
1

Artificial Intelligence
1: planning

Lecturer: Tom Lenaerts
Institut de Recherches Interdisciplinaires et de Développements
en Intelligence Artificielle (IRIDIA)

Université Libre de Bruxelles

TLo (IRIDIA) 2December 13, 2004

Planning

 The Planning problem
 Planning with State-space search
 Partial-order planning
 Planning graphs
 Planning with propositional logic
 Analysis of planning approaches

2

TLo (IRIDIA) 3December 13, 2004

What is Planning

 Generate sequences of actions to perform tasks and
achieve objectives.
 States, actions and goals

 Search for solution over abstract space of plans.

 Assists humans in practical applications
 design and manufacturing

 military operations

 games

 space exploration

TLo (IRIDIA) 4December 13, 2004

Difficulty of real world problems

 Assume a problem-solving agent
using some search method …
 Which actions are relevant?

 Exhaustive search vs. backward search
 What is a good heuristic functions?

 Good estimate of the cost of the state?
 Problem-dependent vs, -independent

 How to decompose the problem?

 Most real-world problems are nearly decomposable.

3

TLo (IRIDIA) 5December 13, 2004

Planning language

 What is a good language?
 Expressive enough to describe a wide variety of

problems.

 Restrictive enough to allow efficient algorithms to
operate on it.

 Planning algorithm should be able to take
advantage of the logical structure of the problem.

 STRIPS and ADL

TLo (IRIDIA) 6December 13, 2004

General language features

 Representation of states
 Decompose the world in logical conditions and represent

a state as a conjunction of positive literals.

 Propositional literals: Poor ∧ Unknown
 FO-literals (grounded and function-free): At(Plane1, Melbourne) ∧

At(Plane2, Sydney)
 Closed world assumption

 Representation of goals
 Partially specified state and represented as a conjunction

of positive ground literals

 A goal is satisfied if the state contains all literals in goal.

4

TLo (IRIDIA) 7December 13, 2004

General language features

 Representations of actions
 Action = PRECOND + EFFECT

Action(Fly(p,from, to),
PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

EFFECT: ¬AT(p,from) ∧ At(p,to))

= action schema (p, from, to need to be instantiated)

 Action name and parameter list
 Precondition (conj. of function-free literals)
 Effect (conj of function-free literals and P is True and not P is

false)
 Add-list vs delete-list in Effect

TLo (IRIDIA) 8December 13, 2004

Language semantics?

 How do actions affect states?
 An action is applicable in any state that satisfies

the precondition.

 For FO action schema applicability involves a

substitution θ for the variables in the PRECOND.
At(P1,JFK) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(JFK)
∧ Airport(SFO)

Satisfies : At(p,from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

With θ ={p/P1,from/JFK,to/SFO}

Thus the action is applicable.

5

TLo (IRIDIA) 9December 13, 2004

Language semantics?

 The result of executing action a in state s is the state s’
 s’ is same as s except

 Any positive literal P in the effect of a is added to s’
 Any negative literal ¬P is removed from s’

At(P1,SFO) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(JFK) ∧
Airport(SFO)

 STRIPS assumption: (avoids representational frame
problem)

every literal NOT in the effect remains unchanged

TLo (IRIDIA) 10December 13, 2004

Expressiveness and extensions

 STRIPS is simplified
 Important limit: function-free literals

 Allows for propositional representation

 Function symbols lead to infinitely many states and
actions

 Recent extension:Action Description language (ADL)
Action(Fly(p:Plane, from: Airport, to: Airport),

PRECOND: At(p,from) ∧ (from ≠ to)
EFFECT: ¬At(p,from) ∧ At(p,to))

Standardization : Planning domain definition language (PDDL)

6

TLo (IRIDIA) 11December 13, 2004

Example: air cargo transport

Init(At(C1, SFO) ∧ At(C2,JFK) ∧ At(P1,SFO) ∧ At(P2,JFK) ∧ Cargo(C1) ∧ Cargo(C2) ∧
Plane(P1) ∧ Plane(P2) ∧ Airport(JFK) ∧ Airport(SFO))

Goal(At(C1,JFK) ∧ At(C2,SFO))
Action(Load(c,p,a)

PRECOND: At(c,a) ∧At(p,a) ∧Cargo(c) ∧Plane(p) ∧Airport(a)
EFFECT: ¬At(c,a) ∧In(c,p))

Action(Unload(c,p,a)
PRECOND: In(c,p) ∧At(p,a) ∧Cargo(c) ∧Plane(p) ∧Airport(a)
EFFECT: At(c,a) ∧ ¬In(c,p))

Action(Fly(p,from,to)
PRECOND: At(p,from) ∧Plane(p) ∧Airport(from) ∧Airport(to)
EFFECT: ¬ At(p,from) ∧ At(p,to))

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Load(C2,P2,JFK), Fly(P2,JFK,SFO)]

TLo (IRIDIA) 12December 13, 2004

Example: Spare tire problem

Init(At(Flat, Axle) ∧ At(Spare,trunk))

Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk)

PRECOND: At(Spare,Trunk)
EFFECT: ¬At(Spare,Trunk) ∧ At(Spare,Ground))

Action(Remove(Flat,Axle)
PRECOND: At(Flat,Axle)
EFFECT: ¬At(Flat,Axle) ∧ At(Flat,Ground))

Action(PutOn(Spare,Axle)
PRECOND: At(Spare,Groundp) ∧¬At(Flat,Axle)
EFFECT: At(Spare,Axle) ∧ ¬Ar(Spare,Ground))

Action(LeaveOvernight
PRECOND:
EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,trunk) ∧ ¬ At(Flat,Ground) ∧ ¬
At(Flat,Axle))

This example goes beyond STRIPS: negative literal in pre-condition (ADL description)

7

TLo (IRIDIA) 13December 13, 2004

Example: Blocks world

Init(On(A, Table) ∧ On(B,Table) ∧ On(C,Table) ∧ Block(A) ∧ Block(B) ∧ Block(C) ∧ Clear(A) ∧
Clear(B) ∧ Clear(C))

Goal(On(A,B) ∧ On(B,C))
Action(Move(b,x,y)

PRECOND: On(b,x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧ (b≠ x) ∧ (b≠ y) ∧ (x≠ y)
EFFECT: On(b,y) ∧ Clear(x) ∧ ¬ On(b,x) ∧ ¬ Clear(y))

Action(MoveToTable(b,x)
PRECOND: On(b,x) ∧ Clear(b) ∧ Block(b) ∧ (b≠ x)
EFFECT: On(b,Table) ∧ Clear(x) ∧ ¬ On(b,x))

Spurious actions are possible: Move(B,C,C)

TLo (IRIDIA) 14December 13, 2004

Planning with state-space search

 Both forward and backward search possible

 Progression planners
 forward state-space search

 Consider the effect of all possible actions in a given state

 Regression planners
 backward state-space search

 To achieve a goal, what must have been true in the
previous state.

8

TLo (IRIDIA) 15December 13, 2004

Progression and regression

TLo (IRIDIA) 16December 13, 2004

Progression algorithm

 Formulation as state-space search problem:
 Initial state = initial state of the planning problem

 Literals not appearing are false
 Actions = those whose preconditions are satisfied

 Add positive effects, delete negative
 Goal test = does the state satisfy the goal

 Step cost = each action costs 1

 No functions … any graph search that is complete is a
complete planning algorithm.

 Inefficient: (1) irrelevant action problem (2) good
heuristic required for efficient search

9

TLo (IRIDIA) 17December 13, 2004

Regression algorithm

 How to determine predecessors?
 What are the states from which applying a given action

leads to the goal?
Goal state = At(C1, B) ∧ At(C2, B) ∧ … ∧ At(C20, B)

Relevant action for first conjunct: Unload(C1,p,B)
Works only if pre-conditions are satisfied.
Previous state= In(C1, p) ∧ At(p, B) ∧ At(C2, B) ∧ … ∧ At(C20, B)
Subgoal At(C1,B) should not be present in this state.

 Actions must not undo desired literals (consistent)
 Main advantage: only relevant actions are considered.

 Often much lower branching factor than forward search.

TLo (IRIDIA) 18December 13, 2004

Regression algorithm

 General process for predecessor construction
 Give a goal description G

 Let A be an action that is relevant and consistent

 The predecessors is as follows:

 Any positive effects of A that appear in G are deleted.
 Each precondition literal of A is added , unless it already appears.

 Any standard search algorithm can be added to perform
the search.

 Termination when predecessor satisfied by initial state.
 In FO case, satisfaction might require a substitution.

10

TLo (IRIDIA) 19December 13, 2004

Heuristics for state-space search

 Neither progression or regression are very efficient
without a good heuristic.
 How many actions are needed to achieve the goal?

 Exact solution is NP hard, find a good estimate

 Two approaches to find admissible heuristic:
 The optimal solution to the relaxed problem.

 Remove all preconditions from actions
 The subgoal independence assumptio:

The cost of solving a conjunction of subgoals is approximated by the
sum of the costs of solving the subproblems independently.

TLo (IRIDIA) 20December 13, 2004

Partial-order planning

 Progression and regression planning are totally
ordered plan search forms.
 They cannot take advantage of problem

decomposition.

 Decisions must be made on how to sequence actions on
all the subproblems

 Least commitment strategy:
 Delay choice during search

11

TLo (IRIDIA) 21December 13, 2004

Shoe example

Goal(RightShoeOn ∧ LeftShoeOn)
Init()
Action(RightShoe, PRECOND: RightSockOn

EFFECT: RightShoeOn)
Action(RightSock, PRECOND:

EFFECT: RightSockOn)
Action(LeftShoe, PRECOND: LeftSockOn

EFFECT: LeftShoeOn)
Action(LeftSock, PRECOND:

EFFECT: LeftSockOn)

Planner: combine two action sequences (1)leftsock, leftshoe
(2)rightsock, rightshoe

TLo (IRIDIA) 22December 13, 2004

Partial-order planning

 Any planning algorithm that can place two actions
into a plan without which comes first is a POL.

12

TLo (IRIDIA) 23December 13, 2004

POL as a search problem

 States are (mostly unfinished) plans.
 The empty plan contains only start and finish actions.

 Each plan has 4 components:
 A set of actions (steps of the plan)

 A set of ordering constraints: A < B

 Cycles represent contradictions.
 A set of causal links

 The plan may not be extended by adding a new action C that
conflicts with the causal link. (if the effect of C is ¬p and if C could
come after A and before B)

 A set of open preconditions.

 If precondition is not achieved by action in the plan.€

A p → B

TLo (IRIDIA) 24December 13, 2004

POL as a search problem

 A plan is consistent iff there are no cycles in the ordering
constraints and no conflicts with the causal links.

 A consistent plan with no open preconditions is a
solution.

 A partial order plan is executed by repeatedly choosing
any of the possible next actions.
 This flexibility is a benefit in non-cooperative

environments.

13

TLo (IRIDIA) 25December 13, 2004

Solving POL

 Assume propositional planning problems:
 The initial plan contains Start and Finish, the

ordering constraint Start < Finish, no causal links,
all the preconditions in Finish are open.

 Successor function :

 picks one open precondition p on an action B and

 generates a successor plan for every possible consistent
way of choosing action A that achieves p.

 Test goal

TLo (IRIDIA) 26December 13, 2004

Enforcing consistency

 When generating successor plan:
 The causal link A--p->B and the ordering constraing

A < B is added to the plan.

 If A is new also add start < A and A < B to the plan
 Resolve conflicts between new causal link and all

existing actions

 Resolve conflicts between action A (if new) and all
existing causal links.

14

TLo (IRIDIA) 27December 13, 2004

Process summary

 Operators on partial plans
 Add link from existing plan to open precondition.

 Add a step to fulfill an open condition.

 Order one step w.r.t another to remove possible
conflicts

 Gradually move from incomplete/vague plans to
complete/correct plans

 Backtrack if an open condition is unachievable or
if a conflict is unresolvable.

TLo (IRIDIA) 28December 13, 2004

Example: Spare tire problem

Init(At(Flat, Axle) ∧ At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk)

PRECOND: At(Spare,Trunk)
EFFECT: ¬At(Spare,Trunk) ∧ At(Spare,Ground))

Action(Remove(Flat,Axle)
PRECOND: At(Flat,Axle)
EFFECT: ¬At(Flat,Axle) ∧ At(Flat,Ground))

Action(PutOn(Spare,Axle)
PRECOND: At(Spare,Groundp) ∧¬At(Flat,Axle)
EFFECT: At(Spare,Axle) ∧ ¬Ar(Spare,Ground))

Action(LeaveOvernight
PRECOND:
EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,trunk) ∧ ¬ At(Flat,Ground)
∧ ¬ At(Flat,Axle))

15

TLo (IRIDIA) 29December 13, 2004

Solving the problem

 Intial plan: Start with EFFECTS and Finish with
PRECOND.

TLo (IRIDIA) 30December 13, 2004

Solving the problem

 Intial plan: Start with EFFECTS and Finish with PRECOND.
 Pick an open precondition: At(Spare, Axle)
 Only PutOn(Spare, Axle) is applicable
 Add causal link:
 Add constraint : PutOn(Spare, Axle) < Finish

€

PutOn(Spare,Axle) At(Spare,Axle) → Finish

16

TLo (IRIDIA) 31December 13, 2004

Solving the problem

 Pick an open precondition: At(Spare, Ground)
 Only Remove(Spare, Trunk) is applicable
 Add causal link:
 Add constraint : Remove(Spare, Trunk) < PutOn(Spare,Axle)

€

Remove(Spare,Trunk) At(Spare,Ground) → PutOn(Spare,Axle)

TLo (IRIDIA) 32December 13, 2004

€

Remove(Spare,Trunk) At(Spare,Ground) → PutOn(Spare,Axle)

Solving the problem

 Pick an open precondition: At(Spare, Ground)
 LeaveOverNight is applicable
 conflict:
 To resolve, add constraint : LeaveOverNight < Remove(Spare,

Trunk)

17

TLo (IRIDIA) 33December 13, 2004

€

Remove(Spare,Trunk) At(Spare,Ground) → PutOn(Spare,Axle)

Solving the problem

 Pick an open precondition: At(Spare, Ground)
 LeaveOverNight is applicable
 conflict:
 To resolve, add constraint : LeaveOverNight < Remove(Spare, Trunk)
 Add causal link:

€

LeaveOverNight ¬At(Spare,Ground) → PutOn(Spare,Axle)

TLo (IRIDIA) 34December 13, 2004

Solving the problem

 Pick an open precondition: At(Spare, Trunk)
 Only Start is applicable
 Add causal link:
 Conflict: of causal link with effect At(Spare,Trunk) in LeaveOverNight

 No re-ordering solution possible.

 backtrack
€

Start At(Spare,Trunk) → Remove(Spare,Trunk)

18

TLo (IRIDIA) 35December 13, 2004

Solving the problem

 Remove LeaveOverNight, Remove(Spare, Trunk) and causal
links

 Repeat step with Remove(Spare,Trunk)
 Add also RemoveFlatAxle and finish

TLo (IRIDIA) 36December 13, 2004

Some details …

 What happens when a first-order representation
that includes variables is used?
 Complicates the process of detecting and resolving

conflicts.

 Can be resolved by introducing inequality
constrainst.

 CSP’s most-constrained-variable constraint can be
used for planning algorithms to select a
PRECOND.

19

TLo (IRIDIA) 37December 13, 2004

Planning graphs

 Used to achieve better heuristic estimates.
 A solution can also directly extracted using GRAPHPLAN.

 Consists of a sequence of levels that correspond to time
steps in the plan.
 Level 0 is the initial state.

 Each level consists of a set of literals ans a set of
actions.

 Literals = all those that could be true at that time step, depending
upon the actions executed at the preceding time step.

 Actions = all those actions that could have their preconditions
satisfied at that time step, depending on which of the literals
actually hold.

TLo (IRIDIA) 38December 13, 2004

Planning graphs

 “Could”?
 Records only a restricted subset of possible negative

interactions among actions.

 They work only for propositional problems.
 Example:

Init(Have(Cake))
Goal(Have(Cake) ∧ Eaten(Cake))
Action(Eat(Cake), PRECOND: Have(Cake)

EFFECT: ¬Have(Cake) ∧ Eaten(Cake))
Action(Bake(Cake), PRECOND: ¬ Have(Cake)

EFFECT: Have(Cake))

20

TLo (IRIDIA) 39December 13, 2004

Cake example

 Start at level S0 and determine action level A0 and next level S1.
 A0 >> all actions whose preconditions are satisfied in the

previous level.

 Connect precond and effect of actions S0 --> S1

 Inaction is represented by persistence actions.

 Level A0 contains the actions that could occur
 Conflicts between actions are represented by mutex links

TLo (IRIDIA) 40December 13, 2004

Cake example

 Level S1 contains all literals that could result from picking any subset of
actions in A0
 Conflicts between literals that can not occur together are represented by

mutex links.

 S1 defines multiple states and the mutex links are the constraints that
define this set of states.

 Continue until two consecutive levels are identical: leveled off
 Or contain the same amount of literals (explanation follows later)

21

TLo (IRIDIA) 41December 13, 2004

Cake example

 A mutex relation holds between two actions when:
 Inconsistent effects: one action negates the effect of another.

 Interference: one of the effects of one action is the negation of a precondition of the
other.

 Competing needs: one of the preconditions of one action is mutually exclusive with the
precondition of the other.

 A mutex relation holds between two literals when (inconsistent support):
 If one is the negation of the other OR

 if each possible action pair that could achieve the literals is mutex.

TLo (IRIDIA) 42December 13, 2004

PG and heuristic estimation

 PG’s provide information about the problem
 A literal that does not appear in the final level of the

graph cannot be achieved by any plan.

 Useful for backward search (cost = inf).
 Level of appearance can be used as cost estimate of

achieving any goal literals = level cost.

 Small problem: several actions can occur

 Restrict to one action using serial PG (add mutex links between
every pair of actions, except persistence actions).

 Max-level, sum-level ans set-level heuristics.

PG is a relaxed problem.

22

TLo (IRIDIA) 43December 13, 2004

The GRAPHPLAN Algorithm

 How to extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure
graph ← INITIAL-PLANNING-GRAPH(problem)

goals ← GOALS[problem]

loop do

if goals all non-mutex in last level of graph then do
 solution ← EXTRACT-SOLUTION(graph, goals, LENGTH(graph))

 if solution ≠ failure then return solution

 else if NO-SOLUTION-POSSIBLE(graph) then return failure
 graph ← EXPAND-GRAPH(graph, problem)

TLo (IRIDIA) 44December 13, 2004

GRAPHPLAN example

 Initially the plan consist of 5 literals from the initial state and the CWA
literals (S0).

 Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)
 Also add persistence actions and mutex relations.
 Add the effects at level S1
 Repeat until goal is in level Si

23

TLo (IRIDIA) 45December 13, 2004

GRAPHPLAN example

 EXPAND-GRAPH also looks for mutex relations
 Inconsistent effects

 E.g. Remove(Spare, Trunk) and LeaveOverNight
 Interference

 E.g. Remove(Flat, Axle) and LeaveOverNight
 Competing needs

 E.g. PutOn(Spare,Axle) and Remove(Flat, Axle)
 Inconsistent support

 E.g. in S2, At(Spare,Axle) and At(Flat,Axle)

TLo (IRIDIA) 46December 13, 2004

GRAPHPLAN example

 In S2, the goal literal exists and is not mutex with any other
 Solution might exist and EXTRACT-SOLUTION will try to find it

 EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a search
process:
 Initial state = last level of PG and goal goals of planning problem

 Actions = select any set of non-conflicting actions that cover the goals in the
state

 Goal = reach level S0 such that all goals are satisfied

 Cost = 1 for each action.

24

TLo (IRIDIA) 47December 13, 2004

GRAPHPLAN example

 Termination? YES
 PG are monotonically increasing or decreasing:

 Literals increase monotonically

 Actions increase monotonically

 Mutexes decrease monotonically

 Because of these properties and because there is a finite number of actions anc
literals, every PG will eventually level off !

TLo (IRIDIA) 48December 13, 2004

Planning with propositional logic

 Planning can be done by proving theorem in situation calculus.
 Here: test the satisfiability of a logical sentence:

 Sentence contains propositions for every action occurrence.
 A model will assign true to the actions that are part of the

correct plan and false to the others

 An assignment that corresponds to an incorrect plan will not be
a model because of inconsistency with the assertion that the
goal is true.

 If the planning is unsolvable the sentence will be unsatisfiable.

€

initial state∧all possible action descriptions∧ goal

25

TLo (IRIDIA) 49December 13, 2004

SATPLAN algorithm

function SATPLAN(problem, Tmax) return solution or failure

inputs: problem, a planning problem
 Tmax, an upper limit to the plan length

for T= 0 to Tmax do
 cnf, mapping ← TRANSLATE-TO_SAT(problem, T)

 assignment ← SAT-SOLVER(cnf)

if assignment is not null then

 return EXTRACT-SOLUTION(assignment, mapping)

return failure

TLo (IRIDIA) 50December 13, 2004

cnf, mapping ← TRANSLATE-TO_SAT(problem, T)

 Distinct propositions for assertions about each time step.
 Superscripts denote the time step

At(P1,SFO)0 ∧ At(P2,JFK)0

 No CWA thus specify which propositions are not true

¬At(P1,SFO)0 ∧ ¬At(P2,JFK)0\

 Unknown propositions are left unspecified.

 The goal is associated with a particular time-step
 But which one?

26

TLo (IRIDIA) 51December 13, 2004

cnf, mapping ← TRANSLATE-TO_SAT(problem, T)

 How to determine the time step where the goal will be
reached?
 Start at T=0

 Assert At(P1,SFO)0 ∧ At(P2,JFK)0

 Failure .. Try T=1

 Assert At(P1,SFO)1 ∧ At(P2,JFK)1

 …

 Repeat this until some minimal path length is reached.

 Termination is ensured by Tmax

TLo (IRIDIA) 52December 13, 2004

cnf, mapping ← TRANSLATE-TO_SAT(problem, T)

 How to encode actions into PL?
 Propositional versions of successor-state axioms

At(P1,JFK)1 ⇔
(At(P1,JFK)0 ∧ ¬(Fly(P1,JFK,SFO)0 ∧ At(P1,JFK)0))∨
(Fly(P1,SFO,JFK)0 ∧ At(P1,SFO)0)

 Such an axiom is required for each plane, airport and time step

 If more airports add another way to travel than additional

disjuncts are required

 Once all these axioms are in place, the satisfiability algorithm can start
to find a plan.

27

TLo (IRIDIA) 53December 13, 2004

assignment ← SAT-SOLVER(cnf)

 Multiple models can be found
 They are NOT satisfactory: (for T=1)

Fly(P1,SFO,JFK)0 ∧ Fly(P1,JFK,SFO)0 ∧ Fly(P2,JFK.SFO)0

The second action is infeasible
Yet the plan IS a model of the sentence

 Avoiding illegal actions: pre-condition axioms
Fly(P1,SFO,JFK)0 ⇒ At(P1,JFK)

 Exactly one model now satisfies all the axioms where the
goal is achieved at T=1.

€

initial state∧all possible action descriptions∧ goal1

TLo (IRIDIA) 54December 13, 2004

assignment ← SAT-SOLVER(cnf)

 A plane can fly at two destinations at once
 They are NOT satisfactory: (for T=1)

Fly(P1,SFO,JFK)0 ∧ Fly(P2,JFK,SFO)0 ∧ Fly(P2,JFK.LAX)0

The second action is infeasible
Yet the plan allows spurious relations

 Avoid spurious solutions: action-exclusion axioms
¬(Fly(P2,JFK,SFO)0 ∧ Fly(P2,JFK,LAX))

Prevents simultaneous actions

 Lost of flexibility since plan becomes totally ordered : no actions are
allowed to occur at the same time.
 Restrict exclusion to preconditions

28

TLo (IRIDIA) 55December 13, 2004

Analysis of planning approach

 Planning is an area of great interest within AI
 Search for solution

 Constructively prove a existence of solution

 Biggest problem is the combinatorial explosion in
states.

 Efficient methods are under research
 E.g. divide-and-conquer

