C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma 
game. Behavioral Science 18:424-428
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C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma 
game. Behavioral Science 18:424-428
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C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma 
game. Behavioral Science 18:424-428
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C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma 
game. Behavioral Science 18:424-428
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Don’t forget the mixed NE !
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Space of social dilemmas
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What is the equilibrium notion 
in populations ?

© Tom Lenaerts, 2019
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What is the equilibrium notion 
in populations ?
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John Maynard Smith and George Price (1973)

The evolutionary stable strategy (ESS) concept
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J. Maynard-Smith and G.R. Price (1973) The logic of animal conflict.  Nature 246:15-18
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Infinite population assumption

A strategy is an ESS when it cannot be 
invaded by another strategy
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Can C invade a 
population of D players

If C cannot invade then D is an ESS

The fraction of C (D) 
players is ε (1-ε)
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Can C invade a 
population of D players

i) S>P     S

If C cannot invade then D is an ESS

The fraction of C (D) 
players is ε (1-ε)

16-2
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Can C  invade D?
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Can C  invade D?
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Which one is an ESS?
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Which one is an ESS?
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Don’t forget the mixed NE !
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What is the equilibrium notion 
in populations ?
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What is the equilibrium notion 
in populations ?

How does learning work in a population?

© Tom Lenaerts, 2019
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Change in populations
© Tom Lenaerts, 2016

Imitate successful behaviour (a.k.a. 
social learning)

Genetic evolution of successful 
properties (a.k.a. survival of the 

fittest) 

Evolutionary dynamics
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 = x(1-x)[fC(x)-fD(x)]dx
dt

 = x(1-x)[(b-c+c-b+0)x-c-0]

 = -cx(1-x)

x

y=1-x

C D

x=1 x=0

Replicator equation ...

In infinite populations

P.D. Taylor and L.B. Jonker (1978) Evolutionary stable strategies and game dynamics.  Mathematical biosciences 
40(1-2):145-156
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 = x(1-x)[(R-S-T+P)x+S-P]dx
dt

prisoners dilemma

Stag-hunt game

Snowdrift game

C D

C D

D dominates C

D and C are bistable

C D

D and C coexist
S-P

R-S-T+Px*=
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In all social dilemmas
S

T
R+1RR-1

P-1

P+1

P

C D

C

D

S-P
R-S-T+P

C

D

ESS = 
mixed state 

© Tom Lenaerts, 2016

C D

x*

x*

24

part 5 EGT and cooperation - 23 October 2019



In finite populations
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In finite populations
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A moran step algorithm
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First, select randomly two players (with replacement)
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A moran step algorithm
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First, select randomly two players (with replacement)

Second, let each player play the game against all other 
players (not themselves). 
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In finite populations
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First, select randomly two players (with replacement)

Second, let each player play the game against all other 
players (not themselves). 

If a random value is smaller than the fermi probability

Third, calculate the average fitness of the player
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In finite populations

A moran step algorithm
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First, select randomly two players (with replacement)

Second, let each player play the game against all other 
players (not themselves). 

If a random value is smaller than the fermi probability

Then  first player ← second player or with probability 
μ the first ← random strategy

Else same but second ← first

Third, calculate the average fitness of the player

26-6

In pseudo python 
A moran step algorithm (without mutation):

© Tom Lenaerts, 2015

def moran-step(beta, population):
    '''
    This function implements a birth-death process over 

the population. At time t, two players are randomly 
selected from the population    
'''

    selected=select_random_with_replacement(population, 2)
    for i, player in enumerate(selected):
        for j in range(len(population)):
            if j == player: continue
            players_payoffs = play_game(population[player], 
                                        population[j])
            fitness[i] += players_payoffs[0]
    fitness = fitness / (Z-1)
    if random() < prob_imitation(beta, fitness):
        population[selected[0]] = population[selected[1]]
    else:
        population[selected[1]] = population[selected[0]]
    
    return population
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Under the assumption that mutations are rare (µ→0) 
we either end up with 
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In finite populations
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In finite populations
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Under the assumption that mutations are rare (µ→0) 
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In finite populations

fixation probability ρ
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T+(i)

T-(i)

= the probability that the i C strategists 
increases by 1

= the probability that the i C strategists 
decreases by 1

ρ(1,C) = T-(1)ρ(0,C) + T+(1)ρ(2,C) + (1-T-(1)-T+(1)) ρ(1,C)

ρ(1,C) = Solving recursion gives

γi = T-(i)/T+(i) 

These two probabilities depend on the 
success (payoff) of each action

30
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In python

def fixation(invader, resident):
    '''
    function for calculating the fixation 
    probability of the invader 
    in a population of residents
    '''
    result=0.
    for i in range(1,N):
        sub=1.
        for j in range(1,i+1):
            tmp=probIncreaseDecrease(j,invader, resident)
            sub*=(tmp[1]/float(tmp[0]))
        result += sub
    return np.clip(1./(1. + result), 0., 1.)

31
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In python
def probIncreaseDecrease(k, invader, resident):
    '''
    This function calculates for a give number of invaders 

the probability 
    that the number increases or decreases with one. 
    '''
    fitvalue=fitness(k, invader, resident)
    increase=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(-beta,    

fitvalue[1],fitvalue[0]),0.,1.)
    decrease=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(beta, 

fitvalue[1],fitvalue[0]), 0., 1.)
    return [increase,decrease]

R3

D

D

D

C Is the invader, k  C  and N-k d

T+(k)
C

D
R3

D

D

D
T-(k)

C

D

C D
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In python
def probIncreaseDecrease(k, invader, resident):
    '''
    This function calculates for a give number of invaders 

the probability 
    that the number increases or decreases with one. 
    '''
    fitvalue=fitness(k, invader, resident)
    increase=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(-beta,    

fitvalue[1],fitvalue[0]),0.,1.)
    decrease=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(beta, 

fitvalue[1],fitvalue[0]), 0., 1.)
    return [increase,decrease]
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In python
def probIncreaseDecrease(k, invader, resident):
    '''
    This function calculates for a give number of invaders 

the probability 
    that the number increases or decreases with one. 
    '''
    fitvalue=fitness(k, invader, resident)
    increase=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(-beta,    

fitvalue[1],fitvalue[0]),0.,1.)
    decrease=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(beta, 

fitvalue[1],fitvalue[0]), 0., 1.)
    return [increase,decrease]
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In python
def probIncreaseDecrease(k, invader, resident):
    '''
    This function calculates for a give number of invaders 

the probability 
    that the number increases or decreases with one. 
    '''
    fitvalue=fitness(k, invader, resident)
    increase=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(-beta,    

fitvalue[1],fitvalue[0]),0.,1.)
    decrease=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(beta, 

fitvalue[1],fitvalue[0]), 0., 1.)
    return [increase,decrease]
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In python
def probIncreaseDecrease(k, invader, resident):
    '''
    This function calculates for a give number of invaders 

the probability 
    that the number increases or decreases with one. 
    '''
    fitvalue=fitness(k, invader, resident)
    increase=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(-beta,    

fitvalue[1],fitvalue[0]),0.,1.)
    decrease=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(beta, 

fitvalue[1],fitvalue[0]), 0., 1.)
    return [increase,decrease]
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In python
def probIncreaseDecrease(k, invader, resident):
    '''
    This function calculates for a give number of invaders 

the probability 
    that the number increases or decreases with one. 
    '''
    fitvalue=fitness(k, invader, resident)
    increase=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(-beta,    

fitvalue[1],fitvalue[0]),0.,1.)
    decrease=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(beta, 

fitvalue[1],fitvalue[0]), 0., 1.)
    return [increase,decrease]
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In python
def probIncreaseDecrease(k, invader, resident):
    '''
    This function calculates for a give number of invaders 

the probability 
    that the number increases or decreases with one. 
    '''
    fitvalue=fitness(k, invader, resident)
    increase=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(-beta,    

fitvalue[1],fitvalue[0]),0.,1.)
    decrease=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(beta, 

fitvalue[1],fitvalue[0]), 0., 1.)
    return [increase,decrease]
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In python
def probIncreaseDecrease(k, invader, resident):
    '''
    This function calculates for a give number of invaders 

the probability 
    that the number increases or decreases with one. 
    '''
    fitvalue=fitness(k, invader, resident)
    increase=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(-beta,    

fitvalue[1],fitvalue[0]),0.,1.)
    decrease=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(beta, 

fitvalue[1],fitvalue[0]), 0., 1.)
    return [increase,decrease]

p=[1+eβ(f(D)-f(C))]-1Remember Fermi

def fermifunc(b,first, second):
    '''
    The probability that the first type imitates the second
    '''
    return 1./(1. + np.exp(-b*(first-second)))

33
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In python

def fitness(k, invader, resident):
    '''
    The fitness function determines the average payoff of k 

invaders and N-k residents
    in the popiulation of N players. 
    '''
    resultA=(((k-1)*payoff[invader][invader])+

((N-k)*payoff[invader, resident]))/float(N-1)
    resultB=((k*payoff[resident][invader])+

((N-k-1)*payoff[resident, resident]))/float(N-1)
    return [resultA, resultB]

resultA = average payoff of an invader playing 
against his own type A or the other type B

resultB = average payoff of an invader playing 
against his own type B or the other type A

34
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In python

def transition_and_fixprob_matrix():
    transitions=np.zeros((q,q))
    fixprobs=np.zeros((q,q))
    for first in range(q):
        transitions[first,first]=1.
        for second in range(q) :
            if second != first :
                fp=fixation(second, first) 
                fixprobs[first][second]=(fp/drift)
                transitions[first][second]=fp/float(q-1)
                transitions[first][first]=

transitions[first][first]-(fp/float(q-1))
    return [transitions,fixprobs]

DC
??

??
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N=100 #Population size
T=3. #Temptation to defect
R=4. #Reward for mutual cooperation
P=0. #Punishment for mutual defection
S=1. #Suckers payoff for unilateral cooperation
q=2 #Number of strategies
drift=1.0/N

strats=['C','D']
payoff=np.array([R,S,T,P]).reshape(2,2)
beta=0.01

t,f=transition_and_fixprob_matrix()
print ("transition probabilities (first %s, 
second %s and read as row invading column) \n 
%s" %(strats[0], strats[1],f))

transition probabilities (first 
C, second D and read as row 
invading column) 
 [[ 0.          0.5951908 ]
 [ 1.55445772  0.        ]]

36

Which produces a reduced Markov chain 

DC

Fudenberg, D., & Imhof, L. A. (2006). Imitation processes with small mutations. J. Econ.Theo, 131,251–262.

Imhof, L. A., Fudenberg, D., & Nowak, M. A. (2005). Evolutionary cycles of cooperation and defection. Proc 
Nat Acad Sci USA, 102(31), 10797–10800.

ρCD

ρDC
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Stationary distribution
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Which produces a reduced Markov chain 

DC

Fudenberg, D., & Imhof, L. A. (2006). Imitation processes with small mutations. J. Econ.Theo, 131,251–262.

Imhof, L. A., Fudenberg, D., & Nowak, M. A. (2005). Evolutionary cycles of cooperation and defection. Proc 
Nat Acad Sci USA, 102(31), 10797–10800.

ρCD

ρDC

For which the stationary distributions can be 
calculated = how likely it is to end up in either 

monomorphic state

x% y%=1-x%
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Stationary distribution
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#calculate stationary distributions using eigenvalues and eigenvectors
w,v=np.linalg.eig(t.transpose())

#look for the element closest to 1 in the list of eigenvalues
j_stationary=np.argmin(abs(w-1.0))

# the, is essential to access the matrix by column
p_stationary=abs(v[:,j_stationary].real) 

#normalize
p_stationary /= p_stationary.sum()

print ("stationary distribution (first %s, second %s) \n %s" %(strats[0], 
strats[1], p_stationary))

The stationary distribution is the minimum 
left eigenvalue of the transition matrix.
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stationary distribution (first D, second C) 
 [ 0.72312181  0.27687819]

28%

72%

Python code for numerical approximation 
(random walks in Markov chain) see 2IPD-

numerical.ipynb (see assignment 1) 

39
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For varying β
#calculate stationary distributions using eigenvalues and eigenvectors
distribution=[]
betas=[0.00001,0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0]
for beta in betas:
    t,f=transition_and_fixprob_matrix()
    w,v=np.linalg.eig(t.transpose())
    j_stationary=np.argmin(abs(w-1.0)) 
    p_stationary=abs(v[:,j_stationary].real) 
    p_stationary /= p_stationary.sum()
    distribution.append(p_stationary)

darray=np.asarray(distribution)

# and plot the curve
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For varying β
#calculate stationary distributions using eigenvalues and eigenvectors
distribution=[]
betas=[0.00001,0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0]
for beta in betas:
    t,f=transition_and_fixprob_matrix()
    w,v=np.linalg.eig(t.transpose())
    j_stationary=np.argmin(abs(w-1.0)) 
    p_stationary=abs(v[:,j_stationary].real) 
    p_stationary /= p_stationary.sum()
    distribution.append(p_stationary)

darray=np.asarray(distribution)

# and plot the curve
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How to reach cooperation?

Nowak, M. A. Five Rules for the Evolution of Cooperation. Science 314, 1560–1563 (2006).

where groups of cooperators are less likely to go
extinct.

In the mathematically convenient limit of
weak selection and rare group splitting, we ob-
tain a simple result (51): If n is the maximum
group size and m is the number of groups, then
group selection allows evolution of cooperation,
provided that

b/c > 1 + (n/m) (5)

Evolutionary Success
Before proceeding to a comparative analysis of
the five mechanisms, let me introduce some

measures of evolutionary success. Suppose a
game between two strategies, cooperators C and
defectors D, is given by the payoff matrix

C D
C a b
D g d

The entries denote the payoff for the row
player. Without any mechanism for the evolution
of cooperation, defectors dominate cooperators,
which means a < g and b < d. A mechanism for
the evolution of cooperation can change these
inequalities.

1) If a > g, then cooperation is an evo-
lutionarily stable strategy (ESS). An infinitely
large population of cooperators cannot be in-
vaded by defectors under deterministic selec-
tion dynamics (32).

2) If a + b > g + d, then cooperators are
risk-dominant (RD). If both strategies are
ESS, then the risk-dominant strategy has the
bigger basin of attraction.

3) If a + 2b > g + 2d, then cooperators are
advantageous (AD). This concept is important
for stochastic game dynamics in finite pop-
ulations. Here, the crucial quantity is the fix-
ation probability of a strategy, defined as the
probability that the lineage arising from a
single mutant of that strategy will take over
the entire population consisting of the other
strategy. An AD strategy has a fixation proba-
bility greater than the inverse of the popu-
lation size, 1/N. The condition can also be
expressed as a 1/3 rule: If the fitness of the in-
vading strategy at a frequency of 1/3 is greater
than the fitness of the resident, then the fix-
ation probability of the invader is greater than
1/N. This condition holds in the limit of weak
selection (52).

A mechanism for the evolution of cooper-
ation can ensure that cooperators become
ESS, RD, or AD (Fig. 2). Some mechanisms
even allow cooperators to dominate defectors,
which means a > g and b > d.

Comparative Analysis
We have encountered five mechanisms for the
evolution of cooperation (Fig. 3). Although the
mathematical formalisms underlying the five
mechanisms are very different, at the center of
each theory is a simple rule. I now present a
coherent mathematical framework that allows
the derivation of all five rules. The crucial idea
is that each mechanism can be presented as a
game between two strategies given by a 2 × 2
payoff matrix (Table 1). From this matrix, we
can derive the relevant condition for evolution
of cooperation.

For kin selection, I use the approach of
inclusive fitness proposed by Maynard Smith
(31). The relatedness between two players is r.
Therefore, your payoff multiplied by r is added
to mine. A second method, shown in (53), leads
to a different matrix but the same result. For
direct reciprocity, the cooperators use tit-for-tat
while the defectors use “always-defect.” The
expected number of rounds is 1/(1 − w). Two
tit-for-tat players cooperate all the time. Tit-for-
tat versus always-defect cooperates only in the
first move and then defects. For indirect rec-
iprocity, the probability of knowing someone’s
reputation is given by q. A cooperator helps
unless the reputation of the other person in-
dicates a defector. A defector never helps. For
network reciprocity, it can be shown that the
expected frequency of cooperators is described
by a standard replicator equation with a trans-
formed payoff matrix (54). For group selection,
the payoff matrices of the two games—within

Kin selection

Network reciprocity

Direct reciprocity

Indirect reciprocity

Group selection

1 r

Cooperators Defectors

Fig. 3. Five mechanisms for the evolution of
cooperation. Kin selection operates when the
donor and the recipient of an altruistic act are
genetic relatives. Direct reciprocity requires re-
peated encounters between the same two individ-
uals. Indirect reciprocity is based on reputation; a
helpful individual is more likely to receive help.
Network reciprocity means that clusters of coop-
erators outcompete defectors. Group selection is
the idea that competition is not only between
individuals but also between groups.

Table 1. Each mechanism can be described by a simple 2 × 2 payoff matrix, which specifies the
interaction between cooperators and defectors. From these matrices we can directly derive the nec-
essary conditions for evolution of cooperation. The parameters c and b denote, respectively, the cost
for the donor and the benefit for the recipient. For network reciprocity, we use the parameter H =
[(b − c)k − 2c]/[(k + 1)(k − 2)]. All conditions can be expressed as the benefit-to-cost ratio
exceeding a critical value. See (53) for further explanations of the underlying calculations.
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where groups of cooperators are less likely to go
extinct.

In the mathematically convenient limit of
weak selection and rare group splitting, we ob-
tain a simple result (51): If n is the maximum
group size and m is the number of groups, then
group selection allows evolution of cooperation,
provided that

b/c > 1 + (n/m) (5)

Evolutionary Success
Before proceeding to a comparative analysis of
the five mechanisms, let me introduce some

measures of evolutionary success. Suppose a
game between two strategies, cooperators C and
defectors D, is given by the payoff matrix

C D
C a b
D g d

The entries denote the payoff for the row
player. Without any mechanism for the evolution
of cooperation, defectors dominate cooperators,
which means a < g and b < d. A mechanism for
the evolution of cooperation can change these
inequalities.

1) If a > g, then cooperation is an evo-
lutionarily stable strategy (ESS). An infinitely
large population of cooperators cannot be in-
vaded by defectors under deterministic selec-
tion dynamics (32).

2) If a + b > g + d, then cooperators are
risk-dominant (RD). If both strategies are
ESS, then the risk-dominant strategy has the
bigger basin of attraction.

3) If a + 2b > g + 2d, then cooperators are
advantageous (AD). This concept is important
for stochastic game dynamics in finite pop-
ulations. Here, the crucial quantity is the fix-
ation probability of a strategy, defined as the
probability that the lineage arising from a
single mutant of that strategy will take over
the entire population consisting of the other
strategy. An AD strategy has a fixation proba-
bility greater than the inverse of the popu-
lation size, 1/N. The condition can also be
expressed as a 1/3 rule: If the fitness of the in-
vading strategy at a frequency of 1/3 is greater
than the fitness of the resident, then the fix-
ation probability of the invader is greater than
1/N. This condition holds in the limit of weak
selection (52).

A mechanism for the evolution of cooper-
ation can ensure that cooperators become
ESS, RD, or AD (Fig. 2). Some mechanisms
even allow cooperators to dominate defectors,
which means a > g and b > d.

Comparative Analysis
We have encountered five mechanisms for the
evolution of cooperation (Fig. 3). Although the
mathematical formalisms underlying the five
mechanisms are very different, at the center of
each theory is a simple rule. I now present a
coherent mathematical framework that allows
the derivation of all five rules. The crucial idea
is that each mechanism can be presented as a
game between two strategies given by a 2 × 2
payoff matrix (Table 1). From this matrix, we
can derive the relevant condition for evolution
of cooperation.

For kin selection, I use the approach of
inclusive fitness proposed by Maynard Smith
(31). The relatedness between two players is r.
Therefore, your payoff multiplied by r is added
to mine. A second method, shown in (53), leads
to a different matrix but the same result. For
direct reciprocity, the cooperators use tit-for-tat
while the defectors use “always-defect.” The
expected number of rounds is 1/(1 − w). Two
tit-for-tat players cooperate all the time. Tit-for-
tat versus always-defect cooperates only in the
first move and then defects. For indirect rec-
iprocity, the probability of knowing someone’s
reputation is given by q. A cooperator helps
unless the reputation of the other person in-
dicates a defector. A defector never helps. For
network reciprocity, it can be shown that the
expected frequency of cooperators is described
by a standard replicator equation with a trans-
formed payoff matrix (54). For group selection,
the payoff matrices of the two games—within

Kin selection

Network reciprocity

Direct reciprocity

Indirect reciprocity

Group selection

1 r

Cooperators Defectors

Fig. 3. Five mechanisms for the evolution of
cooperation. Kin selection operates when the
donor and the recipient of an altruistic act are
genetic relatives. Direct reciprocity requires re-
peated encounters between the same two individ-
uals. Indirect reciprocity is based on reputation; a
helpful individual is more likely to receive help.
Network reciprocity means that clusters of coop-
erators outcompete defectors. Group selection is
the idea that competition is not only between
individuals but also between groups.

Table 1. Each mechanism can be described by a simple 2 × 2 payoff matrix, which specifies the
interaction between cooperators and defectors. From these matrices we can directly derive the nec-
essary conditions for evolution of cooperation. The parameters c and b denote, respectively, the cost
for the donor and the benefit for the recipient. For network reciprocity, we use the parameter H =
[(b − c)k − 2c]/[(k + 1)(k − 2)]. All conditions can be expressed as the benefit-to-cost ratio
exceeding a critical value. See (53) for further explanations of the underlying calculations.
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where groups of cooperators are less likely to go
extinct.

In the mathematically convenient limit of
weak selection and rare group splitting, we ob-
tain a simple result (51): If n is the maximum
group size and m is the number of groups, then
group selection allows evolution of cooperation,
provided that

b/c > 1 + (n/m) (5)

Evolutionary Success
Before proceeding to a comparative analysis of
the five mechanisms, let me introduce some

measures of evolutionary success. Suppose a
game between two strategies, cooperators C and
defectors D, is given by the payoff matrix

C D
C a b
D g d

The entries denote the payoff for the row
player. Without any mechanism for the evolution
of cooperation, defectors dominate cooperators,
which means a < g and b < d. A mechanism for
the evolution of cooperation can change these
inequalities.

1) If a > g, then cooperation is an evo-
lutionarily stable strategy (ESS). An infinitely
large population of cooperators cannot be in-
vaded by defectors under deterministic selec-
tion dynamics (32).

2) If a + b > g + d, then cooperators are
risk-dominant (RD). If both strategies are
ESS, then the risk-dominant strategy has the
bigger basin of attraction.

3) If a + 2b > g + 2d, then cooperators are
advantageous (AD). This concept is important
for stochastic game dynamics in finite pop-
ulations. Here, the crucial quantity is the fix-
ation probability of a strategy, defined as the
probability that the lineage arising from a
single mutant of that strategy will take over
the entire population consisting of the other
strategy. An AD strategy has a fixation proba-
bility greater than the inverse of the popu-
lation size, 1/N. The condition can also be
expressed as a 1/3 rule: If the fitness of the in-
vading strategy at a frequency of 1/3 is greater
than the fitness of the resident, then the fix-
ation probability of the invader is greater than
1/N. This condition holds in the limit of weak
selection (52).

A mechanism for the evolution of cooper-
ation can ensure that cooperators become
ESS, RD, or AD (Fig. 2). Some mechanisms
even allow cooperators to dominate defectors,
which means a > g and b > d.

Comparative Analysis
We have encountered five mechanisms for the
evolution of cooperation (Fig. 3). Although the
mathematical formalisms underlying the five
mechanisms are very different, at the center of
each theory is a simple rule. I now present a
coherent mathematical framework that allows
the derivation of all five rules. The crucial idea
is that each mechanism can be presented as a
game between two strategies given by a 2 × 2
payoff matrix (Table 1). From this matrix, we
can derive the relevant condition for evolution
of cooperation.

For kin selection, I use the approach of
inclusive fitness proposed by Maynard Smith
(31). The relatedness between two players is r.
Therefore, your payoff multiplied by r is added
to mine. A second method, shown in (53), leads
to a different matrix but the same result. For
direct reciprocity, the cooperators use tit-for-tat
while the defectors use “always-defect.” The
expected number of rounds is 1/(1 − w). Two
tit-for-tat players cooperate all the time. Tit-for-
tat versus always-defect cooperates only in the
first move and then defects. For indirect rec-
iprocity, the probability of knowing someone’s
reputation is given by q. A cooperator helps
unless the reputation of the other person in-
dicates a defector. A defector never helps. For
network reciprocity, it can be shown that the
expected frequency of cooperators is described
by a standard replicator equation with a trans-
formed payoff matrix (54). For group selection,
the payoff matrices of the two games—within
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Fig. 3. Five mechanisms for the evolution of
cooperation. Kin selection operates when the
donor and the recipient of an altruistic act are
genetic relatives. Direct reciprocity requires re-
peated encounters between the same two individ-
uals. Indirect reciprocity is based on reputation; a
helpful individual is more likely to receive help.
Network reciprocity means that clusters of coop-
erators outcompete defectors. Group selection is
the idea that competition is not only between
individuals but also between groups.

Table 1. Each mechanism can be described by a simple 2 × 2 payoff matrix, which specifies the
interaction between cooperators and defectors. From these matrices we can directly derive the nec-
essary conditions for evolution of cooperation. The parameters c and b denote, respectively, the cost
for the donor and the benefit for the recipient. For network reciprocity, we use the parameter H =
[(b − c)k − 2c]/[(k + 1)(k − 2)]. All conditions can be expressed as the benefit-to-cost ratio
exceeding a critical value. See (53) for further explanations of the underlying calculations.

Cooperation is …

0

)1)((

rcbD
cbrrcbC

0

)1/()(

bD
cwcbC

0)1(

)1(

qbD
qccbC

0HbD
cHcbC

0

)())((

bnD
cnmcbnmcbC

DC

Kin 
selection

Direct 
reciprocity

Indirect 
reciprocity

Network 
reciprocity

Group 
selection

rc
b 1

rc
b 1

rc
b 1

r…genetic relatedness 

w…probability of next round

q…social acquaintanceship

k…number of neighbors

n…group size
m…number of groups

wc
b 1

w
w

c
b 2

w
w

c
b 23

qc
b 1

q
q

c
b 2

q
q

c
b 23

k
c
b

k
c
b

k
c
b

m
n

c
b

1
m
n

c
b

1

            ESS            RD             AD

m
n

c
b

1

Payoff matrix

8 DECEMBER 2006 VOL 314 SCIENCE www.sciencemag.org1562

REVIEW

 o
n 

Ju
ne

 1
8,

 2
00

9 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

where groups of cooperators are less likely to go
extinct.

In the mathematically convenient limit of
weak selection and rare group splitting, we ob-
tain a simple result (51): If n is the maximum
group size and m is the number of groups, then
group selection allows evolution of cooperation,
provided that

b/c > 1 + (n/m) (5)

Evolutionary Success
Before proceeding to a comparative analysis of
the five mechanisms, let me introduce some

measures of evolutionary success. Suppose a
game between two strategies, cooperators C and
defectors D, is given by the payoff matrix

C D
C a b
D g d

The entries denote the payoff for the row
player. Without any mechanism for the evolution
of cooperation, defectors dominate cooperators,
which means a < g and b < d. A mechanism for
the evolution of cooperation can change these
inequalities.

1) If a > g, then cooperation is an evo-
lutionarily stable strategy (ESS). An infinitely
large population of cooperators cannot be in-
vaded by defectors under deterministic selec-
tion dynamics (32).

2) If a + b > g + d, then cooperators are
risk-dominant (RD). If both strategies are
ESS, then the risk-dominant strategy has the
bigger basin of attraction.

3) If a + 2b > g + 2d, then cooperators are
advantageous (AD). This concept is important
for stochastic game dynamics in finite pop-
ulations. Here, the crucial quantity is the fix-
ation probability of a strategy, defined as the
probability that the lineage arising from a
single mutant of that strategy will take over
the entire population consisting of the other
strategy. An AD strategy has a fixation proba-
bility greater than the inverse of the popu-
lation size, 1/N. The condition can also be
expressed as a 1/3 rule: If the fitness of the in-
vading strategy at a frequency of 1/3 is greater
than the fitness of the resident, then the fix-
ation probability of the invader is greater than
1/N. This condition holds in the limit of weak
selection (52).

A mechanism for the evolution of cooper-
ation can ensure that cooperators become
ESS, RD, or AD (Fig. 2). Some mechanisms
even allow cooperators to dominate defectors,
which means a > g and b > d.

Comparative Analysis
We have encountered five mechanisms for the
evolution of cooperation (Fig. 3). Although the
mathematical formalisms underlying the five
mechanisms are very different, at the center of
each theory is a simple rule. I now present a
coherent mathematical framework that allows
the derivation of all five rules. The crucial idea
is that each mechanism can be presented as a
game between two strategies given by a 2 × 2
payoff matrix (Table 1). From this matrix, we
can derive the relevant condition for evolution
of cooperation.

For kin selection, I use the approach of
inclusive fitness proposed by Maynard Smith
(31). The relatedness between two players is r.
Therefore, your payoff multiplied by r is added
to mine. A second method, shown in (53), leads
to a different matrix but the same result. For
direct reciprocity, the cooperators use tit-for-tat
while the defectors use “always-defect.” The
expected number of rounds is 1/(1 − w). Two
tit-for-tat players cooperate all the time. Tit-for-
tat versus always-defect cooperates only in the
first move and then defects. For indirect rec-
iprocity, the probability of knowing someone’s
reputation is given by q. A cooperator helps
unless the reputation of the other person in-
dicates a defector. A defector never helps. For
network reciprocity, it can be shown that the
expected frequency of cooperators is described
by a standard replicator equation with a trans-
formed payoff matrix (54). For group selection,
the payoff matrices of the two games—within
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Fig. 3. Five mechanisms for the evolution of
cooperation. Kin selection operates when the
donor and the recipient of an altruistic act are
genetic relatives. Direct reciprocity requires re-
peated encounters between the same two individ-
uals. Indirect reciprocity is based on reputation; a
helpful individual is more likely to receive help.
Network reciprocity means that clusters of coop-
erators outcompete defectors. Group selection is
the idea that competition is not only between
individuals but also between groups.

Table 1. Each mechanism can be described by a simple 2 × 2 payoff matrix, which specifies the
interaction between cooperators and defectors. From these matrices we can directly derive the nec-
essary conditions for evolution of cooperation. The parameters c and b denote, respectively, the cost
for the donor and the benefit for the recipient. For network reciprocity, we use the parameter H =
[(b − c)k − 2c]/[(k + 1)(k − 2)]. All conditions can be expressed as the benefit-to-cost ratio
exceeding a critical value. See (53) for further explanations of the underlying calculations.
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where groups of cooperators are less likely to go
extinct.

In the mathematically convenient limit of
weak selection and rare group splitting, we ob-
tain a simple result (51): If n is the maximum
group size and m is the number of groups, then
group selection allows evolution of cooperation,
provided that

b/c > 1 + (n/m) (5)

Evolutionary Success
Before proceeding to a comparative analysis of
the five mechanisms, let me introduce some

measures of evolutionary success. Suppose a
game between two strategies, cooperators C and
defectors D, is given by the payoff matrix

C D
C a b
D g d

The entries denote the payoff for the row
player. Without any mechanism for the evolution
of cooperation, defectors dominate cooperators,
which means a < g and b < d. A mechanism for
the evolution of cooperation can change these
inequalities.

1) If a > g, then cooperation is an evo-
lutionarily stable strategy (ESS). An infinitely
large population of cooperators cannot be in-
vaded by defectors under deterministic selec-
tion dynamics (32).

2) If a + b > g + d, then cooperators are
risk-dominant (RD). If both strategies are
ESS, then the risk-dominant strategy has the
bigger basin of attraction.

3) If a + 2b > g + 2d, then cooperators are
advantageous (AD). This concept is important
for stochastic game dynamics in finite pop-
ulations. Here, the crucial quantity is the fix-
ation probability of a strategy, defined as the
probability that the lineage arising from a
single mutant of that strategy will take over
the entire population consisting of the other
strategy. An AD strategy has a fixation proba-
bility greater than the inverse of the popu-
lation size, 1/N. The condition can also be
expressed as a 1/3 rule: If the fitness of the in-
vading strategy at a frequency of 1/3 is greater
than the fitness of the resident, then the fix-
ation probability of the invader is greater than
1/N. This condition holds in the limit of weak
selection (52).

A mechanism for the evolution of cooper-
ation can ensure that cooperators become
ESS, RD, or AD (Fig. 2). Some mechanisms
even allow cooperators to dominate defectors,
which means a > g and b > d.

Comparative Analysis
We have encountered five mechanisms for the
evolution of cooperation (Fig. 3). Although the
mathematical formalisms underlying the five
mechanisms are very different, at the center of
each theory is a simple rule. I now present a
coherent mathematical framework that allows
the derivation of all five rules. The crucial idea
is that each mechanism can be presented as a
game between two strategies given by a 2 × 2
payoff matrix (Table 1). From this matrix, we
can derive the relevant condition for evolution
of cooperation.

For kin selection, I use the approach of
inclusive fitness proposed by Maynard Smith
(31). The relatedness between two players is r.
Therefore, your payoff multiplied by r is added
to mine. A second method, shown in (53), leads
to a different matrix but the same result. For
direct reciprocity, the cooperators use tit-for-tat
while the defectors use “always-defect.” The
expected number of rounds is 1/(1 − w). Two
tit-for-tat players cooperate all the time. Tit-for-
tat versus always-defect cooperates only in the
first move and then defects. For indirect rec-
iprocity, the probability of knowing someone’s
reputation is given by q. A cooperator helps
unless the reputation of the other person in-
dicates a defector. A defector never helps. For
network reciprocity, it can be shown that the
expected frequency of cooperators is described
by a standard replicator equation with a trans-
formed payoff matrix (54). For group selection,
the payoff matrices of the two games—within

Kin selection

Network reciprocity

Direct reciprocity

Indirect reciprocity

Group selection
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Fig. 3. Five mechanisms for the evolution of
cooperation. Kin selection operates when the
donor and the recipient of an altruistic act are
genetic relatives. Direct reciprocity requires re-
peated encounters between the same two individ-
uals. Indirect reciprocity is based on reputation; a
helpful individual is more likely to receive help.
Network reciprocity means that clusters of coop-
erators outcompete defectors. Group selection is
the idea that competition is not only between
individuals but also between groups.

Table 1. Each mechanism can be described by a simple 2 × 2 payoff matrix, which specifies the
interaction between cooperators and defectors. From these matrices we can directly derive the nec-
essary conditions for evolution of cooperation. The parameters c and b denote, respectively, the cost
for the donor and the benefit for the recipient. For network reciprocity, we use the parameter H =
[(b − c)k − 2c]/[(k + 1)(k − 2)]. All conditions can be expressed as the benefit-to-cost ratio
exceeding a critical value. See (53) for further explanations of the underlying calculations.
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Learning to coordinate
in complex networks

Sven Van Segbroeck1,2, Steven de Jong1,3, Ann Nowé1,
Francisco C Santos4 and Tom Lenaerts1,2

Abstract
Designing an adaptive multi-agent system often requires the specification of interaction patterns between the
different agents. To date, it remains unclear to what extent such interaction patterns influence the dynamics of
the learning mechanisms inherent to each agent in the system. Here, we address this fundamental problem, both
analytically and via computer simulations, examining networks of agents that engage in stag-hunt games with their
neighbors and thereby learn to coordinate their actions. We show that the specific network topology does not
affect the game strategy the agents learn on average. Yet, network features such as heterogeneity and clustering
effectively determine how this average game behavior arises and how it manifests itself. Network heterogeneity
induces variation in learning speed, whereas network clustering results in the emergence of clusters of agents with
similar strategies. Such clusters also form when the network structure is not predefined, but shaped by the agents
themselves. In that case, the strategy of an agent may become correlated with that of its neighbors on the one
hand, and with its degree on the other hand. Here, we show that the presence of such correlations drastically
changes the overall learning behavior of the agents. As such, our work provides a clear-cut picture of the learning
dynamics associated with networks of agents trying to optimally coordinate their actions.

Keywords
Complex networks, evolutionary game theory, learning automata

1 Introduction

In multi-agent systems (MAS), an agent’s success is
often not solely the result of its own actions, but
depends also on the actions of other agents.
Moreover, agents often need to coordinate their actions
to solve a particular task (Kraus, 1997). Game theory
(Binmore, 1991; Osborne & Rubinstein, 1994) has
proven itself an excellent framework to analyze both
issues, representing the problem of coordination
between agents in terms of simple games such as the
stag-hunt game (Skyrms, 2004). In this game, two inter-
acting agents have to choose simultaneously to hunt
either stag or hare. Hunting stag yields the highest pos-
sible payoff, provided that the other agent cooperates
and hunts stag as well. In case the other agent does not
to cooperate (i.e., he defects) and chooses to hunt hare,
the best reply is to do the same and to hunt hare.
In other words, agents obtain a high payoff by

coordinating their actions, but may end up in a subop-
timal situation when taking the safest bet.

As such, the stag-hunt game represents, in a simpli-
fied manner, coordination problems like those encoun-
tered in swarm robotics (Dorigo et al., 2005) or the
evolution of language (Christiansen & Kriby, 2003).
Swarm robotics research investigates how the collective
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Real populations have been shown to be heterogeneous, in which
some individuals have many more contacts than others. This fact
contrasts with the traditional homogeneous setting used in studies
of evolutionary game dynamics. We incorporate heterogeneity in
the population by studying games on graphs, in which the vari-
ability in connectivity ranges from single-scale graphs, for which
heterogeneity is small and associated degree distributions exhibit
a Gaussian tale, to scale-free graphs, for which heterogeneity is
large with degree distributions exhibiting a power-law behavior.
We study the evolution of cooperation, modeled in terms of the
most popular dilemmas of cooperation. We show that, for all
dilemmas, increasing heterogeneity favors the emergence of co-
operation, such that long-term cooperative behavior easily resists
short-term noncooperative behavior. Moreover, we show how
cooperation depends on the intricate ties between individuals in
scale-free populations.

complex networks ! evolution of cooperation

Cooperation has played a key role throughout evolution (1).
Self-replicating cells have cooperated to form multicellular

organisms throughout evolutionary history (2, 3). Similarly, we
know that animals cooperate in families to raise their offspring
and in groups to prey and to reduce the risk of predation (4, 5).
Cooperation has been conveniently formulated in the frame-
work of evolutionary game theory, which, when combined with
games such as the Prisoner’s Dilemma, which is used as a
metaphor for studying cooperation between unrelated individ-
uals, enables one to investigate how collective cooperative
behavior may survive in a world where individual selfish actions
produce better short-term results. Analytical solutions for this
problem have been obtained when populations are assumed
infinite and their interactions are assumed homogeneous such
that all individuals are in equivalent positions. Under such
assumptions, noncooperative behavior prevails. Such an unfa-
vorable scenario for cooperation in the Prisoner’s Dilemma
game, together with the difficulty in ranking the actual payoffs
in field and experimental work (6, 7), has lead to the adoption
of other games (8, 9), such as the Snowdrift game (also known
as Hawk–Dove or Chicken), which is more favorable to coop-
eration, and the Stag-Hunt game (10), and to numerical studies
of cooperation in finite, spatially structured populations (11) in
which homogeneity is still retained. Such studies of the role of
structured populations have attracted considerable attention,
originating from fields ranging from sociology to biology, ecol-
ogy, economics, mathematics, and physics, to name a few
(11–19). More recently, however, compelling evidence has been
accumulated that a plethora of biological, social, and techno-
logical real-world networks of contacts (NoC) are mostly het-
erogeneous (20–22). Indeed, analysis of real-world NoC (20) has
provided evidence for the following (heterogeneous) types: (i)
single-scale networks, which are characterized by degree distri-
butions (defined in the Methods) that exhibit a fast, typically
Gaussian, decaying tail; (ii) broad-scale networks, which are
characterized by a power-law regime truncated for large con-

nectivities by a fast-decaying tail; and (iii) scale-free networks,
which are characterized by a distribution that decays as a
power-law. In Fig. 1, we show the distribution of connectivities
associated with both single-scale and scale-free NoC, on which
the results shown in Figs. 2 and 3 were based. To better illustrate
the degree of heterogeneity associated with each NoC, we show
a double logarithmic plot of the cumulative degree distribution,
defined in Fig. 1. Clearly heterogeneity greatly increases as one
moves all of the way from single scale to extreme heterogeneous,
scale-free NoC. In particular, the broad-scale NoC also identi-
fied in ref. 20 exhibit tails that fall off somewhere between the
extreme limits depicted in Fig. 1. All of these different levels of
heterogeneity stand in sharp contrast with homogeneous NoC.

What is the impact of moving from a homogeneously
structured population, in which everyone has the same amount
of interactions, to a heterogeneously structured population, in
which some can interact more than others? In particular, what
is the impact of more realistic NoC in the evolution of
cooperation?
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Fig. 1. Heterogeneous NoC. Shown is the cumulative degree distribution,
D(k) [defined for a graph with N vertices as !i" k

N# 1(Ni"N), where Ni gives the
number of vertices with i edges], for two types of NoC for which N " 104. The
first type of NoC are single-scale heterogeneous NoC, depicted with a dashed
line, in which most individuals have a similar number of connections, leading
to a narrow degree distribution. The Gaussian tail (20) of such a distribution
is responsible for the fast decay exhibited by the cumulative degree distribu-
tion depicted. The second type of NoC are scale-free NoC, generated accord-
ing to the Barabási–Albert model and exhibiting a cumulative degree distri-
bution scaling as D(k) $ k# 2 (solid line). The tail at the end of the solid line
results from the finiteness of the population. For the class of broad-scale
networks identified in ref. 20, the cumulative degree distribution will tail-off
at degree values intermediate from those associated with the single-scale and
scale-free NoC depicted.
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Often groups need to meet repeatedly before a decision is reached. Hence, most individual decisions

will be contingent on decisions taken previously by others. In particular, the decision to cooperate or not

will depend on one’s own assessment of what constitutes a fair group outcome. Making use of a repeated

N-person prisoner’s dilemma, we show that reciprocation towards groups opens a window of opportunity

for cooperation to thrive, leading populations to engage in dynamics involving both coordination and

coexistence, and characterized by cycles of cooperation and defection. Furthermore, we show that this

process leads to the emergence of fairness, whose level will depend on the dilemma at stake.
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Many problems of cooperation among humans boil down
to the dilemma of helping others at a cost to ourselves or
refraining from doing so while still profiting from the help
provided by others [1– 3]. Surprisingly often we take the
first option, even though rational considerations encourage
us not to [1,2]. This talent for cooperation forms one of the
cornerstones of human society and is, as such, also largely
responsible for the unprecedented success of our species
[4]. But how did evolution succeed in shaping such coop-
erative beings, if the temptation to free ride on the benefits
produced by others is always lurking? This paradox of
cooperation [5] has been under intense scrutiny for decades
and, fortunately, several mechanisms discourage us from
actually giving in to this temptation [5– 15]. Physicists have
investigated some of these mechanisms (for an excellent
review, see [8]), as human cooperation constitutes an ex-
cellent example of a complex system. Cooperation may, for
instance, be worthwhile if your opponent has the chance to
return you the favor later on. If he or she is not willing to do
so, his or her cheating behavior can still be retaliated. This is
Robert Trivers’ direct reciprocity at work [16]. Theoretical
and empirical studies show that individuals who pursue
long-term relationships built on mutual cooperation are
expected to prevail [17– 21]. In this context, tit-for-tat play-
ers constitute the most famous example [17]: They always
start by cooperating, subsequently repeating their oppo-
nent’s last move.

Direct reciprocation may enhance cooperation for pair-
wise interactions, but when larger groups of actors are
involved, decision-making becomes much more complex.
Similar to the relation between 2-body and many-body
interactions in Physics, also in human decisions there is a
significant increase in complexity when going from pair-
wise cooperative game interactions to collective efforts in
sizable groups. Technically, such an increase in complexity

is reflected in the number of possible behavioral equilibria,
which scales linearly with the group size [22], even in the
absence of reactive players. Moreover, it is far from clear
under which conditions a cooperator (defector) should
switch to defection (cooperation) when engaged in a re-
peated collective endeavor, wherein some may cooperate
while others defect. To whom should one reciprocate [23]?
One possibility is to reciprocate towards the entire group.
As in previous studies of evolution and assessment of fair
offers [24– 27], reciprocating towards groups will depend
on what is reckoned as a fair collective effort, as individu-
als may develop an aspiration level above which they
cooperate, defecting otherwise. Such individuals constitute
a N-person generalization of the 2-person reciprocators.
Unsurprisingly, the spectrum of possible reciprocator strat-
egies for group, N-person game interactions, is much
larger than in the 2-person case. Some reciprocators may,
for instance, be willing to cooperate only if the entire group
did so in a previous encounter, whereas others may coop-
erate also in the presence of group members who defected.
Let us consider group decisions involving N individuals

described in terms of the repeated N-person prisoner’s
dilemma (NPD) [28,29], in which all players have the
opportunity to contribute a certain amount c (’’cost’’) to
the public good. The accumulated amount is multiplied by
an investment factor F and subsequently shared equally
among all group members, irrespective of their contribu-
tion. This entire process repeats itself with a probability w,
resulting in an average number of hri ¼ ð1# wÞ#1 rounds
per group [5,30]. The outcome of the game may differ from
round to round, as individuals can base their decision to
contribute on the result of the previous round. We distin-
guish N different aspiration levels, encoded in terms of the
strategies RM (M 2 f1; . . . ; Ng). RM players always con-
tribute in the first round. Subsequently, they contribute
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Conventional evolutionary game theory predicts that natural selection favours the selfish and strong even though
cooperative interactions thrive at all levels of organization in living systems. Recent investigations demonstrated that
a limiting factor for the evolution of cooperative interactions is the way in which they are organized, cooperators
becoming evolutionarily competitive whenever individuals are constrained to interact with few others along the edges
of networks with low average connectivity. Despite this insight, the conundrum of cooperation remains since recent
empirical data shows that real networks exhibit typically high average connectivity and associated single-to-broad–
scale heterogeneity. Here, a computational model is constructed in which individuals are able to self-organize both
their strategy and their social ties throughout evolution, based exclusively on their self-interest. We show that the
entangled evolution of individual strategy and network structure constitutes a key mechanism for the sustainability of
cooperation in social networks. For a given average connectivity of the population, there is a critical value for the ratio
W between the time scales associated with the evolution of strategy and of structure above which cooperators wipe
out defectors. Moreover, the emerging social networks exhibit an overall heterogeneity that accounts very well for the
diversity of patterns recently found in acquired data on social networks. Finally, heterogeneity is found to become
maximal when W reaches its critical value. These results show that simple topological dynamics reflecting the
individual capacity for self-organization of social ties can produce realistic networks of high average connectivity with
associated single-to-broad–scale heterogeneity. On the other hand, they show that cooperation cannot evolve as a
result of ‘‘social viscosity’’ alone in heterogeneous networks with high average connectivity, requiring the additional
mechanism of topological co-evolution to ensure the survival of cooperative behaviour.

Citation: Santos FC, Pacheco JM, Lenaerts T (2006) Cooperation prevails when individuals adjust their social ties. PLoS Comput Biol 2(10): e140. DOI: 10.1371/journal.pcbi.
0020140

Introduction

Conventional evolutionary game theory predicts that
natural selection favours the selfish and strong [1], in spite
of existing evidence showing that cooperation is more
widespread than theory predicts [2]. When cooperation is
modelled in terms of the prisoner’s dilemma [3] (PD), the
solution of the replicator dynamics equation in infinite, well-
mixed populations [4–6] dictates the extinction of coopera-
tors by defectors. Cooperators become evolutionarily com-
petitive, however, whenever individuals are constrained to
interact with few others along the edges of sparse graphs as
recently concluded in two independent studies [7,8]. Both
studies place individuals on the nodes of a static graph, and
associate their social ties with the vertices linking the nodes
such that, throughout evolution, every individual has the
possibility of changing her strategy, but not her social ties. In
[7] it has been shown that, under strong selection (fitness is
determined by the game payoff), heterogeneous graphs lead
to a significant increase in the overall survivability of
cooperation, modelled in terms of the most popular social
dilemmas, played on networks of different degrees of
heterogeneity [9]. For the classical PD in which the act of
cooperation involves a cost c to the provider, resulting in a
benefit b (b . c) for the recipient, a simple relation has been
obtained in [8] for a single cooperator to have a chance to
survive in a population of defectors, whenever selection is

weak (game payoff introduces a small perturbation onto
fitness): b/c . z, where z stands for the average number of ties
each individual has (z is the average degree of the graph).
Both studies show that games on graphs open a window for the
emergence of cooperation, showing how ‘‘social viscosity’’
alone [8] can contribute to the emergence of cooperation.
However, recent data shows that realistic networks [10–16]

exhibit average connectivity values ranging from 2 to 170,
with an associated heterogeneity intermediate between
single-scale and broad-scale [11], which differs from the
connectivity values typically used in previous studies [7,8]. For
instance, the network of movie actors exhibits an average
connectivity of 30 [17], whereas collaboration networks based
on co-authorship of published papers vary from average
values of 4 (mathematics), to 9 (physics) up to 15 (biology)
[13]. In terms of the simple rule for the evolution of
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Real populations have been shown to be heterogeneous, in which
some individuals have many more contacts than others. This fact
contrasts with the traditional homogeneous setting used in studies
of evolutionary game dynamics. We incorporate heterogeneity in
the population by studying games on graphs, in which the vari-
ability in connectivity ranges from single-scale graphs, for which
heterogeneity is small and associated degree distributions exhibit
a Gaussian tale, to scale-free graphs, for which heterogeneity is
large with degree distributions exhibiting a power-law behavior.
We study the evolution of cooperation, modeled in terms of the
most popular dilemmas of cooperation. We show that, for all
dilemmas, increasing heterogeneity favors the emergence of co-
operation, such that long-term cooperative behavior easily resists
short-term noncooperative behavior. Moreover, we show how
cooperation depends on the intricate ties between individuals in
scale-free populations.

complex networks ! evolution of cooperation

Cooperation has played a key role throughout evolution (1).
Self-replicating cells have cooperated to form multicellular

organisms throughout evolutionary history (2, 3). Similarly, we
know that animals cooperate in families to raise their offspring
and in groups to prey and to reduce the risk of predation (4, 5).
Cooperation has been conveniently formulated in the frame-
work of evolutionary game theory, which, when combined with
games such as the Prisoner’s Dilemma, which is used as a
metaphor for studying cooperation between unrelated individ-
uals, enables one to investigate how collective cooperative
behavior may survive in a world where individual selfish actions
produce better short-term results. Analytical solutions for this
problem have been obtained when populations are assumed
infinite and their interactions are assumed homogeneous such
that all individuals are in equivalent positions. Under such
assumptions, noncooperative behavior prevails. Such an unfa-
vorable scenario for cooperation in the Prisoner’s Dilemma
game, together with the difficulty in ranking the actual payoffs
in field and experimental work (6, 7), has lead to the adoption
of other games (8, 9), such as the Snowdrift game (also known
as Hawk–Dove or Chicken), which is more favorable to coop-
eration, and the Stag-Hunt game (10), and to numerical studies
of cooperation in finite, spatially structured populations (11) in
which homogeneity is still retained. Such studies of the role of
structured populations have attracted considerable attention,
originating from fields ranging from sociology to biology, ecol-
ogy, economics, mathematics, and physics, to name a few
(11–19). More recently, however, compelling evidence has been
accumulated that a plethora of biological, social, and techno-
logical real-world networks of contacts (NoC) are mostly het-
erogeneous (20–22). Indeed, analysis of real-world NoC (20) has
provided evidence for the following (heterogeneous) types: (i)
single-scale networks, which are characterized by degree distri-
butions (defined in the Methods) that exhibit a fast, typically
Gaussian, decaying tail; (ii) broad-scale networks, which are
characterized by a power-law regime truncated for large con-

nectivities by a fast-decaying tail; and (iii) scale-free networks,
which are characterized by a distribution that decays as a
power-law. In Fig. 1, we show the distribution of connectivities
associated with both single-scale and scale-free NoC, on which
the results shown in Figs. 2 and 3 were based. To better illustrate
the degree of heterogeneity associated with each NoC, we show
a double logarithmic plot of the cumulative degree distribution,
defined in Fig. 1. Clearly heterogeneity greatly increases as one
moves all of the way from single scale to extreme heterogeneous,
scale-free NoC. In particular, the broad-scale NoC also identi-
fied in ref. 20 exhibit tails that fall off somewhere between the
extreme limits depicted in Fig. 1. All of these different levels of
heterogeneity stand in sharp contrast with homogeneous NoC.

What is the impact of moving from a homogeneously
structured population, in which everyone has the same amount
of interactions, to a heterogeneously structured population, in
which some can interact more than others? In particular, what
is the impact of more realistic NoC in the evolution of
cooperation?
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Fig. 1. Heterogeneous NoC. Shown is the cumulative degree distribution,
D(k) [defined for a graph with N vertices as !i" k

N# 1(Ni"N), where Ni gives the
number of vertices with i edges], for two types of NoC for which N " 104. The
first type of NoC are single-scale heterogeneous NoC, depicted with a dashed
line, in which most individuals have a similar number of connections, leading
to a narrow degree distribution. The Gaussian tail (20) of such a distribution
is responsible for the fast decay exhibited by the cumulative degree distribu-
tion depicted. The second type of NoC are scale-free NoC, generated accord-
ing to the Barabási–Albert model and exhibiting a cumulative degree distri-
bution scaling as D(k) $ k# 2 (solid line). The tail at the end of the solid line
results from the finiteness of the population. For the class of broad-scale
networks identified in ref. 20, the cumulative degree distribution will tail-off
at degree values intermediate from those associated with the single-scale and
scale-free NoC depicted.
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Conventional evolutionary game theory predicts that natural selection favours the selfish and strong even though
cooperative interactions thrive at all levels of organization in living systems. Recent investigations demonstrated that
a limiting factor for the evolution of cooperative interactions is the way in which they are organized, cooperators
becoming evolutionarily competitive whenever individuals are constrained to interact with few others along the edges
of networks with low average connectivity. Despite this insight, the conundrum of cooperation remains since recent
empirical data shows that real networks exhibit typically high average connectivity and associated single-to-broad–
scale heterogeneity. Here, a computational model is constructed in which individuals are able to self-organize both
their strategy and their social ties throughout evolution, based exclusively on their self-interest. We show that the
entangled evolution of individual strategy and network structure constitutes a key mechanism for the sustainability of
cooperation in social networks. For a given average connectivity of the population, there is a critical value for the ratio
W between the time scales associated with the evolution of strategy and of structure above which cooperators wipe
out defectors. Moreover, the emerging social networks exhibit an overall heterogeneity that accounts very well for the
diversity of patterns recently found in acquired data on social networks. Finally, heterogeneity is found to become
maximal when W reaches its critical value. These results show that simple topological dynamics reflecting the
individual capacity for self-organization of social ties can produce realistic networks of high average connectivity with
associated single-to-broad–scale heterogeneity. On the other hand, they show that cooperation cannot evolve as a
result of ‘‘social viscosity’’ alone in heterogeneous networks with high average connectivity, requiring the additional
mechanism of topological co-evolution to ensure the survival of cooperative behaviour.
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Introduction

Conventional evolutionary game theory predicts that
natural selection favours the selfish and strong [1], in spite
of existing evidence showing that cooperation is more
widespread than theory predicts [2]. When cooperation is
modelled in terms of the prisoner’s dilemma [3] (PD), the
solution of the replicator dynamics equation in infinite, well-
mixed populations [4–6] dictates the extinction of coopera-
tors by defectors. Cooperators become evolutionarily com-
petitive, however, whenever individuals are constrained to
interact with few others along the edges of sparse graphs as
recently concluded in two independent studies [7,8]. Both
studies place individuals on the nodes of a static graph, and
associate their social ties with the vertices linking the nodes
such that, throughout evolution, every individual has the
possibility of changing her strategy, but not her social ties. In
[7] it has been shown that, under strong selection (fitness is
determined by the game payoff), heterogeneous graphs lead
to a significant increase in the overall survivability of
cooperation, modelled in terms of the most popular social
dilemmas, played on networks of different degrees of
heterogeneity [9]. For the classical PD in which the act of
cooperation involves a cost c to the provider, resulting in a
benefit b (b . c) for the recipient, a simple relation has been
obtained in [8] for a single cooperator to have a chance to
survive in a population of defectors, whenever selection is

weak (game payoff introduces a small perturbation onto
fitness): b/c . z, where z stands for the average number of ties
each individual has (z is the average degree of the graph).
Both studies show that games on graphs open a window for the
emergence of cooperation, showing how ‘‘social viscosity’’
alone [8] can contribute to the emergence of cooperation.
However, recent data shows that realistic networks [10–16]

exhibit average connectivity values ranging from 2 to 170,
with an associated heterogeneity intermediate between
single-scale and broad-scale [11], which differs from the
connectivity values typically used in previous studies [7,8]. For
instance, the network of movie actors exhibits an average
connectivity of 30 [17], whereas collaboration networks based
on co-authorship of published papers vary from average
values of 4 (mathematics), to 9 (physics) up to 15 (biology)
[13]. In terms of the simple rule for the evolution of
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Real populations have been shown to be heterogeneous, in which
some individuals have many more contacts than others. This fact
contrasts with the traditional homogeneous setting used in studies
of evolutionary game dynamics. We incorporate heterogeneity in
the population by studying games on graphs, in which the vari-
ability in connectivity ranges from single-scale graphs, for which
heterogeneity is small and associated degree distributions exhibit
a Gaussian tale, to scale-free graphs, for which heterogeneity is
large with degree distributions exhibiting a power-law behavior.
We study the evolution of cooperation, modeled in terms of the
most popular dilemmas of cooperation. We show that, for all
dilemmas, increasing heterogeneity favors the emergence of co-
operation, such that long-term cooperative behavior easily resists
short-term noncooperative behavior. Moreover, we show how
cooperation depends on the intricate ties between individuals in
scale-free populations.

complex networks ! evolution of cooperation

Cooperation has played a key role throughout evolution (1).
Self-replicating cells have cooperated to form multicellular

organisms throughout evolutionary history (2, 3). Similarly, we
know that animals cooperate in families to raise their offspring
and in groups to prey and to reduce the risk of predation (4, 5).
Cooperation has been conveniently formulated in the frame-
work of evolutionary game theory, which, when combined with
games such as the Prisoner’s Dilemma, which is used as a
metaphor for studying cooperation between unrelated individ-
uals, enables one to investigate how collective cooperative
behavior may survive in a world where individual selfish actions
produce better short-term results. Analytical solutions for this
problem have been obtained when populations are assumed
infinite and their interactions are assumed homogeneous such
that all individuals are in equivalent positions. Under such
assumptions, noncooperative behavior prevails. Such an unfa-
vorable scenario for cooperation in the Prisoner’s Dilemma
game, together with the difficulty in ranking the actual payoffs
in field and experimental work (6, 7), has lead to the adoption
of other games (8, 9), such as the Snowdrift game (also known
as Hawk–Dove or Chicken), which is more favorable to coop-
eration, and the Stag-Hunt game (10), and to numerical studies
of cooperation in finite, spatially structured populations (11) in
which homogeneity is still retained. Such studies of the role of
structured populations have attracted considerable attention,
originating from fields ranging from sociology to biology, ecol-
ogy, economics, mathematics, and physics, to name a few
(11–19). More recently, however, compelling evidence has been
accumulated that a plethora of biological, social, and techno-
logical real-world networks of contacts (NoC) are mostly het-
erogeneous (20–22). Indeed, analysis of real-world NoC (20) has
provided evidence for the following (heterogeneous) types: (i)
single-scale networks, which are characterized by degree distri-
butions (defined in the Methods) that exhibit a fast, typically
Gaussian, decaying tail; (ii) broad-scale networks, which are
characterized by a power-law regime truncated for large con-

nectivities by a fast-decaying tail; and (iii) scale-free networks,
which are characterized by a distribution that decays as a
power-law. In Fig. 1, we show the distribution of connectivities
associated with both single-scale and scale-free NoC, on which
the results shown in Figs. 2 and 3 were based. To better illustrate
the degree of heterogeneity associated with each NoC, we show
a double logarithmic plot of the cumulative degree distribution,
defined in Fig. 1. Clearly heterogeneity greatly increases as one
moves all of the way from single scale to extreme heterogeneous,
scale-free NoC. In particular, the broad-scale NoC also identi-
fied in ref. 20 exhibit tails that fall off somewhere between the
extreme limits depicted in Fig. 1. All of these different levels of
heterogeneity stand in sharp contrast with homogeneous NoC.

What is the impact of moving from a homogeneously
structured population, in which everyone has the same amount
of interactions, to a heterogeneously structured population, in
which some can interact more than others? In particular, what
is the impact of more realistic NoC in the evolution of
cooperation?
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Fig. 1. Heterogeneous NoC. Shown is the cumulative degree distribution,
D(k) [defined for a graph with N vertices as !i" k

N# 1(Ni"N), where Ni gives the
number of vertices with i edges], for two types of NoC for which N " 104. The
first type of NoC are single-scale heterogeneous NoC, depicted with a dashed
line, in which most individuals have a similar number of connections, leading
to a narrow degree distribution. The Gaussian tail (20) of such a distribution
is responsible for the fast decay exhibited by the cumulative degree distribu-
tion depicted. The second type of NoC are scale-free NoC, generated accord-
ing to the Barabási–Albert model and exhibiting a cumulative degree distri-
bution scaling as D(k) $ k# 2 (solid line). The tail at the end of the solid line
results from the finiteness of the population. For the class of broad-scale
networks identified in ref. 20, the cumulative degree distribution will tail-off
at degree values intermediate from those associated with the single-scale and
scale-free NoC depicted.
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Conventional evolutionary game theory predicts that natural selection favours the selfish and strong even though
cooperative interactions thrive at all levels of organization in living systems. Recent investigations demonstrated that
a limiting factor for the evolution of cooperative interactions is the way in which they are organized, cooperators
becoming evolutionarily competitive whenever individuals are constrained to interact with few others along the edges
of networks with low average connectivity. Despite this insight, the conundrum of cooperation remains since recent
empirical data shows that real networks exhibit typically high average connectivity and associated single-to-broad–
scale heterogeneity. Here, a computational model is constructed in which individuals are able to self-organize both
their strategy and their social ties throughout evolution, based exclusively on their self-interest. We show that the
entangled evolution of individual strategy and network structure constitutes a key mechanism for the sustainability of
cooperation in social networks. For a given average connectivity of the population, there is a critical value for the ratio
W between the time scales associated with the evolution of strategy and of structure above which cooperators wipe
out defectors. Moreover, the emerging social networks exhibit an overall heterogeneity that accounts very well for the
diversity of patterns recently found in acquired data on social networks. Finally, heterogeneity is found to become
maximal when W reaches its critical value. These results show that simple topological dynamics reflecting the
individual capacity for self-organization of social ties can produce realistic networks of high average connectivity with
associated single-to-broad–scale heterogeneity. On the other hand, they show that cooperation cannot evolve as a
result of ‘‘social viscosity’’ alone in heterogeneous networks with high average connectivity, requiring the additional
mechanism of topological co-evolution to ensure the survival of cooperative behaviour.

Citation: Santos FC, Pacheco JM, Lenaerts T (2006) Cooperation prevails when individuals adjust their social ties. PLoS Comput Biol 2(10): e140. DOI: 10.1371/journal.pcbi.
0020140

Introduction

Conventional evolutionary game theory predicts that
natural selection favours the selfish and strong [1], in spite
of existing evidence showing that cooperation is more
widespread than theory predicts [2]. When cooperation is
modelled in terms of the prisoner’s dilemma [3] (PD), the
solution of the replicator dynamics equation in infinite, well-
mixed populations [4–6] dictates the extinction of coopera-
tors by defectors. Cooperators become evolutionarily com-
petitive, however, whenever individuals are constrained to
interact with few others along the edges of sparse graphs as
recently concluded in two independent studies [7,8]. Both
studies place individuals on the nodes of a static graph, and
associate their social ties with the vertices linking the nodes
such that, throughout evolution, every individual has the
possibility of changing her strategy, but not her social ties. In
[7] it has been shown that, under strong selection (fitness is
determined by the game payoff), heterogeneous graphs lead
to a significant increase in the overall survivability of
cooperation, modelled in terms of the most popular social
dilemmas, played on networks of different degrees of
heterogeneity [9]. For the classical PD in which the act of
cooperation involves a cost c to the provider, resulting in a
benefit b (b . c) for the recipient, a simple relation has been
obtained in [8] for a single cooperator to have a chance to
survive in a population of defectors, whenever selection is

weak (game payoff introduces a small perturbation onto
fitness): b/c . z, where z stands for the average number of ties
each individual has (z is the average degree of the graph).
Both studies show that games on graphs open a window for the
emergence of cooperation, showing how ‘‘social viscosity’’
alone [8] can contribute to the emergence of cooperation.
However, recent data shows that realistic networks [10–16]

exhibit average connectivity values ranging from 2 to 170,
with an associated heterogeneity intermediate between
single-scale and broad-scale [11], which differs from the
connectivity values typically used in previous studies [7,8]. For
instance, the network of movie actors exhibits an average
connectivity of 30 [17], whereas collaboration networks based
on co-authorship of published papers vary from average
values of 4 (mathematics), to 9 (physics) up to 15 (biology)
[13]. In terms of the simple rule for the evolution of
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Abstract
Social animals including humans share a range of social mechanisms that
are automatic and implicit and enable learning by observation. Learning
from others includes imitation of actions and mirroring of emotions.
Learning about others, such as their group membership and reputa-
tion, is crucial for social interactions that depend on trust. For accurate
prediction of others’ changeable dispositions, mentalizing is required,
i.e., tracking of intentions, desires, and beliefs. Implicit mentalizing is
present in infants less than one year old as well as in some nonhuman
species. Explicit mentalizing is a meta-cognitive process and enhances
the ability to learn about the world through self-monitoring and reflec-
tion, and may be uniquely human. Meta-cognitive processes can also
exert control over automatic behavior, for instance, when short-term
gains oppose long-term aims or when selfish and prosocial interests col-
lide. We suggest that they also underlie the ability to explicitly share
experiences with other agents, as in reflective discussion and teaching.
These are key in increasing the accuracy of the models of the world that
we construct.
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How to make sure we can trust a partner?

Trust drives social interactions … 
© Tom Lenaerts, 2016

45
© Tom Lenaerts, 2019

46-1

© Tom Lenaerts, 2019

46-2

part 5 EGT and cooperation - 23 October 2019



Abraham

Nick

13600£

STEAL

SPLIT

STEALSPLIT

6800£

6800£

0£

13600£

13600£

0£ 0£

0£

© Tom Lenaerts, 2019

47-1

Abraham

Nick

13600£

STEAL

SPLIT

STEALSPLIT

6800£

6800£

0£

13600£

13600£

0£ 0£

0£

© Tom Lenaerts, 2019

47-2

Abraham

Nick

13600£

STEAL

SPLIT

STEALSPLIT

6800£

6800£

0£

13600£

13600£

0£ 0£

0£

© Tom Lenaerts, 2019

47-3

Abraham

Nick

13600£

STEAL

SPLIT

STEALSPLIT

6800£

6800£

0£

13600£

13600£

0£ 0£

0£

© Tom Lenaerts, 2019

47-4

part 5 EGT and cooperation - 23 October 2019



Abraham

Nick

13600£

STEAL

SPLIT

STEALSPLIT

6800£

6800£

0£

13600£

13600£

0£ 0£

0£

© Tom Lenaerts, 2019

47-5

Abraham

Nick

13600£

STEAL

SPLIT

STEALSPLIT

6800£

6800£

0£

13600£

13600£

0£ 0£

0£

© Tom Lenaerts, 2019

Nash equilibria

47-6

Abraham

Nick

13600£

SPLIT

STEAL

0£

13600£

STEAL

0£

0£

© Tom Lenaerts, 2019

If Abraham 
wants to see any 

money, he will 
need to split

SPLIT

6800£

6800£

13600£

0£

Nick states he 
will steal 

48-1

Abraham

Nick

13600£

SPLIT

STEAL

0£

13600£

STEAL

0£

0£

© Tom Lenaerts, 2019

If Abraham 
wants to see any 

money, he will 
need to split

SPLIT

6800£

6800£

13600£

0£

Nick states he 
will steal 

48-2

part 5 EGT and cooperation - 23 October 2019



Abraham

Nick

13600£

SPLIT

STEAL

0£

13600£

STEAL

0£

0£

© Tom Lenaerts, 2019

If Abraham 
wants to see any 

money, he will 
need to split

SPLIT

6800£

6800£

13600£

0£Giving Nick control of 
the outcome

Nick states he 
will steal 

48-3

Abraham

Nick

13600£

SPLIT

STEAL

0£

13600£

STEAL

0£

0£

© Tom Lenaerts, 2019

If Abraham 
wants to see any 

money, he will 
need to split

SPLIT

6800£

6800£

13600£

0£Giving Nick control of 
the outcome

Nick forced Abraham to commit 
to Split

Nick states he 
will steal 

48-4

© Tom Lenaerts, 2018 FutureICT2.0 Tallinn

Commitment ?
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incentives and expectations”
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Commitment ?
“A commitment is an act or signal that gives up options in 

order to influence someone’s behaviour by changing 
incentives and expectations”

“They can be enforced by external incentives, 
but also by some combination of reputation 

and emotion”

“Commitments can be promises to help, or 
threats to harm”

“Our (cognitive) capacity for commitment 
may have evolved by natural selection”
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When starting a new collaborative endeavor, it pays to establish upfront how strongly your partner commits
to the common goal and what compensation can be expected in case the collaboration is violated. Diverse
examples in biological and social contexts have demonstrated the pervasiveness of making prior agreements
on posterior compensations, suggesting that this behavior could have been shaped by natural selection.
Here, we analyze the evolutionary relevance of such a commitment strategy and relate it to the costly
punishment strategy, where no prior agreements are made. We show that when the cost of arranging a
commitment deal lies within certain limits, substantial levels of cooperation can be achieved. Moreover,
these levels are higher than that achieved by simple costly punishment, especially when one insists on
sharing the arrangement cost. Not only do we show that good agreements make good friends, agreements
based on shared costs result in even better outcomes.

C
onventional wisdom suggests that cooperative interactions have a bigger chance of surviving when all
participants are aware of the expectations and the possible consequences of their actions. All parties then
clearly know to what they commit and can refuse such a commitment whenever the offer is made. A

classical example of such an agreement is marriage1,2. In that case mutual commitment ensures some stability in
the relationship, reducing the fear of exploitation and providing security against potential cataclysms. Clearly
such agreements can be beneficial in many situations, which are not limited to the type of formal and explicit
contracts as is the case for marriage. Commitments may even be arranged in a much more implicit manner as is
the case for members of the same religion3,4, or by some elaborate signaling mechanism as is the case in primates’
use of signaling to synchronize expectations and the consequences of defaulting on commitment in their different
ventures5.

Here we investigate analytically and numerically whether costly commitment strategies, in which players
propose, initiate and honor a deal, are viable strategies for the evolution of cooperative behavior, using the
symmetric, pairwise, and non-repeated Prisoner’s Dilemma (PD) game to model a social dilemma. Next to
the traditional cooperate (C) and defect (D) options, a player can propose its co-player to commit to cooperation
before playing the PD game, willing to pay a personal cost ð Þ to make it credible. If the co-player accepts the
arrangement and also plays C, they both receive their rewards formutual cooperation. Yet if the co-player playsD,
then he or she will have to provide the proposer with a compensation at a personal cost (d). Finally, when the co-
player does not accept the deal, the game is not played and hence both obtain no payoff.

Although there is a kind of punishment associated with the agreement, the notion of compensating a partner
when not honoring a negotiated deal is not entirely equivalent to the general notion of punishment as has been
studied in Evolutionary Game Theory6–13 so far. In the current work, both parties are aware of the stakes before
they start the interaction: the person who accepts to commit knows upfront what to expect from the person that
proposes the commitment and what will happen if he or she does not act appropriately. Even more, the co-player
has the possibility not to accept such an agreement and continue interacting without any prior commitment with
the other players, and with no posterior repercussions from commitment proposers. In the current literature,
punishment (with or without cost) is imposed as a result of ‘‘bad’’ behavior, which can only be escaped by not
participating in the game at all9,12,14. As such, the present work differs from peer and pool punishment9,12 in that
the latter imposes the commitment to the other players, i.e. defectors will always be punished even when they did
not want to play with punishers. In addition, there is no notion of compensation incorporated in the model that
remunerates the proposer when her accepted deal is violated, in contradistinction to our own model. Moreover,
because the creation of the agreement occurs explicitly in the current work, players can behave conditionally
(even without considering previous interactions, whether direct or indirect), and that is not considered in the
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When starting a new collaborative endeavor, it pays to establish upfront how strongly your partner commits
to the common goal and what compensation can be expected in case the collaboration is violated. Diverse
examples in biological and social contexts have demonstrated the pervasiveness of making prior agreements
on posterior compensations, suggesting that this behavior could have been shaped by natural selection.
Here, we analyze the evolutionary relevance of such a commitment strategy and relate it to the costly
punishment strategy, where no prior agreements are made. We show that when the cost of arranging a
commitment deal lies within certain limits, substantial levels of cooperation can be achieved. Moreover,
these levels are higher than that achieved by simple costly punishment, especially when one insists on
sharing the arrangement cost. Not only do we show that good agreements make good friends, agreements
based on shared costs result in even better outcomes.

C
onventional wisdom suggests that cooperative interactions have a bigger chance of surviving when all
participants are aware of the expectations and the possible consequences of their actions. All parties then
clearly know to what they commit and can refuse such a commitment whenever the offer is made. A

classical example of such an agreement is marriage1,2. In that case mutual commitment ensures some stability in
the relationship, reducing the fear of exploitation and providing security against potential cataclysms. Clearly
such agreements can be beneficial in many situations, which are not limited to the type of formal and explicit
contracts as is the case for marriage. Commitments may even be arranged in a much more implicit manner as is
the case for members of the same religion3,4, or by some elaborate signaling mechanism as is the case in primates’
use of signaling to synchronize expectations and the consequences of defaulting on commitment in their different
ventures5.

Here we investigate analytically and numerically whether costly commitment strategies, in which players
propose, initiate and honor a deal, are viable strategies for the evolution of cooperative behavior, using the
symmetric, pairwise, and non-repeated Prisoner’s Dilemma (PD) game to model a social dilemma. Next to
the traditional cooperate (C) and defect (D) options, a player can propose its co-player to commit to cooperation
before playing the PD game, willing to pay a personal cost ð Þ to make it credible. If the co-player accepts the
arrangement and also plays C, they both receive their rewards formutual cooperation. Yet if the co-player playsD,
then he or she will have to provide the proposer with a compensation at a personal cost (d). Finally, when the co-
player does not accept the deal, the game is not played and hence both obtain no payoff.

Although there is a kind of punishment associated with the agreement, the notion of compensating a partner
when not honoring a negotiated deal is not entirely equivalent to the general notion of punishment as has been
studied in Evolutionary Game Theory6–13 so far. In the current work, both parties are aware of the stakes before
they start the interaction: the person who accepts to commit knows upfront what to expect from the person that
proposes the commitment and what will happen if he or she does not act appropriately. Even more, the co-player
has the possibility not to accept such an agreement and continue interacting without any prior commitment with
the other players, and with no posterior repercussions from commitment proposers. In the current literature,
punishment (with or without cost) is imposed as a result of ‘‘bad’’ behavior, which can only be escaped by not
participating in the game at all9,12,14. As such, the present work differs from peer and pool punishment9,12 in that
the latter imposes the commitment to the other players, i.e. defectors will always be punished even when they did
not want to play with punishers. In addition, there is no notion of compensation incorporated in the model that
remunerates the proposer when her accepted deal is violated, in contradistinction to our own model. Moreover,
because the creation of the agreement occurs explicitly in the current work, players can behave conditionally
(even without considering previous interactions, whether direct or indirect), and that is not considered in the
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R=b-c; 

P=0;  
S=-c

Translation to Donation 
game

b=benefit of cooperation
c=cost of cooperation
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b=benefit of cooperation
c=cost of cooperation
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ε=0.25

Same conclusions hold for 2 or more players
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Commitments are often long-term

With a probability ω the interaction continues 
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Stochasticity, uncertainty and 
unpredictability

How to deal with mistakes ? (Occur with probability α)

With a probability ω the interaction continues 

time
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…
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Stochasticity, uncertainty and 
unpredictability

How to deal with mistakes ? (Occur with probability α)

Should we collect the compensation or continue 
the agreement?

With a probability ω the interaction continues 
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Stochasticity, uncertainty and 
unpredictability

How to deal with mistakes ? (Occur with probability α)

Should we collect the compensation or continue 
the agreement?

Should one take revenge or apologise and 
forgive?

With a probability ω the interaction continues 

time
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…
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Individuals prefer to 
defect when the 

agreement breaks down and 
the interaction is not 

finished
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Apology and 
forgiveness evolve when 
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How do people really 
behave in games?

© Tom Lenaerts, 2016
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Inference from experiments
© Tom Lenaerts, 2015
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How to arrive at a legally binding universal agreement to avoid a 
global 2° temperature increase?
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Voluntary pledges 

require trust and 


cooperative participants

Good Agreements Make Good Friends
The Anh Han1,2, Luı́s Moniz Pereira3, Francisco C. Santos4,5 & Tom Lenaerts1,2

1AI lab, Computer Science Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium, 2MLG, Département
d’Informatique, Université Libre de Bruxelles, Boulevard du Triomphe CP212, 1050 Brussels, Belgium, 3Centro de Inteligência
Artificial (CENTRIA), Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516
Caparica, Portugal, 4INESC-ID and Instituto Superior Ténico, Universidade de Lisboa, IST-Taguspark, 2744-016 Porto Salvo,
Portugal, 5ATP-group, CMAF, Instituto para a Investigação Interdisciplinar, P-1649-003 Lisboa Codex, Portugal.

When starting a new collaborative endeavor, it pays to establish upfront how strongly your partner commits
to the common goal and what compensation can be expected in case the collaboration is violated. Diverse
examples in biological and social contexts have demonstrated the pervasiveness of making prior agreements
on posterior compensations, suggesting that this behavior could have been shaped by natural selection.
Here, we analyze the evolutionary relevance of such a commitment strategy and relate it to the costly
punishment strategy, where no prior agreements are made. We show that when the cost of arranging a
commitment deal lies within certain limits, substantial levels of cooperation can be achieved. Moreover,
these levels are higher than that achieved by simple costly punishment, especially when one insists on
sharing the arrangement cost. Not only do we show that good agreements make good friends, agreements
based on shared costs result in even better outcomes.

C
onventional wisdom suggests that cooperative interactions have a bigger chance of surviving when all
participants are aware of the expectations and the possible consequences of their actions. All parties then
clearly know to what they commit and can refuse such a commitment whenever the offer is made. A

classical example of such an agreement is marriage1,2. In that case mutual commitment ensures some stability in
the relationship, reducing the fear of exploitation and providing security against potential cataclysms. Clearly
such agreements can be beneficial in many situations, which are not limited to the type of formal and explicit
contracts as is the case for marriage. Commitments may even be arranged in a much more implicit manner as is
the case for members of the same religion3,4, or by some elaborate signaling mechanism as is the case in primates’
use of signaling to synchronize expectations and the consequences of defaulting on commitment in their different
ventures5.

Here we investigate analytically and numerically whether costly commitment strategies, in which players
propose, initiate and honor a deal, are viable strategies for the evolution of cooperative behavior, using the
symmetric, pairwise, and non-repeated Prisoner’s Dilemma (PD) game to model a social dilemma. Next to
the traditional cooperate (C) and defect (D) options, a player can propose its co-player to commit to cooperation
before playing the PD game, willing to pay a personal cost ð Þ to make it credible. If the co-player accepts the
arrangement and also plays C, they both receive their rewards for mutual cooperation. Yet if the co-player plays D,
then he or she will have to provide the proposer with a compensation at a personal cost (d). Finally, when the co-
player does not accept the deal, the game is not played and hence both obtain no payoff.

Although there is a kind of punishment associated with the agreement, the notion of compensating a partner
when not honoring a negotiated deal is not entirely equivalent to the general notion of punishment as has been
studied in Evolutionary Game Theory6–13 so far. In the current work, both parties are aware of the stakes before
they start the interaction: the person who accepts to commit knows upfront what to expect from the person that
proposes the commitment and what will happen if he or she does not act appropriately. Even more, the co-player
has the possibility not to accept such an agreement and continue interacting without any prior commitment with
the other players, and with no posterior repercussions from commitment proposers. In the current literature,
punishment (with or without cost) is imposed as a result of ‘‘bad’’ behavior, which can only be escaped by not
participating in the game at all9,12,14. As such, the present work differs from peer and pool punishment9,12 in that
the latter imposes the commitment to the other players, i.e. defectors will always be punished even when they did
not want to play with punishers. In addition, there is no notion of compensation incorporated in the model that
remunerates the proposer when her accepted deal is violated, in contradistinction to our own model. Moreover,
because the creation of the agreement occurs explicitly in the current work, players can behave conditionally
(even without considering previous interactions, whether direct or indirect), and that is not considered in the
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What features influence this decision? 
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Uncertainty encourages group reciprocation and polarization in a 1 

high-risk climate change problem 2 
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Abstract  20 

Uncertainties associated with the forecasts in climate change models1–3 can affect negatively the 21 

ability of stakeholders to coordinate their actions4–6. However, so far, the effect of uncertainty 22 

about the moment the climate tipping point may occur is unknown. Here we show experimentally, 23 

through the collective-risk dilemma, wherein groups of participants need to avoid a tipping point 24 

under the risk of collective loss7, that timing uncertainty prompts not only early generosity8 but also 25 

polarization, wherein participant contributions are distributed unfairly. Analyzing participant 26 

behavior reveals, under uncertainty, a reciprocal strategy wherein contributions are conditional 27 

on the previous donations of the other participants, a group analogue of the well-known Tit-for-28 

Tat9,10 strategy. Although larger timing uncertainty appears to reduce success, groups that 29 

successfully collect the required amount show strong reciprocal coordination. This conclusion is 30 

supported by a game theoretic model examining the dominance of behaviors in case of timing 31 

uncertainty. In general, timing uncertainty casts a shadow on the future10 that leads participants to 32 

respond early, encouraging reciprocal behaviors, and complex polarized choices among peers. 33 

 34 

The impact of climate change is observable in our ecosystem. There is compelling evidence of human 35 

involvement in this phenomenon, and the time available to take action to avoid or mitigate its effects 36 

dwindles3,11,12. To prevent this anthropogenic climate change, global cooperation is needed5,7,13–16. 37 

However, the required measures tend to have an initial negative impact on industrial economies, while 38 

the benefits might only be collected in the future, if the disaster is averted17,18. These intertwining factors 39 
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The game : Collective risk dilemma
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The game : Collective risk dilemma
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Uncertainties

impact threshold
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Uncertainties

impact threshold timing
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Uncertainties

impact threshold timing
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Game ends with probability ω
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No uncertainty
6 participants

Risk 90%

Threshold 120

Endowment 40

Rounds 10
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No uncertainty
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ω =1/3 
min. 8 rounds

Avg. rounds 10
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No uncertainty
6 participants

Risk 90%

Threshold 120

Endowment 40

Rounds 10

Low 
uncertainty

Same BUT

ω =1/3 
min. 8 rounds

Avg. rounds 10

High 
uncertainty

Same BUT

ω =1/5 
min. 6 rounds

Avg. rounds 10
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No significant differences in group success
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no uncertainty
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high uncertainty

Players invest early in when there is timing uncertainty
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Players invest early in when there is timing uncertainty
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low uncertainty
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Players invest early in when there is timing uncertainty
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Participants become more polarised

C = total contribution, F = half endowment
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Donations in the previous round 

No uncertainty Low uncertainty High uncertainty

What other behaviours ?
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Donations in the previous round 

No uncertainty Low uncertainty High uncertainty

What other behaviours ?

Uncertainty induces reciprocal behaviour
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F

D

A

C

R

Fair players, give 2

Defecting players (free riders), give 0

Altruistic players, give 4

Compensators players,  give 0 when prior 
investment was >=10, otherwise 4

Reciprocators players, give 4 when prior 
investment was >=10, otherwise 0

Tom Lenaerts - Omina 2019

*All end when threshold is reached
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a

b

Group 
achievement

Proportion 
of reciprocals

NU LU HU

No uncertainty High uncertainty

No uncertainty High uncertainty
Total donation Total donation per game half

A B

Fair Fair

> Fair
> Fair

< Fair < Fair
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No uncertainty High uncertainty

Tom Lenaerts - Omina 2019

84

Uncertainty influences 
behaviour

Timing uncertainty
Leads to polarisation
Success requires reciprocal 
mechanisms

Investing early promotes coordination 
among peers

EGT models explain experiments
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Will AI agents do better?

What happens when we delegate the 
responsibility to an agent of our choosing

What agents will be selected?

Do we like to delegate our choices to agents?

Will the outcome improve?
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Delegation game

F D A

C R

Which agent should play the CRD* 
for you?

*without uncertainty
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Expected without 
delegation

Observed with 
delegation

4.4 %

38.9 %

17.8 %

14.4 %

24.4 %

24 %

36 %

3 %

29 %

8 %

greedy

altruist

fair

Reciprocator 

compensator

Delegation 
bias

People’s choices are 
heterogeneous
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They would not delegate again

90

Tom Lenaerts - Omina 2019

Most wanted to reach the target
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Would select and agent that 
maximises the chance to reach the 

target 
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Delegation to agents increases success, but

humans prefer to act for themselves

F D AC R

All understood that the goal is to reach the 
target to guarantee a benefit
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F D AC R

Fear of betrayal in the game disappears as 
behaviour is fixed

Delegation forces to think about future rewards

Social norms are no longer used when 
delegating to an agent

Aimone, J. A., & Houser, D. (2012). What you don’t know won’t hurt you: a laboratory analysis of betrayal aversion. Experimental Economics, 15(4), 571-588.
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