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Wumpus world logic

TLo (IRIDIA) 6November 16, 2004
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Truth tables for inference
Enumerate the models and check that α is true in every model
In which KB is true.
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Inference by enumeration

 Depth-first enumeration of all models is sound and complete 

 For n symbols, time complexity is O(2n), space complexity is O(n)
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Logical equivalence

 Two sentences are logically equivalent iff true in same set of models or
α ≡ ß iff α |= ß and ß |= α.
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Validity and satisfiability

 A sentence is valid if it is true in all models,
 e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

 Validity is connected to inference via the Deduction Theorem:
 KB |=α if and only if (KB ⇒ α) is valid

 A sentence is satisfiable if it is true in some model
 e.g., A ∨ B, C

 A sentence is unsatisfiable if it is true in no models
 e.g., A∧¬A

 Satisfiability is connected to inference via the following:
 KB |= α if and only if (KB ∧ ¬α ) is unsatisfiable

 Remember proof by contradiction.
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Inference rules in PL

 Modens Ponens

 And-elimination: from a conjuction any
conjunction can be inferred:

 All logical equivalences of slide 39 can be used as
inference rules.

€ 

α ⇒ β,α
β

€ 

α ∧β
α

€ 

α ⇔β
(α ⇒ β)∧ (β ⇒α)
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Example

 Assume R1 through R5:

 How can we prove ¬P1,2?

€ 

¬P1,1,B1,1⇒ P1,1∨P2,1( ),B2,1⇒ P1,1∨P2,2 ∨P3,1( ),¬B1,1,B2,1

€ 

R6 : B1,1⇒ P1,2 ∨P2,1( )( )∧ P1,2 ∨P2,1( )⇒ B1,1( )
R7 : P1,2 ∨P2,1( )⇒ B1,1
R8 :¬B1,1⇒¬ P1,2 ∨P2,1( )
R9 :¬ P1,2 ∨P2,1( )
R10 :¬P1,2 ∧¬P2,1

Biconditional elim.

And elim.

Contraposition

Modens ponens

Morgan’s rule
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Searching for proofs

 Finding proofs is exactly like finding solutions to search problems.

 Search can be done forward (forward chaining) to derive goal or
backward (backward chaining) from the goal.

 Searching for proofs is not more efficient than enumerating models,
but in many practical cases, it is more efficient because we can
ignore irrelevant properties.

 Monotonicity: the set of entailed sentences can only increase as
information is added to the knowledge base.

€ 

for any sentenceα andβ : if KB |=α then KB∧β |=α
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Proof methods

 Proof methods divide into (roughly) two kinds:
 Application of inference rules

 Legitimate (sound) generation of new sentences from old
 Proof = a sequence of inference rule application can use inference rules as

operators in a standard search algorithm
 Typically require transformation of sentences into a normal form

 Model checking

 truth table enumeration (always exponential in n)
 improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL)
 heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms
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Resolution

 Start with Unit Resolution Inference Rule:

 Full Resolution Rule is a generalization of
this rule:

 For clauses of length two:

TLo (IRIDIA) 16November 16, 2004

Resolution in Wumpus world

 At some point we can derive the absence of a pit
in square 2,2:

 Now after biconditional elimination of R3
followed by a modens ponens with R5:

 Resolution :

€ 

¬P1,1,B1,1⇒ P1,1∨P2,1( ),B2,1⇒ P1,1∨P2,2 ∨P3,1( ),¬B1,1,B2,1,¬P2,2,¬P3,1

€ 

R15 : P1,1∨P2,2 ∨P3,1( )

€ 

P1,1∨P2,2 ∨P3,1 ¬P2,2
P1,1∨P3,1
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Resolution

 Uses CNF (Conjunctive normal form)
 Conjunction of disjunctions of literals (clauses)

 The resolution rule is sound:
 Only entailed sentences are derived

 Resolution is complete in the sense that it can
always be used to either confirm or refute a
sentence (it can not be used to enumerate true
sentences.)
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Conversion to CNF

B1,1  ⇔ (P1,2 ∨ P2,1)

• Eliminate ⇔, replacing α ⇔ ß with (α ⇒ ß)∧(ß ⇒ α).
• (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

 Eliminate ⇒, replacing α ⇒ ß with ¬ α ∨ ß.
 (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

 Move ¬ inwards using de Morgan's rules and double-negation:
 (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∨ ¬P2,1) ∨ B1,1)

 Apply distributivity law (∧ over ∨) and flatten:
 (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)
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Resolution algorithm

 Proof by contradiction, i.e., show KB∧¬ α unsatisfiable
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Resolution algorithm

 First KB∧¬ α  is converted into CNF

 Then apply resolution rule to resulting clauses.

 The process continues until:
 There are no new clauses that can be added

 Hence α does not ential ß

 Two clauses resolve to entail the empty clause.

 Hence α does ential ß
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Resolution example

 KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1  = ¬P1,2

TLo (IRIDIA) 22November 16, 2004

Forward and backward chaining

 The completeness of resolution makes it a very important
inference model.

 Real-world knowledge only requires a restricted form of
clauses:
 Horn clauses = disjunction of literals with at most one

positive literal

 Three important properties
 Can be written as an implication

 Inference through forward chaining and backward chaining.
 Deciding entailment can be done in a time linear size of the knowledge

base.€ 

¬L1,1∨¬Breeze∨B1,1( )→ L1,1∨Breeze( )⇒ B1,1
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Forward chaining

 Idea: fire any rule whose premises are satisfied in the KB,
 add its conclusion to the KB, until query is found
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Forward chaining algorithm
 Forward chaining is sound and complete for Horn KB
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example

TLo (IRIDIA) 32November 16, 2004

Forward chaining example
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Proof of completeness

 FC derives every atomic sentence that is entailed by KB
1. FC reaches a fixed point where no new atomic

sentences are derived.

2. Consider the final state as a model m, assigning
true/false to symbols.

3. Every clause in the original KB is true in m
  a1 ∧  … ∧  ak ⇒ b

4. Hence m is a model of KB

5. If KB |= q, q is true in every model of KB, including m
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Backward chaining

Idea: work backwards from the query q:
to prove q by BC,

check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1. has already been proved true, or

2. has already failed
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example



20

TLo (IRIDIA) 39November 16, 2004

Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Forward vs. backward chaining

 FC is data-driven, automatic, unconscious processing,
 e.g., object recognition, routine decisions

 May do lots of work that is irrelevant to the goal

 BC is goal-driven, appropriate for problem-solving,
 e.g., Where are my keys? How do I get into a PhD

program?

 Complexity of BC can be much less than linear in size of
KB
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Effective propositional inference

 Two families of efficient algorithms for propositional
inference based on model checking:

 Are used for checking satisfiability

 Complete backtracking search algorithms
 DPLL algorithm (Davis, Putnam, Logemann, Loveland)

 Incomplete local search algorithms

 WalkSAT algorithm
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The DPLL algorithm

 Determine if an input propositional logic sentence (in CNF) is
satisfiable.

 Improvements over truth table enumeration:
1. Early termination

A clause is true if any literal is true. A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses (A ∨ ¬B), (¬B ∨  ¬C), (C ∨ A), A and B are pure,

C is impure.
Make a pure symbol literal true.

3. Unit clause heuristic
Unit clause: only one literal in the clause. The only literal in a unit clause

must be true.

TLo (IRIDIA) 48November 16, 2004

The DPLL algorithm
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The WalkSAT algorithm

 Incomplete, local search algorithm.

 Evaluation function: The min-conflict heuristic of
minimizing the number of unsatisfied clauses.

 Steps are taken in the space of complete
assignments, flipping the truth value of one variable
at a time.

 Balance between greediness and randomness.
 To avoid local minima
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The WalkSAT algorithm
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Hard satisfiability problems

 Consider random 3-CNF sentences. e.g.,
(¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨ ¬B ∨
E) ∧ (E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬C)

m = number of clauses

n = number of symbols

 Hard problems seem to cluster near m/n = 4.3
(critical point)
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Hard satisfiability problems
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Hard satisfiability problems

 Median runtime for 100 satisfiable random 3-CNF sentences, n =
5 0
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Inference-based agents in the
wumpus world
A wumpus-world agent using propositional logic:

¬P1,1

¬W1,1

Bx,y ⇔ (Px,y+1 ∨ Px,y-1 ∨ Px+1,y ∨ Px-1,y)

Sx,y ⇔ (Wx,y+1 ∨ Wx,y-1 ∨ Wx+1,y ∨ Wx-1,y)

W1,1 ∨ W1,2 ∨ … ∨ W4,4

¬W1,1 ∨ ¬W1,2

¬W1,1 ∨ ¬W1,3

…

⇒ 64 distinct proposition symbols, 155 sentences
⇒ A fringe square is provably safe if the sentence

is entailed by the knowledge base.

€ 

¬Pi, j ∧¬Wi, j( )
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 KB contains "physics" sentences for every single square
 With all consequences for large KB

Better would be to have just two sentences foor breezes and

stenches for all squares.

 For every time t and every location [x,y],

Lx,y ∧ FacingRightt ∧ Forwardt ⇒ Lx+1,y

 Rapid proliferation of clauses.

Expressiveness limitation of
propositional logic

tt
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Summary

 Logical agents apply inference to a knowledge base to derive new information
and make decisions.

 Basic concepts of logic:
 syntax: formal structure of sentences
 semantics: truth of sentences wrt models
 entailment: necessary truth of one sentence given another
 inference: deriving sentences from other sentences
 soundness: derivations produce only entailed sentences

 completeness: derivations can produce all entailed sentences

 Wumpus world requires the ability to represent partial and negated information,
reason by cases, etc.

 Resolution is complete for propositional logic
Forward, backward chaining are linear-time, complete for Horn clauses

 Propositional logic lacks expressive power


