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Propositional Logic

Propositional logic is the simplest logic—illustrates basic ideas
The proposition symbols £, £ etc are sentences

If S is a sentence, .5 is a sentence (negation)

If Sy and S are sentences, S1 A Sy is a sentence (conjunction)
If S, and 55 are sentences, .5) W 5 is a sentence (disjunction}

If S; and S are sentences, S| = S, is a sentence (implication}

If 51 and S5 are sentences, 51 < 5o is a sentence (biconditional)
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Propositional Logic

Each model specifies true/false for each propesition symbal

Eg. Pw;z PM P:{l
true true false

(With these symbols, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model m:

-5 s true iff S is false
S A Sy s true iff 5 is true and Sy is true
S, v .Sy s true iff 54 is true or Sy is true
S = 5, s true iff 5 is false or Sy is true
i.e., is false iff S is true and Sy is false

S <= 5 istrue iff S = S5, istrueand S; = S| is true

Simple recursive process evaluates an arbitrary sentence, e.g.,
oA (PagV ) = true A (false V true) = true A drue = true
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Propositional Logic

1 0} P AG PV P = QP e @
false false true | false false  {rue braue
false true | true | false {rue true false
true  [false false| false lrue | [false false
true  lrue | false| brue  lrue {rue brige
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Wumpus world logic

Let 7 ; be true if there is a pit in [i. 7].
Let 73; ; be true if there is a breeze in [7, 7.

—
=13
f34

"Pits cause breezes in adjacent squares’
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Wumpus world logic

Let F; ; be true if there is a pit in [i, 7].
Let 13; ; be true if there is a breeze in [1. 5.

-y
-
B

“Pits cause breezes in adjacent squares”

Bii & (v i)
Boy & (P PpV Py

“A square is breezy if and only if there is an adjacent pit”
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Truth tables for inference

Enumerate the models and check that « is true in every model
In which KB is true.

November 16, 2004

By | Bay | Py | Pig | Pag | Pay | Ps1 | KB (3]
false | false | false | false | false| false false | false | true
false | false | false | false | false| false true | false| true
false | true | false | false | false| false| false | false | true
false | true | false | false | false| false | true | true | true
false | true | false | false | false| true | false | true | true
false | true | false | false | false| true  true | true | true
false | true | false | false | true | false | false | false | true
true | true | true | true | true | true | true | false | false
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Inference by enumeration

m  Depth-first enumeration of all models is sound and complete

function TT-ENTAILS?(KB, o) returns true or false

symbols < a list of the proposition symbols in KB and «
return TT-CHECK-ALL(K B, a, symbols, [|)

function TT-CHECK-ALL( KB, av, symbols, model) returns true or false
if EMPTY?(symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE?(a, model)
else return irue
else do
P FIRST(symbols); rest «+ REST(syrmbols)
return T'T-CHECK-ALL(KB, a, rest, EXTEND( P, true, model) and
TT-CHECK- ALL(KB, a, rest, EXTEND( P, false, model)

m  For n symbols, time complexity is O(2"), space complexity is O(n)
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Logical equivalence

m Two sentences are iff true in same set of models or
a=Biffa|=BandB |- o.
(N f) = (BAa) commutativity of A
(Vv P3) = (BVa) commutativity of V
((anB)Ay) = (A (B A7) associativity of A
(avpB)Vy) = (Vv (BVy)) associativity of V
—(—a) = a double-negation elimination
(@ = B) = (-8 = —«) contraposition
(@ = B) = (~aV [) implication elimination
(@ & B) = (a0 = B)A(B = «a)) biconditional elimination
—(aAfP) = (-~av—F) de Morgan
—(aV ) = (~aA—F) de Morgan
(A (VYY) = (aAB)V(aAy)) distributivity of A over V
(av(BAY) = ((aVvB)A(aVy)) distributivity of V over A
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Validity and satisfiability

m A sentence is if it is true in all models,
e.g., True, Av-A, A=A, (Ar(A=B))=B

Validity is connected to inference via the
KB |=c if and only if (KB = ¢) is valid

® A sentence is if it is true in model
eg.,AvB,C

A sentence is if it is true in 70 models
e.g., Ar-A

Satisfiability is connected to inference via the following:
KB [= o if and only if (KB 1 - ) is unsatisfiable
Remember proof by contradiction.
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Inference rules in PL

m Modens Ponens a= p.a

B
m And-elimination: from a conjuction any
conjunction can be inferred: anp
(04

m All logical equivalences of slide 39 can be used as
inference rules. a<sf
(a=p)r(=a)
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Example

m Assume R1 through RS5:

_'Pl,l’Bl,l = (Pll v Pz,l )’BZ,I = (Pll \ P2,2 v P3,1 )’_'BI,I’BZ,I

m How can we prove =P, ,?
Ry:(B,=(P,vP,))A((P,vP,)=B,) Biconditional elim.
R,:(P,VvP,)=B, And elim.

Ry :-~B, = —-(PL2 v Pz’l)
R, :—-(PL2 v PZJ)
Ry :=P,A-P,

Contraposition
Modens ponens
Morgan’s rule
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Searching for proofs

m Finding proofs is exactly like finding solutions to search problems.

m Search can be done forward (forward chaining) to derive goal or
backward (backward chaining) from the goal.

m Searching for proofs is not more efficient than enumerating models,
but in many practical cases, it is more efficient because we can
ignore irrelevant properties.

m Monotonicity: the set of entailed sentences can only increase as
information is added to the knowledge base.

forany sentencea.and 3 :if KBk athen KBA [ l=a
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Proof methods

m Proof methods divide into (roughly) two kinds:

Legitimate (sound) generation of new sentences from old

= a sequence of inference rule application can use inference rules as
operators in a standard search algorithm

Typically require transformation of sentences into a

truth table enumeration (always exponential in n)
improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL)
heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms
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Resolution

m Start with Unit Resolution Inference Rule:
£V N m

€ 1 oW f i_. 1 A { i4+1 W '.' Y, f k . .
m Full Resolution Rule is a generalization of
this rule:

Fl VoW ’éli\". my VoW my

GV VhIVGnV VeV miY o Vm o Vma vV
m For clauses of length two:
£y #a, —fo W fq
€1Vl
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Resolution in Wumpus world

m At some point we can derive the absence of a pit
in square 2,2:
-P Bl,l = (Pll v Pz,l )732,1 = (Pll v Pz,z v P3,1 )’_'BI,I’BZ,P_' 2,2’_'P3,1

11>

m Now after biconditional elimination of R3

followed by a modens ponens with R5:
R15 : (Pll v P2,2 v le)

m Resolution: P, vP,,vP, =P,
B,V Py,
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Resolution

m Uses CNF (Conjunctive normal form)
Conjunction of disjunctions of literals (clauses)

m The resolution rule is sound:
Only entailed sentences are derived

m Resolution is complete in the sense that it can
always be used to either confirm or refute a
sentence (it can not be used to enumerate true
sentences. )
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Conversion to CNF

B, ©®,vPy)
Eliminate <, replacing o < 8 with (@ = B)A(B = @).
(B1,1 = (P1,z v P2,1» A ((P1,z v P2,1) = B1,1)

m  Eliminate =, replacing a =  with - a v B.
(“31,1 v P1,2 v P2,1) A (“(P1,z v P2,1) v B1,1)

m  Move - inwards using de Morgan's rules and double-negation:
(“31,1 v P1,2 v P2,1) A ((“P1,z v "Pz,1) v B1,1)

m  Apply distributivity law (A over v) and flatten:
(“31,1 v P1,2 v P2,1) A (“P1,2 v B1,1) A (“Pz,1 v B1,1)
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Resolution algorithm

m Proof by contradiction, i.e., show KBA—  unsatisfiable

function PL-RESoLUTION(KB, o) returns true or false

clauses +— the set of clauses in the CNF representation of KB A —«
new « { }
loop do
for each C;, C; in clauses do
resolvents < PL-RESOLVE(C;, Cj)
if resolvents contains the empty clause then return frue
new+— new U resolvents
if new C elauses then return false
clauses +— clauses U new
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Resolution algorithm

m First KBa- « is converted into CNF
m Then apply resolution rule to resulting clauses.
m The process continues until:

There are no new clauses that can be added
m Hence o does not ential /3
Two clauses resolve to entail the empty clause.

m Hence o does ential /3
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Resolution example

m KB= (B1,1 had (P1,2V P2,1)) A= B =-P,

| jPz.l\"'f Bu ‘ | B Bu\/ Pl.z\/ Pz,l | ‘ﬁPLzV Bu‘
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Forward and backward chaining

m The completeness of resolution makes it a very important
inference model.

m Real-world knowledge only requires a restricted form of
clauses:

Horn clauses = disjunction of literals with at most one
positive literal

Three important properties
= Can be written as an implication
(—- L, v-Breezev Bu) — (Lu v Breeze) = B,

» Inference through forward chaining and backward chaining.

= Deciding entailment can be done in a time linear size of the knowledge
base.
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Forward chaining

m Idea: fire any rule whose premises are satisfied in the KB,
add its conclusion to the KB, until query is found

"
P =Q
LAM =P =]
BAL = M E>\
AANP = L M
AAB = L L
A
B A/
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Forward chaining algorithm

m Forward chaining is sound and complete for Horn KB

function PL-FC-ENTAILS? (KB, q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p—Por(agenda)
unless inferred|p] do
inferred[p] « true
for each Horn clause ¢ in whose premise p appears do
decrement count|c|
if count[c] = 0 then do
if HeAD[c] = ¢ then return true
Puse(HEAD]c], agenda)
return false
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Forward chaining example
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Proof of completeness

m  FC derives every atomic sentence that is entailed by KB

FC reaches a where no new atomic
sentences are derived.

Consider the final state as a model m, assigning
true/false to symbols.

Every clause in the original KB is true in m

an ... N a=Db

Hence mis a model of KB

If KB |= q, qis true in every model of KB, including m
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Backward chaining

Idea: work backwards from the query g:
to prove q by BC,
check if ¢ is known already, or
prove by BC all premises of some rule concluding ¢

Avoid loops: check if new subgoal is already on the goal stack
Avoid repeated work: check if new subgoal

has already been proved true, or
has already failed
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Backward chaining example

November 16, 2004 TLo (IRIDIA)

Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Forward vs. backward chaining

m FCis , automatic, unconscious processing,
e.g., object recognition, routine decisions

m May do lots of work that is irrelevant to the goal

m BCis , appropriate for problem-solving,
e.g., Where are my keys? How do | get into a PhD
program?

m Complexity of BC can be much less than linear in size of
KB
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Effective propositional inference

m Two families of efficient algorithms for propositional
inference based on model checking:

m Are used for checking satisfiability
m Complete backtracking search algorithms

DPLL algorithm (Davis, Putnam, Logemann, Loveland)
Incomplete local search algorithms
m WalkSAT algorithm
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The DPLL algorithm

m  Determine if an input propositional logic sentence (in CNF) is
satisfiable.
m  Improvements over truth table enumeration:
Early termination
A clause is true if any literal is true. A sentence is false if any clause is false.

Pure symbol heuristic

Pure symbol: always appears with the same "sign" in all clauses.

e.g., In the three clauses (A v =B), (=B v =C), (C v A), A and B are pure,
C is impure.

Make a pure symbol literal true.

Unit clause heuristic

Unit clause: only one literal in the clause. The only literal in a unit clause
must be true.
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The DPLL algorithm

function DPLL-SATISFIABLE?(S) returns true or false
inputs: s, a sentence in propositional logic

clauses « the set of clauses in the CNF representation of s
symbols  a list of the proposition symbols in s
return DPLL(clauses, symbols, [])

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value < FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(dlauses, symbols-P, [P = value|model])
P, value < FIND-UNIT-CLAUSE( clauses, model)
if P is non-null then return DPLL(clauses, syrmbols—P, [P = value|model])
P+ F1rST(symbols); rest + REST(symbols)
return DPLL(clauses, rest, [P = true|model]) or
DPLL(clauses, rest, [P = false|model])
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The WalkSAT algorithm

m Incomplete, local search algorithm.

m Evaluation function: The min-conflict heuristic of
minimizing the number of unsatisfied clauses.

m Steps are taken in the space of complete
assignments, flipping the truth value of one variable
at a time.

m Balance between greediness and randomness.

To avoid local minima
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The WalkSAT algorithm

function WALKSAT(clauses, p, maz-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move
maz-flips, number of flips allowed before giving up

model+ a random assignment of true/ false to the symbols in clauses
for i = 1 to maz-flips do

if model satisfies clauses then return model

clause < a randomly selected clause from clauses that is false in model

with probability p flip the value in model of a randomly selected symbol

from clause

else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure
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Hard satisfiability problems

m Consider random 3-CNF sentences. e.g.,

(-Dv-BvO)ABv-Av-C)a(=Cv-Byv
EYA(Ev-DvB)A(BvVEvV-(C)

m = number of clauses
n = number of symbols

Hard problems seem to cluster near m/n = 4.3
(critical point)
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Hard satisfiability problems
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Hard satisfiability problems

® Median runtime for 100 random 3-CNF sentences, n =
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Inference-based agents in the
wumpus world

A wumpus-world agent using propositional logic:

Bx,y had (Px,y+1 v Px,y-1 v Px-l-1,y v Px-1,y)
sx,y had (wx,y+1 v wx,y—1 v wx-l-1,y v wx-1 ,y)
Wi VWi Ve vW,,

“w1,1 v “w1,2

“w1,1 v “w1,3

= 64 distinct proposition symbols, 155 sentences
= A fringe square is provably safe if the sentence (—- P A=W, J.)
is entailed by the knowledge base.
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function PL-WUMPUS-AGENT( percept) returns an action
inputs: percept, a list, [stench, breeze, glitter]
static: KB, initially containing the “physics” of the wumpus world
1, y, orientation, the agent's position (init. [1,1]) and orient. (init. right)
visited, an array indicating which squares have been visited, initially false
action, the agent's most recent action, initially null
plan, an action sequence, initially empty

update x,y,orientation, visited based on action

if stench then TELL(KB, S, ,) else TELL(KB,— S; )

if breeze then TELL(KDB, B, ) else TELL(KB, - B, ,)

if glitter then action < grab

else if plan is nonempty then action + P op(plan)

else if for some fringe square [i,7], ASK(KB, (= Pij A = Wij)) is true or

for some fringe square [ij], ASK(KB, (P; ;v W;;)) is folse then do

plan+ A*-GRAPH-SEARCH(ROUTE-PB([z.y], orientation, [1,] visited))
action + Pop(plan)

else action < a randomly chosen move

return action
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Expressiveness limitation of
propositional logic

m KB contains "physics" sentences for every single square
With all consequences for large KB

Better would be to have just two sentences foor breezes and
t

stenches for all squares.
m For every time ¢ and every location [x,y],
Ly, A FacingRight' A Forward' = L

x+1y

m Rapid proliferation of clauses.
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Summary

m  Logical agents apply toa to derive new information
and make decisions.
m  Basic concepts of logic:
: formal structure of
of sentences wrt
: necessary truth of one sentence given another
: deriving sentences from other sentences
: derivations produce only entailed sentences
: derivations can produce all entailed sentences
m  Wumpus world requires the ability to represent partial and negated information,
reason by cases, etc.
m  Resolution is complete for propositional logic
Forward, backward chaining are linear-time, complete for Horn clauses

m  Propositional logic lacks expressive power
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