Artificial Intelligence
1: planning

Lecturer: Tom Lenaerts

Institut de Recherches Interdisciplinaires et de Développements
en Intelligence Artificielle (IRIDIA)

Université Libre de Bruxelles

Planning

December 13, 2004

The Planning problem

Planning with State-space search
Partial-order planning

Planning graphs

Planning with propositional logic
Analysis of planning approaches

TLo (IRIDIA) 2

What is Planning

m Generate sequences of actions to perform tasks and
achieve objectives.

States, actions and goals
m Search for solution over abstract space of plans.
m Assists humans in practical applications

design and manufacturing
military operations
games

space exploration

December 13, 2004 TLo (IRIDIA) 3

Difficulty of real world problems

m Assume a problem-solving agent

using some search method ...

Which actions are relevant?
= Exhaustive search vs. backward search

What is a good heuristic functions?
= Good estimate of the cost of the state?
= Problem-dependent vs, -independent

How to decompose the problem?
m Most real-world problems are nearly decomposable.

December 13, 2004 TLo (IRIDIA) 4

Planning language

m What is a good language?

Expressive enough to describe a wide variety of
problems.

Restrictive enough to allow efficient algorithms to
operate on it.

Planning algorithm should be able to take
advantage of the logical structure of the problem.

m STRIPS and ADL

December 13, 2004 TLo (IRIDIA) 5

General language features

m Representation of states

Decompose the world in logical conditions and represent
a state as a conjunction of positive literals.

m Propositional literals: Poor A Unknown

m FO-literals (grounded and function-free): A¢(Planel, Melbourne) A
At(Plane2, Sydney)

Closed world assumption
m Representation of goals

Partially specified state and represented as a conjunction
of positive ground literals

A goal is satisfied if the state contains all literals in goal.

December 13, 2004 TLo (IRIDIA) 6

General language features

m Representations of actions
Action = PRECOND + EFFECT
Action(Fly(p,from, to),
PRECOND: At(p,from) A Plane(p) A Airport(from) A Airport(to)
EFFECT: —AT(p,from) A At(p,t0))
= action schema (p, from, to need to be instantiated)
= Action name and parameter list
= Precondition (conj. of function-free literals)

m Effect (conj of function-free literals and P is True and not P is
false)

Add-list vs delete-list in Effect

December 13, 2004 TLo (IRIDIA)

Language semantics?

m How do actions affect states?

An action is applicable in any state that satisfies
the precondition.

For FO action schema applicability involves a
substitution 0 for the variables in the PRECOND.

At(P1,JFK) A At(P2,SFO) A Plane(P1) A Plane(P2) A Airport(JFK)

A Airport(SFO)
Satisfies : At(p,from) A Plane(p) A Airport(from) A Airport(to)
With O ={p/P1 from/JFK,t0/SFO}
Thus the action is applicable.

December 13, 2004 TLo (IRIDIA)

Language semantics?

m The result of executing action a in state s is the state s’
s’ is same as s except
= Any positive literal P in the effect of a is added to s’
= Any negative literal =P is removed from s’

At(P1,SFO) n At(P2,SFO) A Plane(P1) A Plane(P2) A Airport(JFK) A
Airport(SFO)

STRIPS assumption: (avoids representational frame

problem)
every literal NOT in the effect remains unchanged

December 13, 2004 TLo (IRIDIA) 9

Expressiveness and extensions

m STRIPS is simplified
Important limit: function-free literals
Allows for propositional representation
m Function symbols lead to infinitely many states and
actions
m Recent extension:Action Description language (ADL)
Action(Fly(p:Plane, from: Airport, to: Airport),

PRECOND: At(p,from) x (from = to)
EFFECT: —~At(p,from) A At(p,to))

Standardization : Planning domain definition language (PDDL)

December 13, 2004 TLo (IRIDIA) 10

Example: air cargo transport

Init(At(C1, SFO) A At(C2,JFK) A At(P1,SFO) A At(P2,JFK) A Cargo(CI) a Cargo(C2) A
Plane(P1) A Plane(P2) A Airport(JFK) a Airport(SFO))

Goal(At(C1,JFK) A At(C2,SFO))

Action(Load(c,p,a)
PRECOND: At(c,a) rdt(p,a) rACargo(c) APlane(p) adirport(a)
EFFECT: —At(c,a) rln(c,p))

Action(Unload(c,p,a)
PRECOND: In(c,p) rdt(p,a) ACargo(c) APlane(p) rdirport(a)
EFFECT: At(c,a) A ~In(c,p))

Action(Fly(p,from,to)
PRECOND: At(p,from) APlane(p) Adirport(from) adirport(to)
EFFECT: — At(p.from) A At(p,to))

[Load(C1,P1,SF0), Fly(P1,SFO.JFK), Load(C2,P2.JFK), Fly(P2,JFK,SFO)]

December 13, 2004 TLo (IRIDIA)

Example: Spare tire problem

Init(At(Flat, Axle) r At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare, Trunk)

PRECOND: At(Spare, Trunk)

EFFECT: ~At(Spare, Trunk) A At(Spare, Ground))
Action(Remove(Flat,Axle)

PRECOND: At(Flat,Axle)

EFFECT: ~At(Flat,Axle) A At(Flat,Ground))
Action(PutOn(Spare,Axle)

PRECOND: At(Spare,Groundp) r—At(Flat,Axle)

EFFECT: At(Spare,Axle) A —Ar(Spare,Ground))
Action(LeaveOvernight

PRECOND:

EFFECT: — At(Spare,Ground) A — At(Spare,Axle) A — At(Spare,trunk) r — At(Flat,Ground) n —

At(Flat,Axle))

This example goes beyond STRIPS: negative literal in pre-condition (ADL description)

December 13, 2004 TLo (IRIDIA)

Example: Blocks world

Init(On(4, Table) A On(B,Table) A On(C,Table) r Block(A) r Block(B) A Block(C) A Clear(4) A
Clear(B) A Clear(C))

Goal(On(4,B) A On(B,C))
Action(Move(b,x,y)
PRECOND: On(b,x) r Clear(b) A Clear(y) A Block(b) A (b=x) A (b=y) A (x=y)
EFFECT: On(b,y) A Clear(x) A = On(b,x) A — Clear(y))
Action(MoveToTable(b,x)
PRECOND: On(b,x) A Clear(b) A Block(b) A (b=x)
EFFECT: On(b,Table) a Clear(x) A — On(b,x))

Spurious actions are possible: Move(B,C,C)

December 13, 2004 TLo (IRIDIA) 13

Planning with state-space search

m Both forward and backward search possible
m Progression planners

forward state-space search

Consider the effect of all possible actions in a given state
m Regression planners

backward state-space search

To achieve a goal, what must have been true in the
previous state.

December 13, 2004 TLo (IRIDIA) 14

Progression and regression

AP, Bl L
FyF AR T AMPLA
AtP,, Al — =)
ia)
At(F, . A) —~— P o
B PPy AB) AP, A) —
At(P,, B) S
Py AtiP, . A)
— APB) T IFYPAB) :
. At(P, . B)
o
- - At(P, , B
y -, R El
— AtiP, . B) | Fly(P, AB)
At(P, . Al
-
December 13, 2004 TLo (IRIDIA) 15

Progression algorithm

m Formulation as state-space search problem:
Initial state = initial state of the planning problem
= Literals not appearing are false
Actions = those whose preconditions are satisfied
= Add positive effects, delete negative
Goal test = does the state satisfy the goal
Step cost = each action costs 1

m No functions ... any graph search that is complete is a
complete planning algorithm.

m Inefficient: (1) irrelevant action problem (2) good
heuristic required for efficient search

December 13, 2004 TLo (IRIDIA) 16

Regression algorithm

m How to determine predecessors?

What are the states from which applying a given action
leads to the goal?

Goal state = A#(C1, B) n At(C2, B) A ... A A{(C20, B)

Relevant action for first conjunct: Unload(Cl1,p,B)

Works only if pre-conditions are satisfied.

Previous state= /n(C1, p) r At(p, B) A At(C2, B) A ... A At(C20, B)

Subgoal At(C1,B) should not be present in this state.

m Actions must not undo desired literals (consistent)

m Main advantage: only relevant actions are considered.
Often much lower branching factor than forward search.

December 13, 2004 TLo (IRIDIA) 17

Regression algorithm

m General process for predecessor construction
Give a goal description G
Let A be an action that is relevant and consistent
The predecessors is as follows:
= Any positive effects of A that appear in G are deleted.
m Each precondition literal of A is added , unless it already appears.
m Any standard search algorithm can be added to perform
the search.

m Termination when predecessor satisfied by initial state.
In FO case, satisfaction might require a substitution.

December 13, 2004 TLo (IRIDIA) 18

Heuristics for state-space search

m Neither progression or regression are very efficient
without a good heuristic.
How many actions are needed to achieve the goal?
Exact solution is NP hard, find a good estimate

m Two approaches to find admissible heuristic:
The optimal solution to the relaxed problem.
= Remove all preconditions from actions
The subgoal independence assumptio:

The cost of solving a conjunction of subgoals is approximated by the
sum of the costs of solving the subproblems independently.

December 13, 2004 TLo (IRIDIA) 19

Partial-order planning

m Progression and regression planning are totally
ordered plan search forms.

They cannot take advantage of problem
decomposition.

m Decisions must be made on how to sequence actions on
all the subproblems

m [east commitment strategy:

Delay choice during search

December 13, 2004 TLo (IRIDIA) 20

10

Shoe example

Goal(RightShoeOn A LeftShoeOn)

Init()

Action(RightShoe, PRECOND: RightSockOn
EFFECT: RightShoeOn)

Action(RightSock, PRECOND:
EFFECT: RightSockOn)

Action(LeftShoe, PRECOND: LeftSockOn
EFFECT: LeftShoeOn)

Action(LeftSock, PRECOND:
EFFECT: LeftSockOn)

Planner: combine two action sequences (1)leftsock, leftshoe
(2)rightsock, rightshoe

December 13, 2004 TLo (IRIDIA) 21

Partial-order planning

m Any planning algorithm that can place two actions
into a plan without which comes first is a POL.

Partial Owder Plan: Total Order Plans:

o]]
Rght F\lght Left L=ft | Right Laft
i Sock Sock Sock SDck Sock Sack |
Right
Sech v
Laﬂ_‘ [Fight R\ght R@m el |
Sock Sock Seck Shos
Ls& Left
Shoa Sock

L=t |
Seck
LeftSockOn RightSockOn
Tah Fiaht
Shas Shos

Lei#ShoeOn, RightShosCn

L] Y r
Finish Finish lesh‘ Finish lesl||

December 13, 2004 TLo (IRIDIA) 22

R Fight Fight Left Right
Shoa Shos Shos Shos

11

POL as a search problem

m States are (mostly unfinished) plans.
The empty plan contains only start and finish actions.

m Each plan has 4 components:
A set of actions (steps of the plan)
A set of ordering constraints: A< B
m Cycles represent contradictions.
A setof causallinks A —L s B

= The plan may not be extended by adding a new action C that
conflicts with the causal link. (if the effect of C is —p and if C could
come after A and before B)

A set of open preconditions.
m If precondition is not achieved by action in the plan.

December 13, 2004 TLo (IRIDIA) 23

POL as a search problem

m A plan is consistent iff there are no cycles in the ordering
constraints and no conflicts with the causal links.

m A consistent plan with no open preconditions is a
solution.

m A partial order plan is executed by repeatedly choosing
any of the possible next actions.

This flexibility is a benefit in non-cooperative
environments.

December 13, 2004 TLo (IRIDIA) 24

12

Solving POL

m Assume propositional planning problems:

The initial plan contains Start and Finish, the
ordering constraint Start < Finish, no causal links,
all the preconditions in Finish are open.

Successor function:
m picks one open precondition p on an action B and

m generates a successor plan for every possible consistent
way of choosing action 4 that achieves p.

Test goal

December 13, 2004 TLo (IRIDIA) 25

Enforcing consistency

m When generating successor plan:

The causal link A--p->B and the ordering constraing
A < B is added to the plan.

m [f A is new also add start < A and A <B to the plan

Resolve conflicts between new causal link and all
existing actions

Resolve conflicts between action A (if new) and all
existing causal links.

December 13, 2004 TLo (IRIDIA) 26

Process summary

m Operators on partial plans
Add link from existing plan to open precondition.
Add a step to fulfill an open condition.
Order one step w.r.t another to remove possible
conflicts
m Gradually move from incomplete/vague plans to
complete/correct plans

m Backtrack if an open condition is unachievable or
if a conflict is unresolvable.

December 13, 2004 TLo (IRIDIA) 27

Example: Spare tire problem

Init(At(Flat, Axle) r At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare, Trunk)

PRECOND: A¢(Spare, Trunk)

EFFECT: —At(Spare, Trunk) A At(Spare, Ground))
Action(Remove(Flat,Axle)

PRECOND: At(Flat,Axle)

EFFECT: —At(Flat,Axle) A At(Flat,Ground))
Action(PutOn(Spare,Axle)

PRECOND: At(Spare, Groundp) r—At(Flat,Axle)

EFFECT: At(Spare,Axle) n —Ar(Spare,Ground))
Action(LeaveOvernight

PRECOND:

EFFECT: — At(Spare,Ground) n — At(Spare,Axle) A — At(Spare,trunk) n — At(Flat,Ground)

A — At(Flat, Axle))

December 13, 2004 TLo (IRIDIA) 28

14

Solving the problem

AnfSozre, Ground| -
AYRatAdS) Puton| Spare Axle)

r{Spare Trunk) —
Start ArSnare Ace)| Finish

m [ntial plan: Start with EFFECTS and Finish with
PRECOND.

December 13, 2004 TLo (IRIDIA) 29

Solving the problem

AnfSozreTruk)| Alamove (Spare, Trunk)

Erlﬂ:ﬂ?ﬁ:"rhﬂ}? AnfSozre, Groung
ArfFla Aule) ARz A=)

Pution| Spare Axkil

Intial plan: Start with EFFECTS and Finish with PRECOND.
Pick an open precondition: At(Spare, Axle)

Only PutOn(Spare, Axle) is applicable

Add causal link: PutOn(Spare, Axle) —21322e2) s Finish
Add constraint : PutOn(Spare, Axle) < Finish

December 13, 2004 TLo (IRIDIA) 30

15

Solving the problem

|—Flernnw[51:\5r-a.'l'run_kj—\

AN, :) | AriTazre dule) Finish

AnSpzreTru

3 , Trumk]
ETTE i
ArfFia Ace)

Pick an open precondition: A¢(Spare, Ground)
Only Remove(Spare, Trunk) is applicable
Add causal link: Remove(Spare,Trunk) —AiSpare Ground) PutOn(Spare, Axle)

Add constraint : Remove(Spare, Trunk) < PutOn(Spare,Axle)

December 13, 2004 TLo (IRIDIA) 31

Solving the problem

An’G:u?/E.Trl.rt_,l Hemo\e[ﬁ:‘am.'l'run_kj |.
o

IETTE s
LAr Flar, Awcke)

AnSozre Ace)) Finish

% Spare Axle)
TAfAzLAdE) - T

1A= Axle)
—1 A A= Grewnd)

L eawve Che rnig it |—|_|ﬂ::.'r: e Al e
o

Pick an open precondition: A¢(Spare, Ground)
LeaveOverNight is applicable
conflict: Remove(Spare, Trunk) —234<Crewd) s pytOn(Spare, Axle)

To resolve, add constraint : LeaveOverNight < Remove(Spare,
Trunk)

December 13, 2004 TLo (IRIDIA) 32

16

Solving the problem

An’G:u?/E.Trl.rt_,l Hemo\e[ﬁ:‘am.'l'run_kj |.

. Trumk e TPu
@rme unk) . PutOntSpans Ao le)
arEi, Axe) kil i

AnSozre Ace)) Finish

AN Bz Axd
T 2. 1cnr_,l‘_-“d..l

. AN Azt Grow
L eawve Che rnig it '—mn'.. e Al e
AN Sozre, Geound])

AN Sazre, T

Pick an open precondition: At#(Spare, Ground)

LeaveOverNight is applicable

conflict: Remove(Spare, Trunk) —23e<Crewd) s pytOn(Spare, Axle)
To resolve, add constraint : LeaveOverNight < Remove(Spare, Trunk)

Add causal link:
LeaveOverNight —2&aeGroud) 5 pytOn(Spare, Axle)

December 13, 2004 TLo (IRIDIA) 33

Solving the problem

srmove (Spars. Trunk)

A Somre. Grouns| n —
Putioy Aol A Sozee Acle) Finish
—lAfA=L AR [PutOn(Spare Axle) 1= [Fini

AnSoare Trurk)

T
LAr Flar, Awcke)

AN Bz A
Leave Crvernig bt h_'ﬂ?f:h"fﬁ'.ﬁ'
e
Pick an open precondition: A¢(Spare, Trunk)
Only Start is applicable
Add causal link: Start —ASpare.Trunk) o o move(Spare, Trunk)
Contlict: of causal link with effect A¢(Spare, Trunk) in LeaveOverNight
No re-ordering solution possible.

m backtrack

December 13, 2004 TLo (IRIDIA) 34

17

Solving the problem
AifSpre Tk Remave (Spare.Trunk |

riGpare Trunk) AR Ground, __
| Start bz lPuTOrII.S}J.:irEAtlelj—h—.‘?-‘n’ﬁ:uz'eﬁtle_.l Finish |

A (Pl Axcle) —1AfAztAdds)
Az A«de | Removel Flat, Axlz) r

m Remove LeaveOverNight, Remove(Spare, Trunk) and causal
links

m Repeat step with Remove(Spare, Trunk)
m Add also RemoveFlatAxle and finish

December 13, 2004 TLo (IRIDIA) 35

Some details ...

m What happens when a first-order representation
that includes variables is used?

Complicates the process of detecting and resolving
conflicts.

Can be resolved by introducing inequality
constrainst.
m CSP’s most-constrained-variable constraint can be
used for planning algorithms to select a
PRECOND.

December 13, 2004 TLo (IRIDIA) 36

18

Planning graphs

m Used to achieve better heuristic estimates.
A solution can also directly extracted using GRAPHPLAN.

m Consists of a sequence of levels that correspond to time
steps in the plan.
Level 0 is the initial state.

Each level consists of a set of literals ans a set of
actions.
m Literals = all those that could be true at that time step, depending
upon the actions executed at the preceding time step.

m Actions = all those actions that could have their preconditions
satisfied at that time step, depending on which of the literals
actually hold.

December 13, 2004 TLo (IRIDIA) 37

Planning graphs

m “Could™?

Records only a restricted subset of possible negative
interactions among actions.

m They work only for propositional problems.

m Example:
Init(Have(Cake))
Goal(Have(Cake) an Eaten(Cake))
Action(Eat(Cake), PRECOND: Have(Cake)
EFFECT: “Have(Cake) A Eaten(Cake))
Action(Bake(Cake), PRECOND: — Have(Cake)
EFFECT: Have(Cake))

December 13, 2004 TLo (IRIDIA) 38

Cake example

Sy Ao S,
Have({Cake) i Have({Cake)
— Have(Cake)
Eaten(Cake)
— Eaten(Cake) = — Eaten(Cake)

previous level.

December 13, 2004

A, S.
= Have|Cake)
= — Have(Cake)
Eat(Cake)
f— EatenfCake)
= — Eaten(Cake)

m Start at level SO and determine action level A0 and next level S1.
AO >> all actions whose preconditions are satisfied in the

Connect precond and effect of actions S0 --> $1
Inaction is represented by persistence actions.
m Level AO contains the actions that could occur

Conflicts between actions are represented by mutex links

TLo (IRIDIA) 39
" J
S, A, S, A, Sz
Bake(Cake)
Have(Cake) it Have(Cake) >< I Have(Cake)
— Have(Cake) = — Have(Cake)
Eat(Cake) \{ Eat(Cake) |-<
Eaten(Cake) f— EatenfCake)
— Eaten(Cake) = — Eaten(Cake) = — Eaten(Cake)

m Level S1 contains all literals that could result from picking any subset of

actions in AQ

Conflicts between literals that can not occur together are represented by

mutex links.

81 defines multiple states and the mutex links are the constraints that

define this set of states.

m Continue until two consecutive levels are identical: leveled off

Or contain the same amount of literals (explanation follows later)

December 13, 2004 TLo (IRIDIA)

40

20

Cake example

S, A, S, A, Sz
Have(Cake) — Have(Cake) = Have(Cake)
—Have(Cake) >< = — Have(Cake)
E.a”Cake)_r< “EaiCake.
Eaten(Cake) f— EatenfCake)
— Eaten(Cake) = — Eaten(Cake) = — Eaten(Cake)

m A mutex relation holds between two actions when:
Inconsistent effects: one action negates the effect of another.

Interference: one of the effects of one action is the negation of a precondition of the
other.

Competing needs: one of the preconditions of one action is mutually exclusive with the
precondition of the other.

m A mutex relation holds between two literals when (inconsistent support):
If one is the negation of the other OR
if each possible action pair that could achieve the literals is mutex.

December 13, 2004 TLo (IRIDIA) a1

PG and heuristic estimation

m PG’s provide information about the problem

A literal that does not appear in the final level of the
graph cannot be achieved by any plan.

m Useful for backward search (cost = inf).

Level of appearance can be used as cost estimate of
achieving any goal literals = level cost.

Small problem: several actions can occur

= Restrict to one action using serial PG (add mutex links between
every pair of actions, except persistence actions).

Max-level, sum-level ans set-level heuristics.

PG is a relaxed problem.

December 13, 2004 TLo (IRIDIA) 42

21

The GRAPHPLAN Algorithm

m How to extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure
graph <= INITIAL-PLANNING-GRAPH(problem)
goals < GOALS[problem]
loop do
if goals all non-mutex in last level of graph then do
solution <~ EXTRACT-SOLUTION(graph, goals, LENGTH(graph))
if solution = failure then return solution
else if NO-SOLUTION-POSSIBLE(graph) then return failure
graph < EXPAND-GRAPH(graph, problem)

December 13, 2004 TLo (IRIDIA)

43

GRAPHPLAN example

At(Spare, Trurk)

Sz
At(Spare, Trunk) AtfSpare, Trunk)

— At(Spare, Trunk) — At{Spare, Trunk)

At{Fiat Axe) At(Flat Axle) A(Flat, Axie)

N

v
At(Flat Axle) { I; At{Flat, Axle)
[remecueimgn] \|
NN

Y= —atispare Axe)
VI \‘ At(Spare Axie)
) AtiFiat, Ground)
" At{Fiat Ground)
\— At(Spare, Ground)

—At(Spare. Axle) —At{Spare, Axle)

“AlfFiat, Ground) —VAt(Fiat,Ground)
At(Flat,Ground)
\—4t(Spare, Ground)

At(Spare, Ground)

m Initially the plan consist of 5 literals from the initial state and the CWA
literals (S0).

— At{Spare, Ground)
At{Spare,Ground)

Also add persistence actions and mutex relations.
Add the effects at level S1
Repeat until goal is in level Si

December 13, 2004 TLo (IRIDIA)

Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)

44

22

GRAPHPLAN example

Ao

Sz

0 1
At(Spare, Trunk) At(Spare, Trurk) At(Spare. Trunk)

——

=
Femove(Spare Trurk]
I —
0

— At(Spare, Trunk) — At{Spare, Trunk)

At(Flat Axle) '* At(Flat, Axi)

\ N
—At(Flat Axle) A= —At(Flat Axle)

d b

g.A\

0 N —At(Spare Axie)
P A\ U
— At{Flat, Grourc)
At{Fiat, Ground)

\— At(Spare, Ground)

At{Fiat Axe)

—At(Spare. Axle) —At{Spare, Axle)

“AlfFiat, Ground) —VAt(Fiat,Ground)
At(Flat,Ground)
— At{Spare, Ground)

At(Spare, Ground)

m EXPAND-GRAPH also looks for mutex relations

Inconsistent effects

At{Spare,Ground)

= E.g. Remove(Spare, Trunk) and LeaveOverNight
Interference

= E.g. Remove(Flat, Axle) and LeaveOverNight
Competing needs

= E.g. PutOn(Spare,Axle) and Remove(Flat, Axle)
Inconsistent support

= E.g. in S2, At(Spare,Axle) and At(Flat,Axle)

December 13, 2004 TLo (IRIDIA)

GRAPHPLAN example

S, A, Sz

At(Spare, Trunk) At(Spare, Trurk) — o At(Spare. Trunk)
— At(Spare, Trunk) F—— — At{Spare, Trunk)
At{Fiat Axe) At(Flat Axle) A(Flat, Axie)
At(Flat Axle) 735 —At(Fiat, Axle)
—At(Spare. Axle) —\At(Spare, Axle) g.A“~ —1At(Spare, Avie)
At(Spare Axie)
—AtfFlat, Grourd) —VAt(Fiat,Ground)) AtiFiat, Ground)
At(Flat,Ground) At{Fiat, Ground)
— At{Spare, Ground) \—4t(Spare, Ground) \— At(Spare, Ground)
At(Spare, Ground) At{Spare,Ground)

m In S2, the goal literal exists and is not mutex with any other
Solution might exist and EXTRACT-SOLUTION will try to find it
m EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a search
process:
Initial state = last level of PG and goal goals of planning problem

Actions = select any set of non-conflicting actions that cover the goals in the
state

Goal = reach level SO such that all goals are satisfied
Cost = 1 for each action.

December 13, 2004 TLo (IRIDIA)

GRAPHPLAN example

At (Spsre Trunk)

Sz

At(Spare, Trunk; At(Spare. Trunk)

— At(Spare, Trunk)

Remove(Flat, Axle)
At{Fiat Axle) i

;\\
—At(Flat Axle)

— At{Spare, Trunk)

At{Fiat Axe) At(Flat Axte)

—At(Fiat, Axle)
—At(Spare. Axle) —\At(Spare, Axle) —At(Spare, Axie)
At(Spare Axle)
—AtfFlat, Grourd) —VAt(Fiat,Ground)
At(Fiat Ground)

— At{Spare, Ground) A Ar(Sp;rs Ground)

At(Spare, Ground) At{Spare,Ground)

m Termination? YES
m PG are monotonically increasing or decreasing:
Literals increase monotonically
Actions increase monotonically
Mutexes decrease monotonically
m Because of these properties and because there is a finite number of actions anc
literals, every PG will eventually level off !

December 13, 2004 TLo (IRIDIA) 47

Planning with propositional logic

m Planning can be done by proving theorem in situation calculus.
m Here: test the satisfiability of a logical sentence:

initial state A all possible action descriptions A goal

m Sentence contains propositions for every action occurrence.

A model will assign true to the actions that are part of the
correct plan and false to the others

An assignment that corresponds to an incorrect plan will not be
a model because of inconsistency with the assertion that the
goal is true.

If the planning is unsolvable the sentence will be unsatisfiable.

December 13, 2004 TLo (IRIDIA) 48

24

SATPLAN algorithm

function SATPLAN(problem, T,,,,) return solution or failure
inputs: problem, a planning problem
T,...» an upper limit to the plan length
for7=0to 7,, do
cnf, mapping < TRANSLATE-TO_SAT(problem, T)
assignment <— SAT-SOLVER(cnf)
if assignment is not null then

return EXTRACT-SOLUTION(assignment, mapping)

return failure

December 13, 2004 TLo (IRIDIA) 49

cnf, mapping < TRANSLATE-TO_SAT(problem, T)

m Distinct propositions for assertions about each time step.
Superscripts denote the time step
At(P1,SFO)’ A At(P2,JFK)’
No CWA thus specify which propositions are not true
—At(P1,SFO)’ r» ~At(P2,JFK)"
Unknown propositions are left unspecified.
m The goal is associated with a particular time-step

But which one?

December 13, 2004 TLo (IRIDIA) 50

" JE
cnf, mapping < TRANSLATE-TO_SAT(problem, T)

m How to determine the time step where the goal will be
reached?
Start at T=0
w Assert A#(P1,SFO)’ At(P2,JFK)’
Failure .. Try T=1
w Assert A(P1,SFO)! A At(P2,JFK)’

Repeat this until some minimal path length is reached.

Termination is ensured by T,

max

December 13, 2004 TLo (IRIDIA) 51

cnf, mapping < TRANSLATE-TO_SAT(problem, T)

m How to encode actions into PL?
Propositional versions of successor-state axioms
At(P1JFK)! <
(At(P1,JFK)’ A —(Fly(P1,JFK,SFO)’ » At(P1,JFK)"))v
(Fly(P1,SFO,JFK)? A At(P1,SFO)%)
Such an axiom is required for each plane, airport and time step

If more airports add another way to travel than additional
disjuncts are required

m Once all these axioms are in place, the satisfiability algorithm can start
to find a plan.

December 13, 2004 TLo (IRIDIA) 52

26

assignment < SAT-SOLVER(cnf)

m Multiple models can be found

m They are NOT satisfactory: (for T=1)
Fly(P1,SFO,JFK)® A Fly(P1JFK,SFO)° A Fly(P2,JFK.SFO)"
The second action is infeasible
Yet the plan IS a model of the sentence

initial state A all possible action descriptions A goal'

m Avoiding illegal actions: pre-condition axioms
Fly(P1,SFO,JFK)" = At(P1,JFK)

m Exactly one model now satisfies all the axioms where the
goal is achieved at 7=1.

December 13, 2004 TLo (IRIDIA) 53

assignment < SAT-SOLVER(cnf)

m A plane can fly at two destinations at once

They are NOT satisfactory: (for T=1)
Fly(P1,SFO,JFK)’ A Fly(P2,JFK,SFO)° A Fly(P2,JFK.LAX)"
The second action is infeasible
Yet the plan allows spurious relations

Avoid spurious solutions: action-exclusion axioms

—(Fly(P2,JFK,SFO)° A Fly(P2,JFK,LAX))
Prevents simultaneous actions

Lost of flexibility since plan becomes totally ordered : no actions are
allowed to occur at the same time.
Restrict exclusion to preconditions

December 13, 2004 TLo (IRIDIA) 54

Analysis of planning approach

m Planning is an area of great interest within Al
Search for solution

Constructively prove a existence of solution

m Biggest problem is the combinatorial explosion in
states.

m Efficient methods are under research

E.g. divide-and-conquer

December 13, 2004 TLo (IRIDIA) 55

28

