
1

Artificial Intelli-
gence 1: PL

Notes adapted from lecture notes for CMSC 421 by B.J. Dorr

Lecturer: Tom Lenaerts
Institut de Recherches Interdisciplinaires et de
Développements en Intelligence Artificielle
(IRIDIA)

Université Libre de Bruxelles

TLo (IRIDIA) 2November 16, 2004

Propositional Logic

2

TLo (IRIDIA) 3November 16, 2004

Propositional Logic

TLo (IRIDIA) 4November 16, 2004

Propositional Logic

3

TLo (IRIDIA) 5November 16, 2004

Wumpus world logic

TLo (IRIDIA) 6November 16, 2004

Wumpus world logic

4

TLo (IRIDIA) 7November 16, 2004

Truth tables for inference
Enumerate the models and check that α is true in every model
In which KB is true.

TLo (IRIDIA) 8November 16, 2004

Inference by enumeration

 Depth-first enumeration of all models is sound and complete

 For n symbols, time complexity is O(2n), space complexity is O(n)

5

TLo (IRIDIA) 9November 16, 2004

Logical equivalence

 Two sentences are logically equivalent iff true in same set of models or
α ≡ ß iff α |= ß and ß |= α.

TLo (IRIDIA) 10November 16, 2004

Validity and satisfiability

 A sentence is valid if it is true in all models,
 e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

 Validity is connected to inference via the Deduction Theorem:
 KB |=α if and only if (KB ⇒ α) is valid

 A sentence is satisfiable if it is true in some model
 e.g., A ∨ B, C

 A sentence is unsatisfiable if it is true in no models
 e.g., A∧¬A

 Satisfiability is connected to inference via the following:
 KB |= α if and only if (KB ∧ ¬α) is unsatisfiable

 Remember proof by contradiction.

6

TLo (IRIDIA) 11November 16, 2004

Inference rules in PL

 Modens Ponens

 And-elimination: from a conjuction any
conjunction can be inferred:

 All logical equivalences of slide 39 can be used as
inference rules.

€

α ⇒ β,α
β

€

α ∧β
α

€

α ⇔β
(α ⇒ β)∧ (β ⇒α)

TLo (IRIDIA) 12November 16, 2004

Example

 Assume R1 through R5:

 How can we prove ¬P1,2?

€

¬P1,1,B1,1⇒ P1,1∨P2,1(),B2,1⇒ P1,1∨P2,2 ∨P3,1(),¬B1,1,B2,1

€

R6 : B1,1⇒ P1,2 ∨P2,1()()∧ P1,2 ∨P2,1()⇒ B1,1()
R7 : P1,2 ∨P2,1()⇒ B1,1
R8 :¬B1,1⇒¬ P1,2 ∨P2,1()
R9 :¬ P1,2 ∨P2,1()
R10 :¬P1,2 ∧¬P2,1

Biconditional elim.

And elim.

Contraposition

Modens ponens

Morgan’s rule

7

TLo (IRIDIA) 13November 16, 2004

Searching for proofs

 Finding proofs is exactly like finding solutions to search problems.

 Search can be done forward (forward chaining) to derive goal or
backward (backward chaining) from the goal.

 Searching for proofs is not more efficient than enumerating models,
but in many practical cases, it is more efficient because we can
ignore irrelevant properties.

 Monotonicity: the set of entailed sentences can only increase as
information is added to the knowledge base.

€

for any sentenceα andβ : if KB |=α then KB∧β |=α

TLo (IRIDIA) 14November 16, 2004

Proof methods

 Proof methods divide into (roughly) two kinds:
 Application of inference rules

 Legitimate (sound) generation of new sentences from old
 Proof = a sequence of inference rule application can use inference rules as

operators in a standard search algorithm
 Typically require transformation of sentences into a normal form

 Model checking

 truth table enumeration (always exponential in n)
 improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL)
 heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms

8

TLo (IRIDIA) 15November 16, 2004

Resolution

 Start with Unit Resolution Inference Rule:

 Full Resolution Rule is a generalization of
this rule:

 For clauses of length two:

TLo (IRIDIA) 16November 16, 2004

Resolution in Wumpus world

 At some point we can derive the absence of a pit
in square 2,2:

 Now after biconditional elimination of R3
followed by a modens ponens with R5:

 Resolution :

€

¬P1,1,B1,1⇒ P1,1∨P2,1(),B2,1⇒ P1,1∨P2,2 ∨P3,1(),¬B1,1,B2,1,¬P2,2,¬P3,1

€

R15 : P1,1∨P2,2 ∨P3,1()

€

P1,1∨P2,2 ∨P3,1 ¬P2,2
P1,1∨P3,1

9

TLo (IRIDIA) 17November 16, 2004

Resolution

 Uses CNF (Conjunctive normal form)
 Conjunction of disjunctions of literals (clauses)

 The resolution rule is sound:
 Only entailed sentences are derived

 Resolution is complete in the sense that it can
always be used to either confirm or refute a
sentence (it can not be used to enumerate true
sentences.)

TLo (IRIDIA) 18November 16, 2004

Conversion to CNF

B1,1 ⇔ (P1,2 ∨ P2,1)

• Eliminate ⇔, replacing α ⇔ ß with (α ⇒ ß)∧(ß ⇒ α).
• (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

 Eliminate ⇒, replacing α ⇒ ß with ¬ α ∨ ß.
 (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

 Move ¬ inwards using de Morgan's rules and double-negation:
 (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∨ ¬P2,1) ∨ B1,1)

 Apply distributivity law (∧ over ∨) and flatten:
 (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

10

TLo (IRIDIA) 19November 16, 2004

Resolution algorithm

 Proof by contradiction, i.e., show KB∧¬ α unsatisfiable

TLo (IRIDIA) 20November 16, 2004

Resolution algorithm

 First KB∧¬ α is converted into CNF

 Then apply resolution rule to resulting clauses.

 The process continues until:
 There are no new clauses that can be added

 Hence α does not ential ß

 Two clauses resolve to entail the empty clause.

 Hence α does ential ß

11

TLo (IRIDIA) 21November 16, 2004

Resolution example

 KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1 = ¬P1,2

TLo (IRIDIA) 22November 16, 2004

Forward and backward chaining

 The completeness of resolution makes it a very important
inference model.

 Real-world knowledge only requires a restricted form of
clauses:
 Horn clauses = disjunction of literals with at most one

positive literal

 Three important properties
 Can be written as an implication

 Inference through forward chaining and backward chaining.
 Deciding entailment can be done in a time linear size of the knowledge

base.€

¬L1,1∨¬Breeze∨B1,1()→ L1,1∨Breeze()⇒ B1,1

12

TLo (IRIDIA) 23November 16, 2004

Forward chaining

 Idea: fire any rule whose premises are satisfied in the KB,
 add its conclusion to the KB, until query is found

TLo (IRIDIA) 24November 16, 2004

Forward chaining algorithm
 Forward chaining is sound and complete for Horn KB

13

TLo (IRIDIA) 25November 16, 2004

Forward chaining example

TLo (IRIDIA) 26November 16, 2004

Forward chaining example

14

TLo (IRIDIA) 27November 16, 2004

Forward chaining example

TLo (IRIDIA) 28November 16, 2004

Forward chaining example

15

TLo (IRIDIA) 29November 16, 2004

Forward chaining example

TLo (IRIDIA) 30November 16, 2004

Forward chaining example

16

TLo (IRIDIA) 31November 16, 2004

Forward chaining example

TLo (IRIDIA) 32November 16, 2004

Forward chaining example

17

TLo (IRIDIA) 33November 16, 2004

Proof of completeness

 FC derives every atomic sentence that is entailed by KB
1. FC reaches a fixed point where no new atomic

sentences are derived.

2. Consider the final state as a model m, assigning
true/false to symbols.

3. Every clause in the original KB is true in m
 a1 ∧ … ∧ ak ⇒ b

4. Hence m is a model of KB

5. If KB |= q, q is true in every model of KB, including m

TLo (IRIDIA) 34November 16, 2004

Backward chaining

Idea: work backwards from the query q:
to prove q by BC,

check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1. has already been proved true, or

2. has already failed

18

TLo (IRIDIA) 35November 16, 2004

Backward chaining example

TLo (IRIDIA) 36November 16, 2004

Backward chaining example

19

TLo (IRIDIA) 37November 16, 2004

Backward chaining example

TLo (IRIDIA) 38November 16, 2004

Backward chaining example

20

TLo (IRIDIA) 39November 16, 2004

Backward chaining example

TLo (IRIDIA) 40November 16, 2004

Backward chaining example

21

TLo (IRIDIA) 41November 16, 2004

Backward chaining example

TLo (IRIDIA) 42November 16, 2004

Backward chaining example

22

TLo (IRIDIA) 43November 16, 2004

Backward chaining example

TLo (IRIDIA) 44November 16, 2004

Backward chaining example

23

TLo (IRIDIA) 45November 16, 2004

Forward vs. backward chaining

 FC is data-driven, automatic, unconscious processing,
 e.g., object recognition, routine decisions

 May do lots of work that is irrelevant to the goal

 BC is goal-driven, appropriate for problem-solving,
 e.g., Where are my keys? How do I get into a PhD

program?

 Complexity of BC can be much less than linear in size of
KB

TLo (IRIDIA) 46November 16, 2004

Effective propositional inference

 Two families of efficient algorithms for propositional
inference based on model checking:

 Are used for checking satisfiability

 Complete backtracking search algorithms
 DPLL algorithm (Davis, Putnam, Logemann, Loveland)

 Incomplete local search algorithms

 WalkSAT algorithm

24

TLo (IRIDIA) 47November 16, 2004

The DPLL algorithm

 Determine if an input propositional logic sentence (in CNF) is
satisfiable.

 Improvements over truth table enumeration:
1. Early termination

A clause is true if any literal is true. A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses (A ∨ ¬B), (¬B ∨ ¬C), (C ∨ A), A and B are pure,

C is impure.
Make a pure symbol literal true.

3. Unit clause heuristic
Unit clause: only one literal in the clause. The only literal in a unit clause

must be true.

TLo (IRIDIA) 48November 16, 2004

The DPLL algorithm

25

TLo (IRIDIA) 49November 16, 2004

The WalkSAT algorithm

 Incomplete, local search algorithm.

 Evaluation function: The min-conflict heuristic of
minimizing the number of unsatisfied clauses.

 Steps are taken in the space of complete
assignments, flipping the truth value of one variable
at a time.

 Balance between greediness and randomness.
 To avoid local minima

TLo (IRIDIA) 50November 16, 2004

The WalkSAT algorithm

26

TLo (IRIDIA) 51November 16, 2004

Hard satisfiability problems

 Consider random 3-CNF sentences. e.g.,
(¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨ ¬B ∨
E) ∧ (E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬C)

m = number of clauses

n = number of symbols

 Hard problems seem to cluster near m/n = 4.3
(critical point)

TLo (IRIDIA) 52November 16, 2004

Hard satisfiability problems

27

TLo (IRIDIA) 53November 16, 2004

Hard satisfiability problems

 Median runtime for 100 satisfiable random 3-CNF sentences, n =
5 0

TLo (IRIDIA) 54November 16, 2004

Inference-based agents in the
wumpus world
A wumpus-world agent using propositional logic:

¬P1,1

¬W1,1

Bx,y ⇔ (Px,y+1 ∨ Px,y-1 ∨ Px+1,y ∨ Px-1,y)

Sx,y ⇔ (Wx,y+1 ∨ Wx,y-1 ∨ Wx+1,y ∨ Wx-1,y)

W1,1 ∨ W1,2 ∨ … ∨ W4,4

¬W1,1 ∨ ¬W1,2

¬W1,1 ∨ ¬W1,3

…

⇒ 64 distinct proposition symbols, 155 sentences
⇒ A fringe square is provably safe if the sentence

is entailed by the knowledge base.

€

¬Pi, j ∧¬Wi, j()

28

TLo (IRIDIA) 55November 16, 2004

TLo (IRIDIA) 56November 16, 2004

 KB contains "physics" sentences for every single square
 With all consequences for large KB

Better would be to have just two sentences foor breezes and

stenches for all squares.

 For every time t and every location [x,y],

Lx,y ∧ FacingRightt ∧ Forwardt ⇒ Lx+1,y

 Rapid proliferation of clauses.

Expressiveness limitation of
propositional logic

tt

29

TLo (IRIDIA) 57November 16, 2004

Summary

 Logical agents apply inference to a knowledge base to derive new information
and make decisions.

 Basic concepts of logic:
 syntax: formal structure of sentences
 semantics: truth of sentences wrt models
 entailment: necessary truth of one sentence given another
 inference: deriving sentences from other sentences
 soundness: derivations produce only entailed sentences

 completeness: derivations can produce all entailed sentences

 Wumpus world requires the ability to represent partial and negated information,
reason by cases, etc.

 Resolution is complete for propositional logic
Forward, backward chaining are linear-time, complete for Horn clauses

 Propositional logic lacks expressive power

