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An evolutionary perspective
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The question of cooperation The question of cooperation

Defining the concept

Social dilemmas are situations in which each member of
a group has a clear and unambiguous incentive to make a
choice that—when made by all members—provides
poorer outcomes for all than they would have received
if none had made the choice. Thus, by doing what seems
individually reasonable and rational, people end up
doing less well than they would have done if they had
acted unreasonably or irrationally. This paradoxical pos-

= _emero amm—ham—aa ATAY B 00— 8 S & ] & 2 heen

R.M. Dawes and D.M. Messick (2000) Social Dilemmas. International Journal of Psychology
35(2):111-116

THE QUESTION OF COOPERATION

Social dilemmas are situations in which individual rationality leads to collec-

tive irrationality. That is, individually reasonable behavior leads to a situation

in which everyone is worse off than they might have been otherwise. Many of
1 [NOSL I 1 R /F' e ) 0 e LI T Qlerpa-
P. Kollock (1998) Social Dilemmas: the anatomy of cooperation Ann. Rev.

Sociol. 24:183-214
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R = reward

S = suckers payoff

T = temptation to defect
P = punishment

benefit
cost

P
T P greed=T>R

Donation game

Prisoners dilemma

FeRopoS fear= P >§
> > >
b>b-c >0 > -c

C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma game. Behavioral Science 18:424-428
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T P T P

Prisoners dilemma
Prisoners dilemma

T>R>P>S§ T>R>P>S

C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma
game. Behavioral Science 18:424-428 game. Behavioral Science 18:424-428
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T P
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Prisoners dilemma
Prisoners dilemma

T>R>P>S T>R>P>S

C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma
game. Behavioral Science 18:424-428 game. Behavioral Science 18:424-428
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Prisoners dilemma
Prisoners dilemma

T>R>P>S§ T>R>P>S

C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma C.H. Coombs (1973) A reparameterization of the prisoner’s dilemma
game. Behavioral Science 18:424-428 game. Behavioral Science 18:424-428
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P P

Stag-hunt game
Stag-hunt game

>pP>5

,only fear

>pP>8

,only fear
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P P
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Stag-hunt game

>pPp>F8

Stag-hunt game

>pP>9

,only fear

,only fear
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Stag-hunt game
Stag-hunt game

>pP>5

,only fear

>pP>8

,only fear
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T

aweg 3Jlup-Moug

>pP>8
@ 3 1 ,only greed

P

T>R>

Stag-hunt game

,only fear

\.

Don’t forget the mixed NE !
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,only greed ,only greed
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aweg JJlup-Mmoug

awed ylup-moug

T>R> T>R>

,only greed ,only greed

Don’t forget the mixed NE !

©Tom Lenaerts, 2016 ©Tom Lenaerts, 2019

Space of social dilemmas

® 0O T>R>S>P What is the equilibrium notion
T 3 T in populations ?
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What is the equilibrium notion
in populations ?

John Maynard Sm|th and George Prlce (I973) e
Eﬂi\@ ‘a | M Evolution
s R and the
[ L] m kﬂ,E ﬂiﬁu;; Theoryof
=2 L2 ! Games

| V)

The evolutionary stable strategy (ESS) concept

©Tom Lenaer t5,2019

Can C invade a The fraction of C (D)
population of D players players is  (/-)

success of Cina D success of Dina D
population population

>(P(1-¢)+T¢
‘ @ C can invade when:
‘ R||S
0,

If € cannot invade then D is an ESS

J. Maynard-Smith and G.R. Price (1973) The logic of animal conflict. Nature 246:15-18
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A strategy is an ESS when it cannot be
invaded by another strategy

®

Infinite population assumption
J. Maynard-Smith and G.R. Price (1973) The logic of animal conflict. Nature 246:15-18
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Can C invade a The fraction of C (D)
population of D players players s ¢ (1)

success of Cina D success of Dina D
population population

>(P(1-¢)+Te
‘ @ C can invade when:

()E i) S>P
©

If C cannot invade then D is an ESS
J. Maynard-Smith and G.R. Price (1973) The logic of animal conflict. Nature 246:15-18
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Can C invade a The fraction of C (D)
population of D players players is & (I-2)

success of Cina D success of Dina D
population population

>(P(1-¢)+Te
‘ @ C can invade when:
ORE s
@ 1P i) S=Pand R >T

If € cannot invade then D is an ESS

J. Maynard-Smith and G.R. Price (1973) The logic of animal conflict. Nature 246:15-18
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Can D invade a The fraction of D (C)
population of C players players is ¢ (1)

successof Dina C success of Cina C
population population

(1102 ~{R(1-0)+5:
@0
RI|S

D can invade when:
‘ i) T>R

O [

If D cannot invade then C is an ESS

J. Maynard-Smith and G.R. Price (1973) The logic of animal conflict. Nature 246:15-18
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Can D invade a The fraction of D (C)
population of C players players is & (I-2)

success of Dina C success of Cina C
population population

>(R(1-¢)+Se

D can invade when:

©
©

If D cannot invade then C is an ESS

J. Maynard-Smith and G.R. Price (1973) The logic of animal conflict. Nature 246:15-18
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Can D invade a The fraction of D (C)
population of C players players s ¢ (1)

success of Dina C success of Cina C
population population

(110 +pd~{R(1-0)+5:
@0
RIS

D can invade when:
‘ i) >R

@. i) 7=R and P >S

If D cannot invade then C is an ESS

J. Maynard-Smith and G.R. Price (1973) The logic of animal conflict. Nature 246:15-18
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Can C invade D? Can C invade D?

L
[
NP

I

© ®
© ©

no since P>S§ . no since P>S§ no since P>S§ . no since P>S§ ‘yes since P<S
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Can D invade C? Can D invade C?
e = ST e
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®

yes since R<T
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Which one is an ESS?

Bl

no ESS ?

What is the equilibrium notion
in populations ?

©

Don’t forget the mixed NE !

isan ESS
isan ESS

no ESS?

What is the equilibrium notion
in populations ?

How does learning work in a population?
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Change in populations

Evolutionary dynamics

Imitate successful behaviour (a.k.a.
social learning)

Genetic evolution of successful
properties (a.k.a. survival of the
fittest) |

Change in infinite populations

94X = x(1-x)[(R-S-T+P)x+S-P]

100% . o
D dominates C 100%

' > @ prisoners dilemma
100% D and C are bistable 100%

' < O :@ Stag-hunt game
-x:\‘

. S-P
100%» D and C coexist 100% X R-S-T+P

. > ’ < @ Snowdrift game
x:‘f

In infinite populations

.. “ Replicator equation ...
X

d D= x(1-9)[fe()fo(9)]
= x(1-x)[(b-c+c-b+0)x-c-0]

SEVOLUTIONARY
= -cx(1-x) ERDYNAMICSHE

x=1

P.D.Taylor and L.B. Jonker (1978) Evolutionary stable strategies and game dynamics. Mathematical biosciences
40(1-2):145-156

In all social dilemmas

mixed state
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In finite populations

A moran process (birth-death process)

In finite populations

A moran process (birth-death process)

In finite populations

W

A moran process (birth-death process)

In finite populations

A moran process (birth-death process)
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In finite populations In finite populations

p=[1+ePIDIFC)]-1 p=[1+ebIDIC)]-1

A moran process (birth-death process) A moran process (birth-death process)
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In finite populations

In finite populations

A moran step algorithm

First, select randomly two players (with replacement)

In finite populations

A moran step algorithm

In finite populations

A moran step algorithm

First, select randomly two players (with replacement)

Second, let each player play the game against all other
players (not themselves).
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In finite populations

A moran step algorithm
First, select randomly two players (with replacement)

Second, let each player play the game against all other
players (not themselves).

Third, calculate the average fitness of the player
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In finite populations

A moran step algorithm
First, select randomly two players (with replacement)

Second, let each player play the game against all other
players (not themselves).

Third, calculate the average fitness of the player

If a random value is smaller than the fermi probability

Then first player + second player or with probability
Y the first < random strategy
Else same but second + first
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In finite populations

A moran step algorithm
First, select randomly two players (with replacement)

Second, let each player play the game against all other
players (not themselves).

Third, calculate the average fitness of the player

If a random value is smaller than the fermi probability
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In pseudo python

A moran step algorithm (without mutation):

def moran-step(beta, population):

This function implements a birth-
t pulatio ti t, vo pl
>ted from the population

selected=select_random with_replacement (population, 2)
for i, player in enumerate(selected):
for j in range(len(population)):
if j == player: continue
players_payoffs = play game(population[player],
population[j])
fitness[i] += players_payoffs[0]
fitness = fitness / (2-1)
if random() < prob_imitation(beta, fitness):
population[selected[0]] = population[selected[1]]
else:
population[selected[1]] = population[selected[0]]

return population

27
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In finite populations

Under the assumption that mutations are rare (u—0)
we either end up with

n(C)=0
lolo)

©
oXO
o5

In finite populations

Under the assumption that mutations are rare (u—0)
we either end up with

n(C)=2Z-1 n(C)=Z

In finite populations

Under the assumption that mutations are rare (u—0)
we either end up with

n(€)=0  n(C)=1I

|e®00] [e®00
00¢) 00

Probability that C Probability that D
takes over the D takes over a C
population population

Probability that C
takes over the D
population

In finite populations

Under the assumption that mutations are rare («—0)
we either end up with

n(C)=2-1 n(C)=Z

09200 900
00

Probability that C Probability that D
takes over the D takes overa C
population population

fixation probability p
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p(i,C) = the probability that population fixates to C
when there are initially i C players in the
population

p(i,C) = the probability that population fixates to C
when there are initially i C players in the

p(0,C)=0

population
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p(i,C) = the probability that population fixates to C
when there are initially i € players in the
population

p(i,C) = the probability that population fixates to C
when there are initially i C players in the

population

T-(3)p(2,0)

©
®

O]
®

®

©

V T (3)p(4.0)

(1-T*3)-T-3)pG3,C)
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p(i,C) = the probability that population fixates to C
when there are initially i C players in the
population

p(1,C) =T(Dp(0,C) + T*(Dp(2,C) + (I-T"(1)-T*(1)) p(1,C)

Solving recursion gives p(1,C) =

y'=TW)/T*(1)

T+(i)= the probability that the i C strategists
increases by /

1-(i) = the probability that the i C strategists
decreases by /

These two probabilities depend on the

p(1,C) = T-([)p((),C;+ T+(p(2,C) + (1-T-(1)-T+(1)) p(1,C) success (payoff) of each action

29-5
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def probIncreaseDecrease(k, invader, resident):

fitvalue=fitness(k, invader, resident)

increase=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(-beta,
fitvalue[l],fitvalue[0]),0.,1.)

decrease=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(beta,
fitvalue[l],fitvalue[0]), 0., 1.)

return [increase,decrease]

.Is the invader, k ‘ and N-I(@

def fixation(invader, resident):

result=0.
for i in range(l,N):
sub=1.
for j in range(l,i+1l):
tmp=probIncreaseDecrease(j,invader, resident)
sub*=(tmp[1l]/float(tmp[0]))
result += sub
return np.clip(l./(1l. + result), 0., 1.)

32-1
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In python

def probIncreaseDecrease(k, invader, resident):

fitvalue=fitness(k, invader, resident)
increase=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(-beta,
fitvalue[l],fitvalue[0]),0.,1.)
decrease=np.clip(((N-k)/float(N))*(k/float(N) ermifunc(beta,
fitvalue[l],fitvalue[0]), 0., 1
return [increase,decrease]

°Is the invader, k ’ and N-k@
k PII(;’H'

Pririn=__~

e
T-(k) ®(S)D
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In python

def probIncreaseDecrease(k, invader, resident):

fitvalue=fitness(k, invader, resident)
increase=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(-beta,
fitvalue[l],fitvalue[0]),0.,1.)
decrease=np.clip(((N-k)/float(N))*(k/float(N)
fitvalue[l],fitvalue[0]), 0., 1
return [increase,decrease]

’Is the invader, k ’ and N-k@

k Prew
Ppipgp=__2 "

fermifunc(beta,

1-(k) g

Pdean= "N
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def probIncreaseDecrease(k, invader, resident):

fitvalue=fitness(k, invader, resident)
increase=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(-beta,
fitvalue[l],fitvalue[0]),0.,1.)
decrease=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(beta,
fitvalue[l],fitvalue[0]), 0., 1
return [increase,decrease]

’Is the invader, k ° and N-k@

k Poow
P 11707/ A— new

10!
o¥ot

(k)
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def probIncreaseDecrease(k, invader, resident):

fitvalue=fitness(k, invader, resident)
increase=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(-beta,
fitvalue[l],fitvalue[0]),0.,1.)
decrease=np.clip(((N-k)/float(N))*(k/float(N)
fitvalue[l],fitvalue[0]), 0., 1
return [increase,decrease]

.Is the invader, k ‘ and N-I(@

k Poow
Ppipgp=__-""

fermifunc(beta,

T-(k)

Pdeah= "N
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In python

def probIncreaseDecrease(k, invader, resident):

fitvalue=fitness(k, invader, resident)
increase=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(-beta,
fitvalue[l],fitvalue[0]),0.,1.)
decrease=np.clip(((N-k)/float(N))*(k/float(N) ermifunc(beta,
fitvalue[l],fitvalue[0]), 0., 1
return [increase,decrease]

°Is the invader, k ’ and N-k@
k

Pririn=__~

Paiean=
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def problIncreaseDecrease(k, invader, resident):

fitvalue=fitness(k, invader, resident)

increase=np.clip( ((N-k)/float(N))*(k/float(N))*fermifunc(-beta,
fitvalue[l],fitvalue[0]),0.,1.)

decrease=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(beta,
fitvalue[l],fitvalue[0]), 0., 1.)

return [increase,decrease]

Remember Fermi p=/1+ef(D)fC)]-1

def fermifunc(b,first, second):

return 1./(l. + np.exp(-b*(first-second)))

33
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def probIncreaseDecrease(k, invader, resident):

fitvalue=fitness(k, invader, resident)
increase=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(-beta,
fitvalue[l],fitvalue[0]),0.,1.)
decrease=np.clip(((N-k)/float(N))*(k/float(N))*fermifunc(beta,
fitvalue[l],fitvalue[0]), 0., 1
return [increase,decrease]

’Is the invader, k ° and N-k@

k Poow
P 11707/ A— new

(k)

Pacan=
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def fitness(k, invader, resident):

resultA=(((k-1)*payoff[invader][invader])+
((N-k)*payoff[invader, resident]))/float(N-1)
resultB=( (k*payoff[resident][invader])+
((N-k-1)*payoff[resident, resident]))/float(N-1)
return [resultA, resultB]

resultA = average payoff of an invader playing
against his own type A or the other type B

resultB = average payoff of an invader playing
against his own type B or the other type A

34
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00 #Population size

#Temptation to defect

#Reward for mutual cooperation
#Punishment for mutual defection

#Suckers payoff for unilateral cooperation
#Number of strategies
rift=1.0/N

def transition_and_fixprob_matrix():
transitions=np.zeros((q,q))
fixprobs=np.zeros((q,q))
for first in range(q): et ope
P . . _ strats=['C','D"]
transitions[first,first]=1. payoff=np.array([R,S,T,P]).reshape(2,2)

for second in range(q) : W|J[h B:OO1 beta=0.01

if second != first :
fp=fixation(second, first) — 1t — t,f=transition_and_fixprob_matrix()
fixprobs[first] [se(l:ond]= pN_drIft_ 1/N print ("transition probabilities (first %s,
transitions[first][second]=fp/float(g-1) fzfoz?s:a:r;c[ioTea:tizt:[»lv] uf):e;dmg column) \n
transitions[first][first]= J i ’
transitions[first][first]-(fp/float(g-1))
return [transitions,fixprobs]

(LR T
N O PWR

N
T
R
P
S
q
d;

transition probabilities (first
C, second D and read as row
invading column)

[[ O. 0.5951908 ]

[ 1.55445772 0. 11
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Stationary distribution Stationary distribution

Which produces a reduced Markov chain Which produces a reduced Markov chain

Pcb OcD

X% Y%=1-X%

PDC
For which the stationary distributions can be
calculated = how likely it is to end up in either

monomorphic state

Fudenberg, D., & Imhof, L.A. (2006). Imitation processes with small mutations. J. Econ.Theo, 131,251-262. Fudenberg, D., & Imhof, L.A. (2006). Imitation processes with small mutations. J. Econ.Theo, 131,251-262.

Imhof, L.A., Fudenberg, D., & Nowak, M.A. (2005). Evolutionary cycles of cooperation and defection. Proc Imhof, L.A,, Fudenberg, D., & Nowak, M.A. (2005). Evolutionary cycles of cooperation and defection. Proc
Nat Acad Sci USA, 102(31), 10797-10800. Nat Acad Sci USA, 102(31), 10797-10800.
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#calculate stationary distributions using eigenvalues and eigenvectors
w,v=np.linalg.eig(t.transpose())

#look for the element closest to 1 in the list of eigenvalues

j_stationary=np.argmin(abs (w-1.0)) stationary distribution (first D, second C

0.72312181 0.27687819]

# the, is essential to access the matrix by column
p_stationary=abs(v[:,]j_stationary].real)

#normalize W|th B:OO1

p_stationary /= p_stationary.sum()

28%

print ("stationary distribution (first %s, second %s) \n %s" %(strats[0], pN:drIft:1/N

strats[1], p_stationary))

The stationary distribution is the minimum
left eigenvalue of the transition matrix.
Python code for numerical approximation
(random walks in Markov chain) see 2IPD-
numerical.ipynb (see assignment |)

©Tom Lenaerts, 2015 ©Tom Lenaerts, 2015

For varying

#calculate stationary distributions using eigenvalues and eigenvectors

distribution=[]

betas=[0.00001,0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0]

for beta in betas:
t,f=transition_and_fixprob_matrix()
w,v=np.linalg.eig(t.transpose())
j_stationary=np.argmin(abs(w-1.0))
p_stationary=abs(v[:,]j_stationary].real)
p_stationary /= p_stationary.sum()
distribution.append(p_stationary)

For varying

#calculate stationary distributions using eigenvalues and eigenvectors

distribution=[]

betas=[0.00001,0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0]

for beta in betas:
t,f=transition_and_fixprob_matrix()
w,v=np.linalg.eig(t.transpose())
j_stationary=np.argmin(abs(w-1.0))
p_stationary=abs(v[:,]j_stationary].real)
p_stationary /= p_stationary.sum()
distribution.append(p_stationary)

I > I >
darray=np.asarray(distribution) L - ] darray=np.asarray(distribution) L rﬂ - |
o B8 o} B,

# and plot the curve 08~ ] # and plot the curve 08~ 7]
c 07 - - B

2 L ]

206 - 61 / B

S - L i

w can we 1

. .achieve ]

] operatlon'? \ y

ok L L L r's L g

16‘ 10° 1 10 10 10

o° 10 0
Selection strength () Selection strength (B)

40-1 40-2
part 5 EGT and cooperation - 23 October 2019



©Tom Lenaerts, 2015 ©Tom Lenaerts, 2016

Networks and the evolution of
cooperaion

How to reach cooperation?

Kin selection Direct reciprocity

Orgina Paper

Learning to coordinate

—
. . in complex networks Evolutionary dynamics of social dilemmas
- i in structured heterogeneous populations
Network reciprocity Sven Van Segbroeck'?, Steven de Jong', Ann Nows',

Francisco C Santos’ and Tom Lenaerts' F. C. Santos*, J. M. Pacheco’, and Tom Lenaerts**5

ave been shown to be heterogeneous, in which
ave many more contacts than others. This fact

Indirect reciprocity PRL 108, 158104 2012 PHYSICAL REVIEW LETTERS
Group selection e dmamic We carporateheterogeneiyin

Emergence of Fairness in Repeated Group Interactions

P e ll and associsted degre i it
. Scale free oraphs, for which
. . . . istrbutions exhibiting 3 power daw behavior

OPEN B ACCESS Freely available online PLOS compurarionat sioLocy

. . ‘ ; ‘ ‘ Cooperation Prevails When Individuals Adjust
: Their Social Ties

Francisco C. Santos', Jorge M. Pacheco™, Tom Lenaerts*="

Nowak, M.A. Five Rules for the Evolution of Cooperation. Science 314, 1560-1563 (2006).

Assortment between cooperators is key to success

©Tom Lenaerts, 2016 ©Tom Lenaerts, 2016

s ) o . M—
Evolutionary dynamics of social dilemmas Cooperation Prevails When Individuals Adjust Evolutionary dynamics of social dilemmas Cooperation Prevails When Individuals Adjust
in structured heterogeneous populations Their Social Ties in structured heterogeneous populations

Their Social Ties
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) Trust drives social interactions ...
Or more elaborate behaviours

Social Cognition

compeTence

How to make sure we can trust a partner?

©Tom Lenaerts, 2019 ©Tom Lenaerts, 2019
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6800£ 13600£ 6800£ 13600£
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h; 0f Of h; 0f
steal)  |3600£ 0f | 0f

a a

13600£ Q 13600£ Q

6800£ 13600£ 6800£ ' 13600£

“ 6800£ ‘OE G 6800£ 0f

{Q« 0f 0f {“‘ 0£ 0£
1) \

STEAL [ 13600£ [Oﬁ
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13600£ @ |

6800£

| @ 6800~
& Y
M —

STEAL [‘I3600£

Abraham

STEAL

|
13600£
s

D —

0f
[0£

If Abraham
wants to see any
money, he will
need to split

Nick states he
will steal

STEAL

13600£
O£

O£
O£

| 3600£

N

a

If Abraham
wants to see any
money, he will
need to split

Nash equilibria

Nick states he
will steal

STEAL

13600£
O£
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Nick states he
If Abraham / will steal
wants to see any
> STEAL
money, he will

need to split 6800£ 13600£

@ 6800£ Of

Giving Nick control of

m the outcome

Abraham

Commitment ’

‘A commitment is an act or signal that gives up options in
order to influence someone’s behaviour by changing
incentives and expectations”

EVOLUTION
ot QAN
o COMMITHENT

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn

Nick states he

If Abraham will steal

wants to see any
: STEAL
money, he will

need to split 6800£ 13600£

@ 6800£ 0f

Giving Nick control of
the outcome

Abraham
Nick forced Abraham to commit
to Split

Commitment’

‘A commitment is an act or signal that gives up options in
order to influence someone’s behaviour by changing
incentives and expectations”

“Commitments can be promises to help, or
threats to harm”

EVOLUTION
ant e (ARACITY
sor (ONMITMENT

©Tom Lenaerts, 2018 Futurel ICT2.0 Tallinn
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Commitment’

‘A ’commitment is an act or signal that gives up options in
order to influence someone’s behaviour by changing
incentives and expectations”

“Commitments can be promises to help, or
" threats to harm”
EVOLUTON “They can be enforced by external incentives,
but also by some combination of reputation
an e (APAGTY and emotion”
o COMMITHENT

3 .
Editor

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn

SCIENTIFIC
REPg}RTS
Good Agreements Make Good Friends | Our -(COgane) CapaCIty for

,  commitment may have evolved

by natural selection

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn

Commitment ?

‘A commitment is an act or signal that gives up options in
order to influence someone’s behaviour by changing
incentives and expectations”

“Commitments can be promises to help, or

N threats to harm”

i |
BVOLUTION “They can be enforced by external incentives,
but also by some combination of reputation
ant e (APA(ITY and emotion”
sor COMMITMENT N _ _
e “Our (cognitive) capacity for commitment
may have evolved by natural selection”

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn

SCIENTIFIC
REPLIRTS
Good Agreements Make Good Friends Our _(COgnltlve) CapaClty for

- commitment may have evolved

by natural selection

SCIENTIFIC REPg}}RTS

Apology and forgiveness evolve
to resolve failures in cooperative
agreements

Emotions manage mutually
beneficial relationships

50-2
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Adding commitment

Propose

(ata cosV NOT propose
NOT ouT
accep / xiccept

IN ()

Propose = promise to play C or Accept = agree to also play C
threat to not play at all if not playing C (following promise or threat)

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn

Adding commitment

D
Propose

(ata cost:/ NOT propose -
NOT ouTt
- accep/ Xiccept

IN )

Propose = promise to play C or Accept = agree to also play C
threat to not play at all if not playing C (following promise or threat)

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn

Adding commitment

D
Propose

(ata COSV NOT propose
NOT ouT
accep:\/ \:mcept

Propose = promise to play C or Accept = agree to also play C
threat to not play at all if not playing C (following promise or threat)

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn

Adding commitment

D
Propose

(at a COSt‘V NOT propose
NOT D ouT
.-, \

IN

Propose = promise to play C or Accept = agree to also play C
threat to not play at all if not playing C (following promise or threat)
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Adding commitment

D
Propose

(ata cosV NOT propose -

NOT = A
-a«ep/ \

FREE

IN ()

Propose = promise to play C or Accept = agree to also play C
threat to not play at all if not playing C (following promise or threat)

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn

NOT propose

QRPose | <GPt propose | NOT accept

2 BatA

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn

NOT propose

RRpose | acggpt propose | NOT accept

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn

NOT propose

S propose | NOT accept

ve

accept

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn
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NOT propose

RRRPOse | acggPt propose | NOT accept

propose/
accept

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn

NOT propose

QRPose | <GPt propose | NOT accept

G)
propose/

accept accept

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn

propose

NOT propose

> propose | NOT accept

‘/
propose/

accept accept

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn

propose

\

NOT propose

aegP propose | NOT accept

‘/
propose/

accept accept

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn

\
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]
propose/ /

accept

propose

accept

accept

IN

FREE

©Tom Lenaer ts, 2018 FuturelCT2.0 Tallinn

!

pay compensation

3
©
accept

FAKE

)

NOT propose
propose

NOT accept

‘Vos
[c]

©Tom Lenaer ts, 2018 FuturelCT2.0 Tallinn

©

©Tom Lenaer 'ts, 2018 FuturelCT2.0 Tallinn

©Tom Lenaer ts, 2018 FuturelCT2.0 Tallinn
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©Tom Lenaer ts, 2018 FuturelCT2.0 Tallinn

Translation to Donation
game

T=b; P=0;
R=b-c; \S=*C

b=benefit of cooperation
c=cost of cooperation

©Tom Lenaer 'ts, 2018 FuturelCT2.0 Tallinn

©Tom Lenaer ts, 2018 FuturelCT2.0 Tallinn
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Translation to Donation
game

T=b; P=0;
R=p-c; \S>*C

b=benefit of cooperation
c=cost of cooperation

Translation to Donation
game

T=b; P=0;
R=b-c; \ S==C

b=benefit of cooperation
c=cost of cooperation

Cooperation will evolve
when ...

& < 2(b-¢)/3




See Jupyter notebook

Translation to Donation
game

T=b P10}
R-c;

b=Dbenefit of cooperation
c=cost of cooperation

Cooperation will evolve
when ...

e < 2(b-c)/3
0> c+3c/4

Same conclusions hold for 2 or more players

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn ©Tom Lenaerts, 2018 FuturelCT2.0Tallinn

54-3

©Tom Lenaerts, 2016

See Jupyter notebook .
Jupy Commitments are often long-term

With a probability @ the interaction continues

0000000

— R P T time

~ 0000000

¥

Same conclusions hold for 2 or more players

©Tom Lenaerts, 2018 FuturelCT2.0 Tallinn
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Stochasticity, uncertainty and
unpredictability

With a probability @ the interaction continues

@000 00V

— A P g T, time

> @O00O®OO

How to deal with mistakes ? (Occur with probability &)

58-1

Stochasticity, uncertainty and
unpredictability

With a probability @ the interaction continues

" @PO00000V

— R P g, time

2 @00O®OO

How to deal with mistakes ? (Occur with probability )

Should we collect the compensation or continue
the agreement?

Should one take revenge or apologise and
forgive?

58-3

Stochasticity, uncertainty and
unpredictability

With a probability @ the interaction continues

@000 00V -

— R P g T lime

> @O00O®OO

How to deal with mistakes ? (Occur with probability &)

Should we collect the compensation or continue
the agreement?

58-2

©Tom Lenaerts, 2016

SCIENTIFIC REPg,}RTS

Apology and forgiveness evolve
to resolve failures in cooperative
agreements

Luis A. Martinez-Vaquero*?, The Anh Han3, Luis Moniz Pereira® & T|
. BEYOND

' REVENGE

JPE
1 Y

I'ne |
FORGIVENESS
INSTINC1
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R Individuals prefer to R Apology and
when the forgiveness evolve when

agreement breaks down and R the apology is sincere
the interaction is not

" @O@OOOOO @O0

> —————————time

2> 0000000

enough

apology
cost (Y)

abundance relative
to the defectors
abundance relative
to the defectors

. P-D-D+A
These are like

the fake players

apology cost

©Tom Lenaerts, 2016 ©Tom Lenaerts, 2015

Inference from experiments

How do people really N | | P ore
behave in games? 2

WELCOME TO BEEL
Brussels Experimental Economics Lab

ly interact with other participan peme e
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Tom Lenaerts - Omina 2019

o nies
gions UNE> . tiqu
Natto ments C

paris, France
ors U0

How to arrive at a legally binding universal agreement to avoid a
global 2° temperature increase?

Tom Lenaerts - Omina 2019

How to study decision-making in the
climate change issue.

66-1

Tom Lenaerts - Omina 2019

Current Climate Pledges Aren't
Enough to Stop Severe Warming

Existing pledges under the Paris Agreement won't curb warming to two
degrees Celsius above preindustrial levels, a new UN report warns.

BY MICHAEL GRESHKO

The world is not doing enough to curb its collective carbon emissions, a new

UN report warns.

In an audit of the global Paris Agreement released Tuesday, the UN
Environment Programme finds that if action to combat climate change is
limited to just current pledges, the Earth will get at least three degrees Celsius
Voluntary pledges (5.4 degrees Fahrenheit) warmer by 2100 relative to preindustrial levels.
require trust and
cooperative participants This amount of warming would vastly exceed the Paris Agreement’s goal.

s to limit global warming by the end of the century to two de,

SCIENTIFIC
REP{{}Z}RTS

Non-costly, non-enforced
agreements

Good Agreements Make Good Friends lead to defection

The Anh Han'2, Luis Moniz Pereira?, Francisco C. Santos** & Tom Lenaerts'*

Tom Lenaerts - Omina 2019

How to study decision-making in the
climate change issue.

66-2
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How to study decision-making in the How to study decision-making in the
climate change issue. climate change issue.

How do humans make decisions?

Tom Lenaerts - Omina 2019

The game : Collective risk dilemma

12 3 45 6 7 8 910

Uncertainty encourages group reciprocation and polarization in a

high-risk climate change problem

Public
account

Elias Fernindez Domingos"**’, Jelena Gruji¢'"*", Juan C. Burguillo’, Georg

Kirchsteiger", Francisco C. Santos**, and Tom Lenaerts">*

'Al lab, Computer Science Department, Vrije Universiteit Brussel, Pleinlaa 9, 3 floor, 1050 Brussels,
Belgium

*MLG, Département d’Informatique, Université Libre de Bruxelles, Boulevard du Triomphe, CP 212,
1050 Brussels, Belgium

SECARES, Université Libre de Bruxelles, Av. Roosevelt 42, CP 114, 1050 Brussels, Belgium
4INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, IST-Taguspark, 2744-016 Porto
Salvo, Portugal

SATP-group, 2744-016 Porto Salvo, Portugal.

SDepartment of Telematic Engineering, University of Vigo, 36310 Vigo, Spain
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The game : Collective risk dilemma
2 3 45 6 7 8 910

Public
account

68-2

The game : Collective risk dilemma

2 3 45 6 7 8 910

Publl
account

40

P

38

®
18

38

69-1

The game : Collective risk dilemma
2 345 6 7 8 910

Public
account

Each player has 3 actions in
every round: give @

68-3

The game : Collective risk dilemma
12 3 45 6 7 8 910

Public
account

69-2
part 5 EGT and cooperation - 23 October 2019



The game : Collective risk dilemma
12 3 45 6 7 8 910

Public
account

70-1

The game : Collective risk dilemma
12 3 45 6 7 8 910

Public
account

The game : Collective risk dilemma
12 3 45 6 7 8 910

Public
account

70-2

The game : Collective risk dilemma
12 3 45 6 7 8 910

Public
account

71-2
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Thegwne:ConIWeerdenma The game : Collective risk dilemma
2 345 6 7 8 910 12 3 45 6 7 8 910

Public Public
account account

The game : Collective risk dilemma

12 3 45 6 7 8 910

Uncertainties

Public
account

|

Disaster (loss of
private account)
impact

74-1
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Uncertainties Uncertainties

impact impact threshold

Uncertainties Uncertainties

threshold timing impact threshold timing

12345678 ...

Game ends with probability w |

Gt
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No uncertainty

6 participants
Risk 90%
Threshold 120
Endowment 40
Rounds 10

No uncertainty

6 participants
Risk 90%
Threshold 120
Endowment 40
Rounds 10

75-1

uncertainty
Same BUT

w=1/3
min. 8 rounds

Avg. rounds 10

75-3

High
uncertainty

Same BUT

w =1/5
min. 6 rounds

Avg. rounds 10

No uncertainty

6 participants
Risk 90%
Threshold 120
Endowment 40
Rounds 10

Low
uncertainty

Same BUT

w =173
min. 8 rounds

Avg. rounds 10

75-2

Donations of the previous round

0

Other members of the group

2 0

How many EMUs do you want to contribute to the public account?

Select one of the following options.

76
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Time left
00:53

N1

38 EMUs




no low high
uncertainty uncertainty uncertainty

| |

o

[o2)
—
N
o

N
[\
o

N
o

o
[)

(o]
o

group of 6 subjects
S

N
o

—&— no uncertainty

Group achievement (1)

—%— |ow uncertainty

high uncertainty
] 1 sl

o b b NTETET I
10 12 14 16 18
round

o
S
N
o

—_
0]
o
e,
@
2
@
o
>
£
%)
2
=
1]
o
o)
©
—_
o
>
<

No significant differences in group success

78-1

—
I
o
—
~
o

1

20
100

(e}
o

EEGENEN
(e} oS N
o o O

N
o

—&— no uncertainty

N
o

—&— no uncertainty

group of 6 subjects
3

[2)
17
(@]
2
o)
>
n
(o]
© 80
o
o
-}
o
-
(@]

—%— low uncertainty
high uncertainty

—<— low uncertainty
high uncertainty

Average EMUs invested per

—
©
Q
°
@
2
[%]
o
>
£
(2]
2
=
w
©
o)
©
—
[
>
<

N
o
N
o

10 12

Players invest early in when there is timing uncertainty

Players invest early in when there is timing uncertainty

78-2 78-3
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no low high
A 10 uncertainty uncertainty uncertainty

<Fair No uncertainty Low uncertainty High uncertainty

<Fai .
Total donation Fair <Fair

C<F 08
C=F
s C>FQ

Fraction of playe
o
¥ o

o
S
avg. donations

o
[N}

10 15 20 0 5 10 15 20 0

0.0
NU w Group donations in the previous round (without focal player)

C = total contribution, F = half endowment

Group reciprocal strategies are needed to

Participants become more polarised Sere
avoid disaster

Low uncertainty High uncertainty Low uncertainty High uncertainty

5
Frequency

Frequency
o
o

o
o

Donations in the previous round Donations in the previous round

Uncertainty induces reciprocal behaviour

What other behaviours ? What other behaviours ?

81-2
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e Fair players, give 2

D ) Defecting players (free riders), give 0

Group wzza, Froportion
5t G :covocais

[
=)

-

=)

proportion of reciprocals

o
©

o
©

‘ No uncertainty ‘ ‘ High uncertainty

1<)
o
o

0.49

o
IS

0.36 0.35

o
IS

among contributors

<)
N

o

N

Group achievement (n)

<)
=)

o

=)

e Altruistic players, give 4

No uncertainty ‘ ‘ High uncertainty

€ Compensators players, give 0 when prior
investment was >=10, otherwise 4

Total donation

R Reciprocators players, give 4 when prior
investment was >=10, otherwise 0

Fraction of players

jr——y |

*All end when threshold is reached - HU

(@ - Uncertainty influences

T behaviour
i
ol

Timing uncertainty

2
e

o L ) Leads to polarisation
/\ ‘ L Success requires reciprocal
o mechanisms
-~

ALTR

0.02

Investing early promotes coordination
among peers

EGT models explain experiments
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Will Al agents do better?

What happens when we delegate the
responsibility to an agent of our choosing

P -

for you?

*without uncertainty

a ¢
Expected without Observed with
delegation delegation

24 % greedy I 44 %
% fair 38.9 %
B e
Delegation

bias

number of groups

29 %  compensator 244 %

People’s choices are
heterogeneous

no delegation delegation

n=12 n=15
67% 87%

89
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~
=)

=)
S

o
S

IS
S

2
c
S
=3
S
£
@
o
£

w
S

not delegate delegate

They would not delegate again

#participants

An agent that tries to An agent that tries not delegate
maximise your to maximises
personal benefit the chances to reach
the target

Would select and agent that
maximises the chance to reach the
target

#participants
s B 0N

3

o o

maximise profit your maximise probability fairness None avoid investing more
of the group  own profit of reaching than the other
the target members of the group

Most wanted to reach the target

F A R
&

Delegation to agents increases success, but
humans prefer to act for themselves

All understood that the goal is to reach the
target to guarantee a benefit

“Tom Lenaerts - Omina 2019
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Delegation forces to think about future rewards

Fear of betrayal in the game disappears as
behaviour is fixed

when
delegating to an agent

Aimone, J. A., & Houser, D. (2012). What you don't know won't hurt you: a laboratory analysis of betrayal aversion. Experimental Economics, 15(4), 571-588.
Ensthaler, L., Huck, S., & Leutgeb, J. (2019). Games played through agents in the laboratory—a test of Prat & Rustichini's model. Games and Economic Behavior.
Prat, A., & Rustichini, A. (2003). Games played through agents. Econometrica, 71(4), 989-1026.

Tom Lenaerts - Omina 2019
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Questions
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