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Outline

 Problem-solving agents
 A kind of goal-based agent

 Problem types
 Single state (fully observable)

 Search with partial information

 Problem formulation
 Example problems

 Basic search algorithms
 Uninformed
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Problem-solving agent

 Four general steps in problem solving:
 Goal formulation

 What are the successful world states
 Problem formulation

 What actions and states to consider give the goal
 Search

 Determine the possible sequence of actions that lead to the states of
known values and then choosing the best sequence.

 Execute

 Give the solution perform the actions.
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Problem-solving agent

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) return an action
static: seq, an action sequence

state, some description of the current world state
goal, a goal
problem, a problem formulation

state ← UPDATE-STATE(state, percept)

if seq is empty then
goal ← FORMULATE-GOAL(state)
problem ← FORMULATE-PROBLEM(state,goal)
seq ← SEARCH(problem)

action ← FIRST(seq)
seq ← REST(seq)
return action
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Example: Romania
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Example: Romania

 On holiday in Romania; currently in Arad
 Flight leaves tomorrow from Bucharest

 Formulate goal
 Be in Bucharest

 Formulate problem
 States: various cities

 Actions: drive between cities

 Find solution
 Sequence of cities; e.g. Arad, Sibiu, Fagaras, Bucharest,

…
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Problem types

 Deterministic, fully observable ⇒ single state problem
 Agent knows exactly which state it will be in; solution is

a sequence.

 Partial knowledge of states and actions:
 Non-observable  ⇒ sensorless or conformant problem

 Agent may have no idea where it is; solution (if any) is a sequence.
 Nondeterministic and/or partially observable  ⇒

contingency problem

 Percepts provide new information about current state; solution is a
tree or policy; often interleave search and execution.

 Unknown state space  ⇒ exploration problem (“online”)

 When states and actions of the environment are unknown.
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Example: vacuum world

 Single state, start in #5.
Solution??
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Example: vacuum world

 Single state, start in #5.
Solution??
 [Right, Suck]
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Example: vacuum world

 Single state, start in #5.
Solution??
 [Right, Suck]

 Sensorless: start in
{1,2,3,4,5,6,7,8} e.g Right
goes to {2,4,6,8}. Solution??

 Contingency: start in {1,3}.
(assume Murphy’s law, Suck
can dirty a clean carpet and
local sensing: [location,dirt]
only. Solution??
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Problem formulation

 A problem is defined by:
 An initial state, e.g. Arad

 Successor function S(X)= set of action-state pairs

 e.g. S(Arad)={<Arad → Zerind, Zerind>,…}
intial state + successor function = state space

 Goal test, can be

 Explicit, e.g. x=‘at bucharest’
 Implicit, e.g. checkmate(x)

 Path cost (additive)

 e.g. sum of distances, number of actions executed, …
 c(x,a,y) is the step cost, assumed to be >= 0

A solution is a sequence of actions from initial to goal state.

Optimal solution has the lowest path cost.
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Selecting a state space

 Real world is absurdly complex.
State space must be abstracted for problem solving.

 (Abstract) state = set of real states.
 (Abstract) action = complex combination of real actions.

 e.g. Arad →Zerind represents a complex set of possible routes,
detours, rest stops, etc.

 The abstraction is valid if the path between two states is
reflected in the real world.

 (Abstract) solution = set of real paths that are solutions in the real
world.

 Each abstract action should be “easier” than the real problem.
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Example: vacuum world

 States??
 Initial state??
 Actions??
 Goal test??
 Path cost??
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Example: vacuum world

 States?? two locations with or without dirt: 2 x 22=8 states.
 Initial state?? Any state can be initial
 Actions?? {Left, Right, Suck}
 Goal test?? Check whether squares are clean.
 Path cost?? Number of actions to reach goal.
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Example: 8-puzzle

 States??
 Initial state??
 Actions??
 Goal test??
 Path cost??
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Example: 8-puzzle

 States?? Integer location of each tile
 Initial state?? Any state can be initial
 Actions?? {Left, Right, Up, Down}
 Goal test?? Check whether goal configuration is reached
 Path cost?? Number of actions to reach goal
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Example: 8-queens problem

 States??
 Initial state??
 Actions??
 Goal test??
 Path cost??
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Example: 8-queens problem

Incremental formulation vs. complete-state formulation
 States??
 Initial state??
 Actions??
 Goal test??
 Path cost??
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Example: 8-queens problem

Incremental formulation
 States??  Any arrangement of 0 to 8 queens on the board
 Initial state?? No queens
 Actions?? Add queen in empty square
 Goal test?? 8 queens on board and none attacked
 Path cost?? None

3 x 1014 possible sequences to investigate
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Example: 8-queens problem

Incremental formulation (alternative)
 States?? n (0≤ n≤ 8) queens on the board, one per column in the n leftmost

columns with no queen attacking another.
 Actions?? Add queen in leftmost empty column such that is not attacking

other queens

2057 possible sequences to investigate; Yet makes no difference
when n=100
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Example: robot assembly

 States??
 Initial state??
 Actions??
 Goal test??
 Path cost??
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Example: robot assembly

 States?? Real-valued coordinates of robot joint angles; parts of the object to
be assembled.

 Initial state?? Any arm position and object configuration.
 Actions?? Continuous motion of robot joints
 Goal test?? Complete assembly (without robot)
 Path cost?? Time to execute
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Basic search algorithms

 How do we find the solutions of previous problems?
 Search the state space (remember complexity of space

depends on state representation)

 Here: search through explicit tree generation

 ROOT= initial state.

 Nodes and leafs generated through successor function.

 In general search generates a graph (same state through
multiple paths)
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Simple tree search example

function TREE-SEARCH(problem, strategy) return a solution or failure
Initialize search tree to the initial state of the problem
do

if no candidates for expansion then return failure
choose leaf node for expansion according to strategy
if node contains goal state then return solution
else expand the node and add resulting nodes to the search tree

enddo
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Simple tree search example

function TREE-SEARCH(problem, strategy) return a solution or failure
Initialize search tree to the initial state of the problem
do

if no candidates for expansion then return failure
choose leaf node for expansion according to strategy
if node contains goal state then return solution
else expand the node and add resulting nodes to the search tree

enddo
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Simple tree search example

function TREE-SEARCH(problem, strategy) return a solution or failure
Initialize search tree to the initial state of the problem
do

if no candidates for expansion then return failure
choose leaf node for expansion according to strategy
if node contains goal state then return solution
else expand the node and add resulting nodes to the search tree

enddo

← Determines search process!!



14

TLo (IRIDIA) 27October 17, 2004

State space vs. search tree

 A state is a (representation of) a physical configuration
 A node is a data structure belong to a search tree

 A node has a parent, children, … and ncludes path cost, depth, …

 Here node= <state, parent-node, action, path-cost, depth>

 FRINGE= contains generated nodes which are not yet expanded.

 White nodes with black outline
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Tree search algorithm

function TREE-SEARCH(problem,fringe) return a solution or failure
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do
if EMPTY?(fringe) then return failure
node ← REMOVE-FIRST(fringe)

if GOAL-TEST[problem] applied to STATE[node] succeeds

then return SOLUTION(node)
fringe ← INSERT-ALL(EXPAND(node, problem), fringe)
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Tree search algorithm (2)

function EXPAND(node,problem) return a set of nodes
successors ← the empty set

for each <action, result> in SUCCESSOR-FN[problem](STATE[node]) do
s ← a new NODE

STATE[s] ← result

PARENT-NODE[s] ← node

ACTION[s] ← action

PATH-COST[s] ← PATH-COST[node] + STEP-COST(node, action,s)

DEPTH[s] ← DEPTH[node]+1

add s to successors

return successors
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Search strategies

 A strategy is defined by picking the order of node expansion.
 Problem-solving performance is measured in four ways:

 Completeness; Does it always find a solution if one exists?

 Optimality; Does it always find the least-cost solution?

 Time Complexity; Number of nodes generated/expanded?

 Space Complexity; Number of nodes stored in memory during
search?

 Time and space complexity are measured in terms of problem
difficulty defined by:
 b - maximum branching factor of the search tree

 d - depth of the least-cost solution

 m - maximum depth of the state space (may be ∞)
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Uninformed search strategies

 (a.k.a. blind search) = use only information available in
problem definition.
 When strategies can determine whether one non-goal

state is better than another → informed search.

 Categories defined by expansion algorithm:
 Breadth-first search

 Uniform-cost search

 Depth-first search

 Depth-limited search

 Iterative deepening search.

 Bidirectional search
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BF-search, an example

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

A
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BF-search, an example

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

A

B C
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BF-search, an example

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

A

B C

D E
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BF-search, an example

 Expand shallowest unexpanded node

 Implementation: fringe is a FIFO queue

A

B C

D E F G
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BF-search; evaluation

 Completeness:
 Does it always find a solution if one exists?

 YES

 If shallowest goal node is at some finite depth d

 Condition: If b is finite
 (maximum num. Of succ. nodes is finite)
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BF-search; evaluation

 Completeness:
 YES (if b is finite)

 Time complexity:
 Assume a state space where every state has b successors.

 root has b successors, each node at the next level has again b successors
(total b2), …

 Assume solution is at depth d

 Worst case; expand all but the last node at depth d

 Total numb. of nodes generated:

€ 

b + b2 + b3 + ...+ bd + (bd +1 − b) =O(bd +1)
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BF-search; evaluation

 Completeness:
 YES (if b is finite)

 Time complexity:
 Total numb. of nodes generated:

 Space complexity:
 Idem if each node is retained in memory

€ 

b + b2 + b3 + ...+ bd + (bd +1 − b) =O(bd +1)
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BF-search; evaluation

 Completeness:
 YES (if b is finite)

 Time complexity:
 Total numb. of nodes generated:

 Space complexity:
 Idem if each node is retained in memory

 Optimality:
 Does it always find the least-cost solution?

 In general YES

 unless actions have different cost.

€ 

b + b2 + b3 + ...+ bd + (bd +1 − b) =O(bd +1)
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BF-search; evaluation

 Two lessons:
 Memory requirements are a bigger problem than its execution

time.

 Exponential complexity search problems cannot be solved by

uninformed search methods for any but the smallest instances.

1 exabyte3523 years101514
10 petabytes35 years101312
101 terabytes129 days101110

1 terabyte31 hours1098
10 gigabytes19 minutes1076

106 megabytes11 seconds1111004
1 megabyte0.11 seconds11002
MEMORYTIMENODESDEPTH2
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Uniform-cost search

 Extension of BF-search:
 Expand node with lowest path cost

 Implementation: fringe = queue ordered by path
cost.

 UC-search is the same as BF-search when all
step-costs are equal.
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Uniform-cost search

 Completeness:
 YES, if step-cost > ε (smal positive constant)

 Time complexity:
 Assume C* the cost of the optimal solution.

 Assume that every action costs at least ε
 Worst-case:

 Space complexity:
 Idem to time complexity

 Optimality:
 nodes expanded in order of increasing path cost.

 YES, if complete.

€ 

O(bC*/ε )
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DF-search, an example

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)
A
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DF-search, an example

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)
A

B C
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DF-search, an example

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)
A

B C

D E
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DF-search, an example

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A
B C

D E

H I
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DF-search, an example

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)
A

B C

D E

H I
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DF-search, an example

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A
B C

D E

H I
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DF-search, an example

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)
A

B C

D E

H I J K
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DF-search, an example

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K
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DF-search, an example

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K
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DF-search, an example

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

F H
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DF-search, an example

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

F H

L M
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DF-search, an example

 Expand deepest unexpanded node

 Implementation: fringe is a LIFO queue (=stack)

A

B C

D E

H I J K

F H

L M
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DF-search; evaluation

 Completeness;
 Does it always find a solution if one exists?

 NO

 unless search space is finite and no loops are possible.
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DF-search; evaluation

 Completeness;
 NO unless search space is finite.

 Time complexity;
 Terrible if m is much larger than d (depth of optimal

solution)

 But if many solutions, then faster than BF-search€ 

O(bm )
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DF-search; evaluation

 Completeness;
 NO unless search space is finite.

 Time complexity;

 Space complexity;
 Backtracking search uses even less memory

 One successor instead of all b.

€ 

O(bm +1)

€ 

O(bm )
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DF-search; evaluation

 Completeness;
 NO unless search space is finite.

 Time complexity;

 Space complexity;

 Optimallity; No
 Same issues as completeness

 Assume node J and C contain goal states€ 

O(bm +1)

€ 

O(bm )
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Depth-limited search

 Is DF-search with depth limit l.
 i.e. nodes at depth l have no successors.

 Problem knowledge can be used

 Solves the infinite-path problem.
 If l < d then incompleteness can result.
 If l > d then not optimal.
 Time complexity:
 Space complexity:

€ 

O(bl )

€ 

O(bl)
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Depth-limited algorithm

function DEPTH-LIMITED-SEARCH(problem,limit) return a solution or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]),problem,limit)

function RECURSIVE-DLS(node, problem, limit) return a solution or failure/cutoff
cutoff_occurred? ← false
if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
else if DEPTH[node] == limit then return cutoff
else for each successor in EXPAND(node, problem) do

result ← RECURSIVE-DLS(successor, problem, limit)
if result == cutoff  then cutoff_occurred? ←  true
else if result ≠ failure then return result

if cutoff_occurred? then return cutoff else return failure
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Iterative deepening search

 What?
 A general strategy to find best depth limit l.

 Goals is found at depth d, the depth of the shallowest
goal-node.

 Often used in combination with DF-search

 Combines benefits of DF- en BF-search
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Iterative deepening search

function ITERATIVE_DEEPENING_SEARCH(problem) return a solution or failure

inputs: problem

for depth ← 0 to ∞ do
result ← DEPTH-LIMITED_SEARCH(problem, depth)

if result ≠ cuttoff then return result
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ID-search, example

 Limit=0

TLo (IRIDIA) 64October 17, 2004

ID-search, example

 Limit=1
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ID-search, example

 Limit=2
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ID-search, example

 Limit=3



34

TLo (IRIDIA) 67October 17, 2004

ID search, evaluation

 Completeness:
 YES (no infinite paths)
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ID search, evaluation

 Completeness:
 YES (no infinite paths)

 Time complexity:
 Algorithm seems costly due to repeated generation of certain

states.

 Node generation:

 level d: once
 level d-1: 2
 level d-2: 3
 …
 level 2: d-1
 level 1: d

€ 

N(IDS) = (d)b + (d −1)b2 + ...+ (1)bd

N(BFS) = b + b2 + ...+ bd + (bd +1 − b)
€ 

O(bd )

€ 

N(IDS) = 50 + 400 + 3000 + 20000 +100000 =123450
N(BFS) =10 +100 +1000 +10000 +100000 + 999990 =1111100

Num. Comparison for b=10 and d=5 solution at far right
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ID search, evaluation

 Completeness:
 YES (no infinite paths)

 Time complexity:

 Space complexity:
 Cfr. depth-first search

€ 

O(bd )

€ 

O(bd)
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ID search, evaluation

 Completeness:
 YES (no infinite paths)

 Time complexity:

 Space complexity:
 Optimality:

 YES if step cost is 1.

 Can be extended to iterative lengthening search

 Same idea as uniform-cost search
 Increases overhead.

€ 

O(bd )

€ 

O(bd)
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Bidirectional search

 Two simultaneous searches from start an goal.
 Motivation:

 Check whether the node belongs to the other fringe before
expansion.

 Space complexity is the most significant weakness.
 Complete and optimal if both searches are BF.€ 

bd / 2 + bd / 2 ≠ bd
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How to search backwards?

 The predecessor of each node should be efficiently computable.
 When actions are easily reversible.
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Summary of algorithms

YES

bd/2

bd/2

YES*

Bidirectional
search

NO

bm

bm

NO

Depth-First

YESNOYES*YES*Optimal?

bdblbC*/ebd+1Space

bdblbC*/ebd+1Time

YESYES,
if l ≥ d

YES*YES*Complete?

Iterative
deepening

Depth-
limited

Uniform-
cost

Breadth-
First

Criterion
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Repeated states

 Failure to detect repeated states can turn a solvable
problems into unsolvable ones.
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Graph search algorithm

 Closed list stores all expanded nodes

function GRAPH-SEARCH(problem,fringe) return a solution or failure
closed ← an empty set
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do
if EMPTY?(fringe) then return failure
node ← REMOVE-FIRST(fringe)

if GOAL-TEST[problem] applied to STATE[node] succeeds
then return SOLUTION(node)

if STATE[node] is not in closed then
add STATE[node] to closed
fringe ← INSERT-ALL(EXPAND(node, problem), fringe)
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Graph search, evaluation

 Optimality:
 GRAPH-SEARCH discard newly discovered paths.

 This may result in a sub-optimal solution
 YET: when uniform-cost search or BF-search with constant step

cost

 Time and space complexity,
 proportional to the size of the state space

(may be much smaller than O(bd)).
 DF- and ID-search with closed list no longer has linear

space requirements since all nodes are stored in closed
list!!
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Search with partial information

 Previous assumption:
 Environment is fully observable

 Environment is deterministic

 Agent knows the effects of its actions

What if knowledge of states or actions is incomplete?
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Search with partial information

 (SLIDE 7) Partial knowledge of states and actions:
 sensorless or conformant problem

 Agent may have no idea where it is; solution (if any) is a sequence.
 contingency problem

 Percepts provide new information about current state; solution is a
tree or policy; often interleave search and execution.

 If uncertainty is caused by actions of another agent: adversarial
problem

 exploration problem

 When states and actions of the environment are unknown.
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Conformant problems

 start in {1,2,3,4,5,6,7,8}
e.g Right goes to
{2,4,6,8}. Solution??
 [Right, Suck, Left,Suck]

 When the world is not
fully observable: reason
about a set of states that
migth be reached
=belief state
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Conformant problems

 Search space of belief
states

 Solution = belief state
with all members goal
states.

 If S states then 2S belief
states.

 Murphy’s law:
 Suck can dirty a clear

square.
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Belief state of vacuum-world
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Contingency problems

 Contingency, start in {1,3}.
 Murphy’s law, Suck can dirty a clean

carpet.
 Local sensing: dirt, location only.

 Percept = [L,Dirty] ={1,3}

 [Suck] = {5,7}

 [Right] ={6,8}

 [Suck] in {6}={8} (Success)

 BUT [Suck] in {8} = failure

 Solution??
 Belief-state: no fixed action

sequence guarantees solution

 Relax requirement:
 [Suck, Right, if [R,dirty]  then Suck]

 Select actions based on
contingencies arising during
execution.


