

· · ·		
Example:	8-queens problen	ו
Incremental formulation	I	
States?? Any arrang	ement of 0 to 8 queens on the board	
Initial state?? No que	eens	
Actions?? Add queen	n in empty square	
 Goal test?? 8 queens 	on board and none attacked	
Path cost?? None		
$3 \ge 10^{14}$ possible se	equences to investigate	
October 17, 2004	TLo (IRIDIA)	19

<u> </u>		
Tree s	search algorithm (2)	
function EXPA	ND(<i>node,problem</i>) return a set of nodes	
successors • for each <a< td=""><td>← the empty set ction, result> in SUCCESSOR-FN[problem](STATE[node]) do</td><td></td></a<>	← the empty set ction, result> in SUCCESSOR-FN[problem](STATE[node]) do	
s ← a STAT	new NODE $\operatorname{F}[s] \leftarrow result$	
PARI ACTI	$SNT-NODE[s] \leftarrow node$ $ON[s] \leftarrow action$	
DEPT	$1-COST[s] \leftarrow PATH-COST[node] + STEP-COST(node, action,s)$ $TH[s] \leftarrow DEPTH[node]+1$	
add s return succ	to successors essors	
October 17, 2004	TLo (IRIDIA)	29

BF-se	earch;	evalı	uation		
 Two less 	,				
Two less					
	sons:				
🗆 Mem	ory requirem	ents are a b	igger problem	than its execu	ution
time.					
🗆 Ехро	nential com	plexity searc	h problems ca	annot be solve	d by
uninf	ormed searc	h methods f	or any but the	smallest insta	ances.
-	DEDTHA			1	
	DEPTH2	NODES	TIME	MEMORY	
-	2 2	1100 NODES	0.11 seconds	MEMORY 1 megabyte	
F	2 4	NODES 1100 111100	0.11 seconds 11 seconds	MEMORY 1 megabyte 106 megabytes	
_	2 4 6	NODES 1100 111100 10 ⁷	TIME 0.11 seconds 11 seconds 19 minutes	MEMORY 1 megabyte 106 megabytes 10 gigabytes	
	2 4 6 8	NODES 1100 111100 107 109	0.11 seconds 11 seconds 19 minutes 31 hours	MEMORY 1 megabyte 106 megabytes 10 gigabytes 1 terabyte	
	2 4 6 8 10	NODES 1100 111100 107 109 1011	TIME 0.11 seconds 11 seconds 19 minutes 31 hours 129 days	MEMORY 1 megabyte 106 megabytes 10 gigabytes 1 terabyte 101 terabytes	
	2 4 6 8 10 12	NODES 1100 111100 107 109 10 ¹¹ 10 ¹³	TIME 0.11 seconds 11 seconds 19 minutes 31 hours 129 days 35 years	MEMORY 1 megabyte 106 megabytes 10 gigabytes 1 terabyte 101 terabytes 10 petabytes	
	2 4 6 8 10 12 14	NODES 1100 111100 107 109 10 ¹¹ 10 ¹³ 10 ¹⁵	TIME 0.11 seconds 11 seconds 19 minutes 31 hours 129 days 35 years 3523 years	MEMORY 1 megabyte 106 megabytes 10 gigabytes 1 terabyte 101 terabytes 10 petabytes 1 exabyte	

-		
Donth-lim	ited algorithm	
Deptii-iiii	inted algorithm	
function DEPTH_I IMITED	SEARCH(problem limit) return a solution or failure/	utoff
return RECURSIVE-D	LS(MAKE-NODE(INITIAL-STATE[problem]),problem	m,limit)
function RECURSIVE-DLS $cutoff occurred^2 \leftarrow fall$	S(<i>node</i> , <i>problem</i> , <i>limit</i>) return a solution or failure/cuto	ff
if GOAL-TEST[probler	n](STATE[node]) then return SOLUTION(node)	
else if DEPTH[node] ==	<i>limit</i> then return <i>cutoff</i>	
else for each successor	in EXPAND(node, problem) do	
$result \leftarrow RECUE$	RSIVE-DLS(successor, problem, limit)	
If result == $cuto$ olso if $result \neq fo$	ff then $cutoff_occurred? \leftarrow true$	
if cutoff occurred? the	n return <i>cutoff</i> else return failure	
October 17, 2004	TLo (IRIDIA)	60

ID-searc	h, example	
■ Limit=0		
<u> </u>		
October 17, 2004	TLo (IRIDIA)	63

Summary	of	algorithr	ns
---------	----	-----------	----

Criterion	Breadth- First	Uniform- cost	Depth-First	Depth- limited	Iterative deepening	Bidirectional search
Complete?	YES*	YES*	NO	YES, if l ≥ d	YES	YES*
Time	b^{d+1}	$b^{C^{*/e}}$	b^m	b^l	b^d	$b^{d/2}$
Space	b^{d+1}	$b^{C^{*/e}}$	bm	bl	bd	$b^{d/2}$
Optimal?	YES*	YES*	NO	NO	YES	YES

