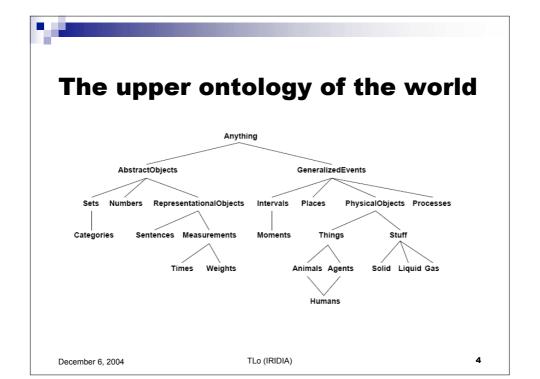


Artificial Intelligence I: knowledge representation

Lecturer: Tom Lenaerts

Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle (IRIDIA). Université Libre de Bruxelles


Outline

- Ontological engineering
- Categories and objects
- Actions, situations and events
- Mental events and mental objects
- The internet shopping world
- Reasoning systems for categories
- Reasoning with default information
- Truth maintenance systems

Ontological engineering

- How to create more general and flexible representations.
 - □ Concepts like actions, time, physical object and beliefs
 - □ Operates on a bigger scale than K.E.
- Define general framework of concepts
 - □ Upper ontology
- Limitations of logic representation
 - Red, green and yellow tomatoes: exceptions and uncertainty

Difference with special-purpose ontologies

- A general-purpose ontology should be applicable in more or less any special-purpose domain.
 - □ Add domain-specific axioms
- In any sufficiently demanding domain different areas of knowledge need to be unified.
 - Reasoning and problem solving could involve several areas simultaneously
- What do we need to express?

Categories, Measures, Composite objects, Time, Space, Change, Events, Processes, Physical Objects, Substances, Mental Objects, Beliefs

December 6, 2004 TLo (IRIDIA) 5

Categories and objects

- KR requires the organisation of objects into categories
 - □ Interaction at the level of the object
 - □ Reasoning at the level of categories
- Categories play a role in predictions about objects
 - □ Based on perceived properties
- Categories can be represented in two by FOL
 - □ Predicates: apple(x)
 - □ Reification of categories into objects: apples
- Category = set of its members

Category organization

- Relation = *inheritance*:
 - □ All instance of food are edible, fruit is a subclass of food and apples is a subclass of fruit then an applied is edible.
- Defines a taxonomy

December 6, 2004

TLo (IRIDIA)

7

FOL and categories

- An object is a member of a category
 - MemberOf(BB₁₂,Basketballs)
- A category is a subclass of another category
 - □ SubsetOf(Basketballs,Balls)
- All members of a category has some properties
 - □ \forall x (MemberOf(x,Basketballs) \Rightarrow Round(x))
- All members of a category can be recognized by some properties
 - □ \forall x (Orange(x) \land Round(x) \land Diameter(x)=9.5in \land MemberOf(x,Balls) \Rightarrow MemberOf(x,BasketBalls))
- A category as a whole has some properties
 - ☐ MemberOf(Dogs,DomesticatedSpecies)

December 6, 2004

TLo (IRIDIA)

8

Relations between categories

- Two or more categories are *disjoint* if they have no members in common:
 - $\label{eq:decomposition} \quad \square \quad \text{Disjoint(s)} \Leftrightarrow (\forall \ c_1, c_2 \ c_1 \in s \ \land \ c_2 \in s \ \land \ c_1 \neq c_2 \Rightarrow \text{Intersection(c_1, c_2) = \{\})}$
 - □ Example; Disjoint({animals, vegetables})
- A set of categories s constitutes an *exhaustive decomposition* of a category c if all members of the set c are covered by categories in s:
 - $\Box \quad \textbf{E.D.(s,c)} \Leftrightarrow (\forall \ i \ i \in c \Rightarrow \exists \ c_2 \ c_2 \in s \land i \in c_2)$
 - □ Example: ExhaustiveDecomposition({Americans, Canadian, Mexicans},NorthAmericans).

December 6, 2004 TLo (IRIDIA)

Relations between categories

- A *partition* is a disjoint exhaustive decomposition:
 - □ Partition(s,c) \Leftrightarrow Disjoint(s) \land E.D.(s,c)
 - □ Example: Partition({Males,Females},Persons).
- Is ({Americans, Canadian, Mexicans}, North Americans) a partition?
- Categories can be defined by providing necessary and sufficient conditions for membership
 - \forall x Bachelor(x) \Leftrightarrow Male(x) \land Adult(x) \land Unmarried(x)

Natural kinds

- Many categories have no clear-cut definitions (chair, bush, book).
- Tomatoes: sometimes green, red, yellow, black. Mostly round.
- One solution: category *Typical(Tomatoes)*.
 - □ \forall x, x ∈ Typical(Tomatoes) \Rightarrow Red(x) \land Spherical(x).
 - □ We can write down useful facts about categories without providing exact definitions.
- What about "bachelor"? Quine challenged the utility of the notion of *strict definition*. We might question a statement such as "the Pope is a bachelor".

December 6, 2004 TLo (IRIDIA) 11

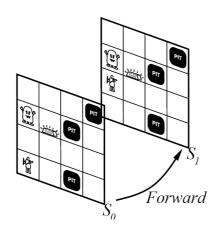
Physical composition

- One object may be part of another:
 - □ PartOf(Bucharest,Romania)
 - □ PartOf(Romania,EasternEurope)
 - □ PartOf(EasternEurope,Europe)
- The PartOf predicate is transitive (and irreflexive), so we can infer that PartOf(Bucharest,Europe)
- More generally:
 - □ ∀x PartOf(x,x)
 - □ \forall x,y,z PartOf(x,y) \land PartOf(y,z) \Rightarrow PartOf(x,z)
- Often characterized by structural relations among parts.
 - □ E.g. Biped(a) \Rightarrow $(\exists l_1, l_2, b)(Leg(l_1) \land Leg(l_2) \land Body(b) \land$ $PartOf(l_1, a) \land PartOf(l_2, a) \land PartOf(b, a) \land$

 $Attached(l_1, b) \land Attached(l_2, b) \land$

12

December 6, 2004 $l_1 \neq l_2 \wedge (\forall l_3)(Leg(l_3) \Rightarrow (l_3 = l_1 \vee l_3 = l_2)))$

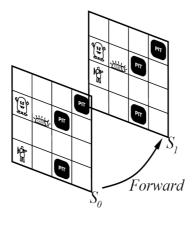

Measurements

- Objects have height, mass, cost,
 Values that we assign to these are measures
- Combine Unit functions with a number: Length(L_1) = Inches(1.5) = Centimeters(3.81).
- Conversion between units: ∀ i Centimeters(2.54 x i)=Inches(i).
- Some measures have no scale: Beauty, Difficulty, etc.
 - Most important aspect of measures: is that they are orderable.
 - □ Don't care about the actual numbers. (An apple can have deliciousness .9 or .1.)

December 6, 2004 TLo (IRIDIA) 13

Actions, events and situations

- Reasoning about outcome of actions is central to KB-agent.
- How can we keep track of location in FOL?
 - Remember the multiple copies in PL.
- Representing time by situations (states resulting from the execution of actions).
 - Situation calculus

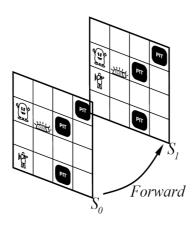

December 6, 2004

TLo (IRIDIA)

14

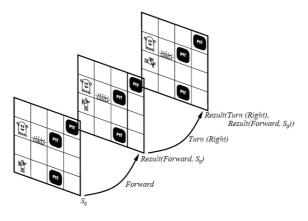
Actions, events and situations

- Situation calculus:
 - □ Actions are logical terms
 - Situations are logical terms consiting of
 - The initial situation I
 - All situations resulting from the action on I (=Result(a,s))
 - Fluent are functions and predicates that vary from one situation to the next.
 - E.g. $\neg Holding(G_1, S_0)$
 - Eternal predicates are also allowed


15

■ E.g. $Gold(G_l)$

December 6, 2004 TLo (IRIDIA)


Actions, events and situations

- Results of action sequences are determined by the individual actions.
- Projection task: an SC agent should be able to deduce the outcome of a sequence of actions.
- Planning task: find a sequence that achieves a desirable effect

Actions, events and situations

December 6, 2004 TLo (IRIDIA) **17**

Describing change

- Simples Situation calculus requires to axioms to describe change:
 - □ Possinility axiom: when is it possible to do the action $At(Agent,x,s) \land Adjacent(x,y) \Rightarrow Poss(Go(x,y),s)$
 - □ Effect axiom: describe changes due to action $Poss(Go(x,y),s) \Rightarrow At(Agent,y,Result(Go(x,y),s))$
- What stays the same?
 - Frame problem: how to represent all things that stay the same?
 - □ Frame axiom: describe non-changes due to actions $At(o,x,s) \land (o \neq Agent) \land \neg Holding(o,s) \Rightarrow At(o,x,Result(Go(y,z),s))$

Representational frame problem

- If there are F fluents and A actions then we need AF frame axioms to describe other objects are stationary unless they are held.
 - ☐ We write down the effect of each actions
- Solution; describe how each fluent changes over time
 - □ Successor-state axiom:

```
Pos(a,s) \Rightarrow (At(Agent,y,Result(a,s)) \Leftrightarrow (a = Go(x,y)) V
(At(Agent,y,s) \land a \neq Go(y,z))
```

- Note that next state is completely specified by current state.
- □ Each action effect is mentioned only once.

December 6, 2004 TLo (IRIDIA) **19**

Other problems

- How to deal with secondary (implicit) effects?
 - ☐ If the agent is carrying the gold and the agent moves then the gold moves too.
 - □ Ramification problem
- How to decide whether fluents hold in the future?
 - □ Inferential frame problem.

Mental events and objects

- So far, KB agents can have beliefs and deduce new beliefs
- What about knowledge about beliefs? What about knowledge about the inference proces?
 - □ Requires a model of the mental objects in someone's head and the processes that manipulate these objects.
- Relationships between agents and mental objects: believes, knows, wants, ...
 - Believes(Lois,Flies(Superman)) with Flies(Superman)
 being a function ... a candidate for a mental object (reification).
 - Agent can now reason about the beliefs of agents.

December 6, 2004 TLo (IRIDIA) **21**

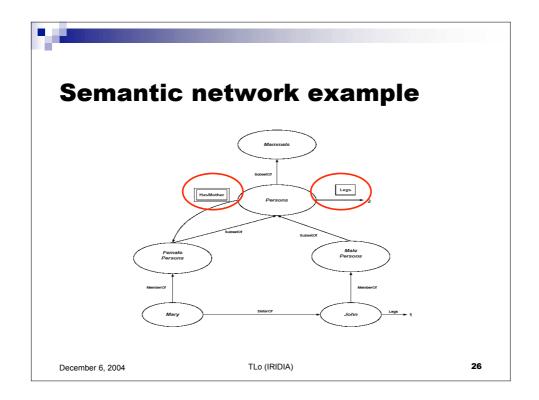
The internet shopping world

- A Knowledge Engineering example
- An agent that helps a buyer to find product offers on the internet.
 - □ IN = product description (precise or ¬precise)
 - □ OUT = list of webpages that offer the product for sale.
- Environment = WWW
- Percepts = web pages (character strings)
 - ☐ Extracting useful information required.

The internet shopping world

- Find relevant product offers
 - $RelevantOffer(page,url,query) \Leftrightarrow Relevant(page,url,query) \land Offer(page)$
 - □ Write axioms to define Offer(x)
 - □ Find relevant pages: Relevant(x,y,z)?
 - Start from an initial set of stores.
 - What is a relevant category?
 - What are relevant connected pages?
 - Require rich category vocabulary.
 - Synonymy and ambiguity
 - □ How to retrieve pages: GetPage(url)?
 - Procedural attachment
- Compare offers (information extraction).

December 6, 2004 TLo (IRIDIA) 23


Reasoning systems for categories

- How to organise and reason with categories?
 - □ Semantic networks
 - Visualize knowledge-base
 - Efficient algorithms for category membership inference
 - □ Description logics
 - Formal language for constructing and combining category definitions
 - Efficient algorithms to decide subset and superset relationships between categories.

Semantic Networks

- Logic vs. semantic networks
- Many variations
 - □ All represent individual objects, categories of objects and relationships among objects.
- Allows for inheritance reasoning
 - ☐ Female persons inherit all properties from person.
 - □ Cfr. OO programming.
- Inference of inverse links
 - □ SisterOf vs. HasSister

Semantic networks

- Drawbacks
 - □ Links can only assert binary relations
 - □ Can be resolved by reification of the proposition as an event
- Representation of default values
 - ☐ Enforced by the inheritance mechanism.

December 6, 2004 TLo (IRIDIA) **27**

Description logics

- Are designed to describe defintions and properties about categories
 - ☐ A formalization of semantic networks
- Principal inference task is
 - □ Subsumption: checking if one category is the subset of another by comparing their definitions
 - Classification: checking whether an object belongs to a category.
 - □ Consistency: whether the category membership criteria are logically satisfiable.

Reasoning with Default Information

- "The following courses are offered: CS101, CS102, CS106, EE101"
 - Four (db)
 - Assume that this information is complete (not asserted ground atomic sentences are false)
 - = CLOSED WORLD ASSUMPTION
 - Assume that distinct names refer to distinct objects
 - **= UNIQUE NAMES ASSUMPTION**
 - Between one and infinity (logic)
 - Does not make these assumptions
 - Requires completion.

December 6, 2004 TLo (IRIDIA) 29

Truth maintenance systems

- Many of the inferences have default status rather than being absolutely certain
 - Inferred facts can be wrong and need to be retracted = BELIEF REVISION.
 - □ Assume KB contains sentence P and we want to execute TELL(KB, ¬P)
 - To avoid contradiction: RETRACT(KB,P)
 - But what about sentences inferred from P?
- Truth maintenance systems are designed to handle these complications.