
1

Artificial Intelligence

1: planning in the real
world

Lecturer: Tom Lenaerts
Institut de Recherches Interdisciplinaires et de Développements
en Intelligence Artificielle (IRIDIA)

Université Libre de Bruxelles

TLo (IRIDIA) 2December 21, 2004

Outline

 Time, schedules and resources
 Hierarchical task network planning
 Non-deterministic domains

 Conditional planning

 Execution monitoring and replanning

 Continuous planning

 Multi-agent planning

2

TLo (IRIDIA) 3December 21, 2004

Time, schedules and resources

 Until know:
 what actions to do

 Real-world:
 + actions occur at certain moments in time.

 + actions have a beginning and an end.

 + actions take a certain amount of time.

 Job-shop scheduling:
 Complete a set of jobs, each of which consists of a sequence of

actions,

 Where each action has a given duration and might require
resources.

 Determine a schedule that minimizes the total time required to
complete all jobs (respecting resource constraints).

TLo (IRIDIA) 4December 21, 2004

Car construction example

Init(Chassis(C1) ∧ Chassis(C2) ∧ Engine(E1,C1,30) ∧ Engine(E1,C2,60) ∧
Wheels(W1,C1,30) ∧ Wheels(W2,C2,15))

Goal(Done(C1) ∧ Done(C2))
Action(AddEngine(e,c,m)

PRECOND: Engine(e,c,d) ∧ Chassis(c) ∧ ¬EngineIn(c)
EFFECT: EngineIn(c) ∧ Duration(d))

Action(AddWheels(w,c)
PRECOND: Wheels(w,c,d) ∧ Chassis(c)
EFFECT: WheelsOn(c) ∧ Duration(d))

Action(Inspect(c)
PRECOND: EngineIn(c) ∧ WheelsOn(c) ∧ Chassis(c)
EFFECT: Done(c) ∧ Duration(10))

3

TLo (IRIDIA) 5December 21, 2004

Solution found by POP
Slack of 15

critical path

TLo (IRIDIA) 6December 21, 2004

Planning vs. scheduling

 How does the problem differ from a standard planning
problem?

 When does an action start and when does it end?
 So next ot order (planning) duration is also considered

Duration(d)

 Critical path method is used to determine start and end
times:
 Path = linear sequence from start to end

 Critical path = path with longest total duration

 Determines the duration of the entire plan
 Critical path should be executed without delay

4

TLo (IRIDIA) 7December 21, 2004

ES and LS

 Earliest possible (ES) and latest possible (LS) start times.

 LS-ES = slack of an action

 for all actions determines the schedule for the entire
problem.

ES(Start) = 0

ES(B)=maxA<B ES(A) + Duration(A)

LS(Finish)=ES(Finish)

LS(A) = minA<B LS(B) -Duration(A)

 Complexity is O(Nb) (given a PO)

TLo (IRIDIA) 8December 21, 2004

Scheduling with resources

 Resource constraints = required material or objects to
perform task
 Reusable resources

 A resource that is occupied during an action but becomes available
when the action is finished.

 Require extension of action syntax:

Resource:R(k)
 k units of resource are required by the action.

 Is a pre-requisite before the action can be performed.

 Resource can not be used for k time units by other.

5

TLo (IRIDIA) 9December 21, 2004

Car example with resources

Init(Chassis(C1) ∧ Chassis(C2) ∧ Engine(E1,C1,30) ∧ Engine(E1,C2,60) ∧ Wheels(W1,C1,30) ∧
Wheels(W2,C2,15) ∧ EngineHoists(1) ∧ WheelStations(1) ∧ Inspectors(2))

Goal(Done(C1) ∧ Done(C2))
Action(AddEngine(e,c,m)

PRECOND: Engine(e,c,d) ∧ Chassis(c) ∧ ¬EngineIn(c)
EFFECT: EngineIn(c) ∧ Duration(d),
RESOURCE: EngineHoists(1))

Action(AddWheels(w,c)
PRECOND: Wheels(w,c,d) ∧ Chassis(c)
EFFECT: WheelsOn(c) ∧ Duration(d)
RESOURCE: WheelStations(1))

Action(Inspect(c)
PRECOND: EngineIn(c) ∧ WheelsOn(c) ∧ Chassis(c)
EFFECT: Done(c) ∧ Duration(10)
RESOURCE: Inspectors(1)) aggregation

TLo (IRIDIA) 10December 21, 2004

Car example with resources

6

TLo (IRIDIA) 11December 21, 2004

Scheduling with resources

 Aggregation = group individual objects into quantities
when the objects are undistinguishable with respect to
their purpose.
 Reduces complexity

 Resource constraints make scheduling problems more
complicated.
 Additional interactions among actions

 Heuristic: minimum slack algorithm
 Select an action with all pre-decessors scheduled and

with the least slack for the earliest possible start.

TLo (IRIDIA) 12December 21, 2004

Hierarchical task network planning

 Reduce complexity ⇒ hierarchical decomposition
 At each level of the hierarchy a computational task is reduced to

a small number of activities at the next lower level.

 The computational cost of arranging these activities is low.

 Hierarchical task network (HTN) planning uses a refinement of
actions through decomposition.
 e.g. building a house = getting a permit + hiring a contractor +

doing the construction + paying the contractor.

 Refined until only primitive actions remain.

 Pure and hybrid HTN planning.

7

TLo (IRIDIA) 13December 21, 2004

Representation decomposition

 General descriptions are stored in plan library.
 Each method = Decompos(a,d); a= action and d= PO plan.

 See buildhouse example
 Start action supplies all preconditions of actions not

supplied by other actions.
=external preconditions

 Finish action has all effects of actions not present in other
actions
=external effects

 Primary effects (used to achieve goal) vs. secondary effects

TLo (IRIDIA) 14December 21, 2004

Buildhouse example

External precond External effects

8

TLo (IRIDIA) 15December 21, 2004

Buildhouse example

Action(Buyland, PRECOND: Money, EFFECT: Land ∧ ¬Money)
Action(GetLoan, PRECOND: Goodcredit, EFFECT: Money ∧ Mortgage)
Action(BuildHouse, PRECOND: Land, EFFECT: House)
Action(GetPermit, PRECOND: LAnd, EFFECT: Permit)
Action(HireBuilder, EFFECT: Contract)
Action(Construction, PRECOND: Permit ∧ Contract, EFFECT: HouseBuilt ∧

¬Permit),
Action(PayBuilder, PRECOND: Money ∧ HouseBuilt, EFFECT: ¬Money ∧ House ∧ ¬

¬Contract),
Decompose(BuildHouse,

Plan ::STEPS{ S1: GetPermit, S2:HireBuilder, S3:Construction, S4 PayBuilder}
ORDERINGS: {Start < S1 < S3< S4<Finish, Start<S2<S3},
LINKS

€

Start Land → S1,Start Money → S4,S1 Permit → S3,S2 Contract → S3,
S3 HouseBuilt → S4,S4 house → Finish,S4 ¬Money → Finish

TLo (IRIDIA) 16December 21, 2004

Properties of decomposition

 Should be correct implementation of action a
 Correct if plan d is complete and consistent PO plan for

the problem of achieving the effects of a given the
preconditions of a.

 A decomposition is not necessarily unique.
 Performs information hiding:

 STRIPS action description of higher-level action hides
some preconditions and effects

 Ignore all internal effects of decomposition

 Does not specify the intervals inside the activity during
which preconditions and effects must hold.

 Information hiding is essential to HTN planning.

9

TLo (IRIDIA) 17December 21, 2004

Recapitulation of POP (1)

 Assume propositional planning problems:
 The initial plan contains Start and Finish, the

ordering constraint Start < Finish, no causal links,
all the preconditions in Finish are open.

 Successor function :

 picks one open precondition p on an action B and

 generates a successor plan for every possible consistent
way of choosing action A that achieves p.

 Test goal

TLo (IRIDIA) 18December 21, 2004

Recapitulation of POP (2)

 When generating successor plan:
 The causal link A--p->B and the ordering constraing

A < B is added to the plan.

 If A is new also add start < A and A < B to the plan
 Resolve conflicts between new causal link and all

existing actions

 Resolve conflicts between action A (if new) and all
existing causal links.

10

TLo (IRIDIA) 19December 21, 2004

Adapting POP to HTN planning

 Remember POP?
 Modify the successor function: apply decomposition

to current plan

 NEW Successor function:
 Select non-primitive action a’ in P

 For any Decompose(a’,d’) method in library where a

and a’ unify with substitution θ
 Replace a’ with d’ = subst(θ,d)

TLo (IRIDIA) 20December 21, 2004

POP+HTN example
a’

11

TLo (IRIDIA) 21December 21, 2004

POP+HTN example
a’

d

TLo (IRIDIA) 22December 21, 2004

How to hook up d in a’?

 Remove action a’ from P and replace with dθ
 For each step s in d’ select an action that will play the role of s

(either new s or existing s’ from P)

 Possibility of subtask sharing

 Connect ordering steps for a’ to the steps in d’
 Put all constraints so that constraints of the form

B < a’ are maintained.

 Watch out for too strict orderings !

 Connect the causal links
 If B -p-> a’ is a causal link in P, replace it by a set of causal links

from B to all steps in d’ with preconditions p that were supplied
by the start step

 Idem for a’ -p-> C

12

TLo (IRIDIA) 23December 21, 2004

What about HTN?

 Additional modification to POP are necessary

 BAD news: pure HTN planning is undecidable due to
recursive decomposition actions.
 Walk=make one step and walk

 Resolve problems by
 Rule out recursion.

 Bound the length of relevant solutions,

 Hybridize HTN with POP

 Yet HTN can be efficient (see motivations in book)

TLo (IRIDIA) 24December 21, 2004

The Gift of magi

13

TLo (IRIDIA) 25December 21, 2004

Non-deterministic domains

 So far: fully observable, static and deterministic domains.
 Agent can plan first and then execute plan with eyes closed

 Uncertain environment: incomplete (partially observable and/or
nondeterministic) and incorrect (differences between world and
model) information
 Use percepts

 Adapt plan when necessary

 Degree of uncertainty defined by indeterminacy
 Bounded: actions can have unpredictable effects, yet can be

listed in action description axioms.

 Unbounded: preconditions and effects unknown or to large to
enumerate.

TLo (IRIDIA) 26December 21, 2004

Handling indeterminacy

 Sensorless planning (conformant planning)
 Find plan that achieves goal in all possible circumstances

(regardless of initial state and action effects).

 Conditional planning (Contingency planning)
 Construct conditional plan with different branches for

possible contingencies.

 Execution monitoring and replanning
 While constructing plan judge whether plan requires

revision.

 Continuous planning
 Planning active for a life time: adapt to changed

circumstances and reformulate goals if necessary.

14

TLo (IRIDIA) 27December 21, 2004

Sensorless planning

TLo (IRIDIA) 28December 21, 2004

Abstract example

 Initial state = <chair,table, cans of paint, unknown colors>, goal
state=<color(table) = color(chair)>

 Sensorless planning (conformant planning)
 Open any can of paint and apply it to both chair and table.

 Conditional planning (Contingency planning)
 Sense color of table and chair, if they are the same then finish

else sense labels paint if color(label) =color(Furniture) then apply
color to othe piece else apply color to both

 Execution monitoring and replanning
 Same as conditional and can fix errors (missed spots)

 Continuous planning
 Can revise goal when we want to first eat before painting the

table and the chair.

15

TLo (IRIDIA) 29December 21, 2004

Conditional planning

 Deal with uncertainty by checking the
environment to see what is really happening.

 Used in fully observable and nondeterministic
environments:
 The outcome of an action is unknown.

 Conditional steps will check the state of the
environment.

 How to construct a conditional plan?

TLo (IRIDIA) 30December 21, 2004

Example, the vacuum-world

16

TLo (IRIDIA) 31December 21, 2004

Conditional planning

 Actions: left, right, suck
 Propositions to define states: AtL, AtR, CleanL, CleanR
 How to include indeterminism?

 Actions can have more than one effect

 E.g. moving left sometimes fails
Action(Left, PRECOND: AtR, EFFECT: AtL)
Becomes : Action(Left, PRECOND: AtR, EFFECT: AtL∨AtR)

 Actions can have conditional effects

Action(Left, PRECOND:AtR, EFFECT: AtL∨(AtL∧when cleanL:
¬cleanL)

Both disjunctive and conditional

TLo (IRIDIA) 32December 21, 2004

Conditional planning

 Conditional plans require conditional steps:
 If <test> then plan_A else plan_B

if AtL∧CleanL then Right else Suck
 Plans become trees

 Games against nature:
 Find conditional plans that work regardless of which

action outcomes actually occur.

 Assume vacuum-world
Initial state = AtR ∧ CleanL ∧ CleanR
Double murphy: possibility of desposit dirt when moving to other

square and possibility of despositing dirt when action is Suck.

17

TLo (IRIDIA) 33December 21, 2004

Game tree
State node

chance node

TLo (IRIDIA) 34December 21, 2004

Solution of games against N.

 Solution is a subtree that
 Has a goal node at every leaf

 Specifies one action at each of its state nodes

 Includes every outcome branch at each of the chance
nodes.

 In previous example:
[Left, if AtL ∧ CleanL ∧ CleanR then [] else Suck]

 For exact solutions: use minimax algorithm with 2
modifications:
 Max and Min nodes become OR and AND nodes

 Algorithm returns conditional plan instead of single move

18

TLo (IRIDIA) 35December 21, 2004

And-Or-search algorithm
function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan or failure
 return OR-SEARCH(INITIAL-STATE[problem], problem, [])

function AND-SEARCH(state_set, problem, path) returns a conditional plan or failure
 for each si in state_set do
 plani ← OR-SEARCH(si, problem,path)
 if plan = failure then return failure
 return [if s1 then plan1 else if s2 then plan2 else … if sn-1 then plann-1 else plann]

function OR-SEARCH(state, problem, path) returns a conditional plan or failure
 if GOAL-TEST[problem](state) then return the empty plan
 if state is on path then return failure
 for action,state_set in SUCCESSORS[problem](state) do
 plan ← AND-SEARCH(state_set, problem, [state | plan])
 if plan ≠ failure then return [action | plan]
 return failure

TLo (IRIDIA) 36December 21, 2004

And-Or-search algorithm

 How does it deal with cycles?
 When a state that already is on the path appears, return failure

 No non-cyclic solution
 Ensures algorithm termination

 The algorithm does not check whether some state is already on some other
path from the root.

19

TLo (IRIDIA) 37December 21, 2004

And-Or-search algorithm

 Sometimes only a cyclic solution exists
 e.g. tripple murphy: sometimes the move is not performed

[Left, if CleanL then [] else Suck] is not a solution
 Use label to repeat parts of plan (but infinite loops)

[L1: Left, if AtR then L1 else if CleanL then [] else Suck]

TLo (IRIDIA) 38December 21, 2004

CP and partially observable env.

 Fully observable: conditional tests can ask any question
and get an answer

 Partially observable???
 The agent has limited information about the environment.

 Modeled by a state-set = belief states

 E.g. assume vacuum agent which can not sense presence
or absence of dirt in other squares than the one it is on.

 + alternative murphy: dirt can be left behind when moving to other
square.

 Solution in fully observable world: keep moving left and right,
sucking dirt whenever it appears until both squares are clean and
I’m in square left.

20

TLo (IRIDIA) 39December 21, 2004

PO: alternate double murphy

TLo (IRIDIA) 40December 21, 2004

Belief states

 Representation?
 Sets of full state descriptions

{(AtR∧CleanR∧CleanL) ∨ (AtR∧CleanR∧¬CleanL)}

 Logical sentences that capture the set of possible
worlds in the belief state (OWA)

AtR ∧ CleanR

 Knowledge propositions describing the agent’s
knowledge (CWA)

K(AtR) ∧ K(CleanR)

21

TLo (IRIDIA) 41December 21, 2004

Belief states

 Choice 2 and 3 are equivalent (let’s continue with 3)
 Symbols can appear in three ways in three ways: positive,

negative or unknown: 3n possible belief states for n
proposition symbols.
 YET, set of belief sets is a power set of the phyiscal

states which is much larger than 3n

 Hence 3 is restricted as representation

Any scheme capable of representing every possible belief state will
require O(2n) bit to represent each one in the worst case.

The current scheme only requires O(n)

TLo (IRIDIA) 42December 21, 2004

Sensing in Cond. Planning

 How does it work?
 Automatic sensing

At every time step the agent gets all available percepts
 Active sensing

Percepts are obtained through the execution of specific
sensory actions.

checkDirt and checkLocation

 Given the representation and the sensing, action
descriptions can now be formulated.

22

TLo (IRIDIA) 43December 21, 2004

Monitoring and replanning

 Execution monitoring: check whether everything
is going as planned.
 Unbounded indeterminancy: some unanticipated

circumstances will arise.

 A necessity in realistic environments.

 Kinds of monitoring:
 Action monitoring: verify whether the next action

will work.

 Plan monitoring: verify the entire remaining plan.

TLo (IRIDIA) 44December 21, 2004

Monitoring and replanning

 When something unexpected happens: replan
 To avoid too much time on planning try to repair the

old plan.

 Can be applied in both fully and partially
observable environments, and to a variety of
planning representations.

23

TLo (IRIDIA) 45December 21, 2004

Replanning-agent

function REPLANNING-AGENT(percept) returns an action
static: KB, a knowledge base (+ action descriptions)

plan, a plan initially []
whole_plan, a plan initially []
goal, a goal

TELL(KB, MAKE-PERCEPT-SENTENCE(percept,t))
current ← STATE-DESCRIPTION(KB,t)
if plan = [] then return the empty plan

whole_plan ← plan ← PLANNER(current, goal, KB)
if PRECONDITIONS(FIRST(plan)) not currently true in KB then

candidates ← SORT(whole_plan,ordered by distance to current)
find state s in candidates such that

failure ≠ repair ← PLANNER(current, s, KB)
continuation ← the tail of whole_plan starting at s
whole_plan ← plan ← APPEND(repair, continuation)

return POP(plan)

TLo (IRIDIA) 46December 21, 2004

Repair example

24

TLo (IRIDIA) 47December 21, 2004

Repair example: painting

Init(Color(Chair, Blue) ∧Color(Table,Green) ∧ ContainsColor(BC,Blue) ∧
PaintCan(BC) ∧ ContainsColor(RC,Red) ∧ PaintCan(RC))

Goal(Color(Chair,x) ∧ Color(Table,x))
Action(Paint(object, color)

PRECOND: HavePaint(color)
EFFECT: Color(object, color))

Action(Open(can)
PRECOND: PaintCan(can) ∧ ContainsColor(can,color)
EFFECT: HavePaint(color))

[Start; Open(BC); Paint(Table,Blue), Finish]

TLo (IRIDIA) 48December 21, 2004

Repair example: painting

 Suppose that the agent now perceives that the colors of
table and chair are different
 Figure out point in whole_plan to aim for

Current state is identical as the precondition before Paint
 Repair action sequence to get there.

Repair =[] and plan=[Paint, Finish]
 Continue performing this new plan

Will loop until table and chair are perceived as the same.

 Action monitoring can lead to less intelligent behavior
 Assume the red is selected and there is not enough paint

to apply to both chair and table.

 Improved by doing plan monitoring

25

TLo (IRIDIA) 49December 21, 2004

Plan monitoring

 Check the preconditions for success of the entire
plan.
 Except those which are achieved by another step in

the plan.

 Execution of doomed plan is cut of earlier.

 Limitation of replanning agent:
 It can not formulate new goals or accept new goals

in addition to the current one

TLo (IRIDIA) 50December 21, 2004

Continuous planning.

 Agent persists indefinitely in an environment
 Phases of goal formulation, planning and acting

 Execution monitoring + planner as one
continuous process

 Example:Blocks world
 Assume a fully observable environment

 Assume partially ordered plan

26

TLo (IRIDIA) 51December 21, 2004

Block world example

 Initial state (a)
 Action(Move(x,y),

PRECOND: Clear(x) ∧ Clear(y) ∧ On(x,z)
EFFECT: On(x,y) ∧ Clear(z) ∧ ¬On(x,z) ∧ ¬Clear(y)

 The agent first need to formulate a goal: On(C,D) ∧ On(D,B)
 Plan is created incrementally, return NoOp and check percepts

TLo (IRIDIA) 52December 21, 2004

Block world example

 Assume that percepts don’t change and this plan is constructed
 Ordering constraint between Move(D,B) and Move(C,D)
 Start is label of current state during planning.
 Before the agent can execute the plan, nature intervenes:

D is moved onto B

27

TLo (IRIDIA) 53December 21, 2004

Block world example

 Start contains now On(D,B)
 Agent perceives: Clear(B) and On(D,G) are no longer true

 Update model of current state (start)

 Causal links from Start to Move(D,B) (Clear(B) and On(D,G)) no longer valid.
 Remove causal relations and two PRECOND of Move(D,B) are open
 Replace action and causal links to Finish by connecting Start to Finish.

TLo (IRIDIA) 54December 21, 2004

Block world example

 Extending: whenever a causal link can be supplied by a previous step
 All redundant steps (Move(D,B) and its causal links) are removed from the

plan
 Execute new plan, perform action Move(C,D)

 This removes the step from the plan

Extending causal link

28

TLo (IRIDIA) 55December 21, 2004

Block world example

 Execute new plan, perform action Move(C,D)
 Assume agent is clumsy and drops C on A

 No plan but still an open PRECOND
 Determine new plan for open condition
 Again Move(C,D)

TLo (IRIDIA) 56December 21, 2004

Block world example

 Similar to POP
 On each iteration find plan-flaw and fix it
 Possible flaws: Missing goal, Open precondition, Causal conflict, Unsupported

link, Redundant action, Unexecuted action, unnecessary historical goal

29

TLo (IRIDIA) 57December 21, 2004

Multi-agent planning

 So far we only discussed single-agent
environments.

 Other agents can simply be added to the model of
the world:
 Poor performance since agents are not indifferent

ot other agents’ intentions

 In general two types of multiagent environments:
 Cooperative

 Competitive

TLo (IRIDIA) 58December 21, 2004

Cooperation: Joint goals and plans

 Multi-planning problem: assume double tennis example
where agents want to return ball.

Agents(A,B)
Init(At(A,[Left,Baseline])∧ At(B,[Right, Net]) ∧ Approaching(Ball,[Right, Baseline]) ∧

PArtner(A,B) ∧ Partner(B,A))
Goal(Returned(Ball) ∧ At(agent,[x,Net]))
Action(Hit(agent, Ball)

PRECOND: Approaching(Ball,[x,y]) ∧ At(agent,[x,y]) ∧ Partner(agent, partner) ∧
¬At(partner,[x,y])
EFFECT: Returned(Ball))

Action(Go(agent,[x,y])
PRECOND: At(agent,[a,b])
EFFECT: At(agent,[x,y]) ∧ ¬ At(agent,[a,b]))

30

TLo (IRIDIA) 59December 21, 2004

Cooperation: Joint goals and plans

 A solution is a joint-plan consisting of actions for both
agents.

 Example:
A: [Go(A,[Right, Baseline]), Hit(A,Ball)]
B: [NoOp(B), NoOp(B)]

Or

A: [Go(A,[Left, net), NoOp(A)]
B: [Go(B,[Right, Baseline]), Hit(B, Ball)]

 Coordination is required to reach same joint plan

TLo (IRIDIA) 60December 21, 2004

Multi-body planning

 Planning problem faced by a single centralized agent that
can dictate action to each of several physical entities.

 Hence not truly multiagent
 Important: synchronization of actions

 Assume for simplicity that every action takes one time
step and at each point in the joint plan the actions are
performed simultaneously

[<Go(A,[Left,Net]), Go(B,[Right,Baseline]>;
<NoOp(A), Hit(B, Ball)>]

 Planning can be performed using POP applied to the set of
all possible joint actions.

 Size of this set???

31

TLo (IRIDIA) 61December 21, 2004

Multi-body planning

 Alternative to set of all joint actions: add extra concurrency lines to
action description
 Concurrent action

Action(Hit(A, Ball)
CONCURRENT: ¬Hit(B,Ball)

PRECOND: Approaching(Ball,[x,y]) ∧ At(A,[x,y])

EFFECT: Returned(Ball))

 Required actions (carrying object by two agents)

Action(Carry(A, cooler, here, there)

CONCURRENT: Carry(B,cooler, here there)

PRECOND: …)

 Planner similar to POP with some small changes in possible ordering relations

TLo (IRIDIA) 62December 21, 2004

Coordination mechanisms

 To ensure agreement on joint plan: use convention.
 Convention = a constraint on the selection of joint plans

(beyond the constraint that the joint plan must work if the
agents adopt it).

e.g. stick to your court or one player stays at the net.

 Conventions which are widely adopted= social laws e.g.
language.

 Can be domain-specific or independent.
 Could arise through evolutionary process (flocking

behavior).

32

TLo (IRIDIA) 63December 21, 2004

Flocking example

 Three rules:
 Separation:

Steer away from neighbors when you get too close
 Cohesion

Steer toward the average position of neighbors
 Alignment

Steer toward average orientation (heading) of neighbors

 Flock exhibits emergent behavior of flying as a
pseudo-rigid body.

TLo (IRIDIA) 64December 21, 2004

Coordination mechanisms

 In the absence of conventions: Communication
e.g. Mine! Or Yours! in tennis example

 The burden of arriving at a succesfull joint plan
can be placed on
 Agent designer (agents are reactive, no explicit

models of other agents)

 Agent (agents are deliberative, model of other
agents required)

33

TLo (IRIDIA) 65December 21, 2004

Competitive environments

 Agents can have conflicting utilities
e.g. zero-sum games like chess

 The agent must:
 Recognise that there are other agents

 Compute some of the other agents plans

 Compute how the other agents interact with its own plan

 Decide on the best action in view of these interactions.

 Model of other agent is required

 YET, no commitment to joint action plan.

