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Outline

 Reducing first-order inference to propositional
inference

 Unification

 Generalized Modus Ponens

 Forward chaining

 Backward chaining

 Resolution
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Universal instantiation (UI)

 Every instantiation of a universally quantified sentence is entailed by it:
∀v α

Subst({v/g}, α)

for any variable v and ground term g

 E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:
King(John) ∧ Greedy(John) ⇒  Evil(John)

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

.

.

.
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Existential instantiation (EI)

 For any sentence α, variable v, and constant symbol k that
does not appear elsewhere in the knowledge base:

∃v α
Subst({v/k}, α)

 E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown(C1) ∧ OnHead(C1,John)

provided C1 is a new constant symbol, called a Skolem
constant
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Existential instantiation cont’d

 UI can be applied several times to add new
sentences; the new KB is logically equivalent to
the old.

 EI can be applied once to replace the existential
sentence; the new KB is not equivalent to the old
but is satifiable if the old KB was satisfiable.
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Reduction to propositional
inference
 Suppose the KB contains just the following:

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)

 Instantiating the universal sentence in all possible ways, we have:
King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

 The new KB is propositionalized: proposition symbols are
 King(John), Greedy(John), Evil(John), King(Richard), etc.
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Reduction contd.

 CLAIM: A ground sentence is entailed by a new KB iff
entailed by the original KB.

 CLAIM: Every FOL KB can be propositionalized so as to
preserve entailment

 IDEA: propositionalize KB and query, apply resolution,
return result

 PROBLEM: with function symbols, there are infinitely
many ground terms,

e.g., Father(Father(Father(John)))
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Reduction contd.

 THEOREM: Herbrand (1930). If a sentence α is entailed by an FOL
KB, it is entailed by a finite subset of the propositionalized KB

 IDEA: For n = 0 to ∞ do
 create a propositional KB by instantiating with depth-n terms

 see if α is entailed by this KB

 PROBLEM: works if α is entailed, loops if α is not entailed
 THEOREM: Turing (1936), Church (1936) Entailment for FOL is

semidecidable
 algorithms exist that say yes to every entailed sentence, but no

algorithm exists that also says no to every nonentailed sentence.
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Problems with propositionalization

 Propositionalization seems to generate lots of irrelevant
sentences.
 E.g., from:

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
∀y Greedy(y)
Brother(Richard,John)

 It seems obvious that Evil(John), but propositionalization
produces lots of facts such as Greedy(Richard) that are
irrelevant.
 With p k-ary predicates and n constants, there are p·nk

instantiations!
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Unification

 We can get the inference immediately if we can find a substitution α such
that King(x) and Greedy(x) match King(John) and Greedy(y)

α = {x/John,y/John} works

 Unify(α ,β) = θ if αθ = βθ
p q   θ
Knows(John,x) Knows(John,Jane) 
Knows(John,x) Knows(y,OJ) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,OJ) 

 Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)
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Unification

 We can get the inference immediately if we can find a substitution α such that
King(x) and Greedy(x) match King(John) and Greedy(y)

α = {x/John,y/John} works

 Unify(α ,β) = θ if αθ = βθ
p q   θ
Knows(John,x) Knows(John,Jane)  {x/Jane}
Knows(John,x) Knows(y,OJ) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,OJ) 

 Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)
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Unification

 We can get the inference immediately if we can find a substitution α such that
King(x) and Greedy(x) match King(John) and Greedy(y)

α = {x/John,y/John} works

 Unify(α ,β) = θ if αθ = βθ
p q   θ

Knows(John,x) Knows(John,Jane)  {x/Jane}
Knows(John,x) Knows(y,OJ)  {x/OJ,y/John}
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,OJ) 

 Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)
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Unification

 We can get the inference immediately if we can find a substitution α such that
King(x) and Greedy(x) match King(John) and Greedy(y)

α = {x/John,y/John} works

 Unify(α ,β) = θ if αθ = βθ
p q   θ

Knows(John,x) Knows(John,Jane)  {x/Jane}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) Knows(x,OJ) 

 Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)
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Unification

 We can get the inference immediately if we can find a substitution α such that
King(x) and Greedy(x) match King(John) and Greedy(y)

α = {x/John,y/John} works

 Unify(α ,β) = θ if αθ = βθ
p q   θ

Knows(John,x) Knows(John,Jane)  {x/Jane}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) Knows(x,OJ)  {fail}

 Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)
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Unification

 To unify Knows(John,x) and Knows(y,z),
 α = {y/John, x/z } or α = {y/John, x/John, z/John}

 The first unifier is more general than the second.

 There is a single most general unifier (MGU) that is
unique up to renaming of variables.

MGU = { y/John, x/z }
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The unification algorithm



9

TLo (IRIDIA) 17November 23, 2004

The unification algorithm
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Generalized Modus Ponens (GMP)

p1', p2', … , pn', ( p1 ∧ p2 ∧ … ∧ pn ⇒q)

                         qθ
p1' is King(John)  p1 is King(x)
p2' is Greedy(y)  p2 is Greedy(x)
θ is {x/John,y/John} q is Evil(x)
qθ is Evil(John)

 GMP used with KB of definite clauses (exactly one positive literal).
 All variables assumed universally quantified.

where pi'θ = piθ for all i
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Soundness of GMP
 Need to show that

p1', …, pn', (p1 ∧ … ∧ pn ⇒ q) |= qθ

provided that pi'θ = piθ for all I

 LEMMA: For any sentence p, we have p |= pθ by UI

1. (p1 ∧ … ∧ pn ⇒ q) |= (p1 ∧ … ∧ pn ⇒ q)θ = (p1θ ∧ … ∧ pnθ ⇒ qθ)
2. p1', …, pn' |= p1' ∧ … ∧ pn' |= p1'θ ∧ … ∧ pn'θ
3. From 1 and 2, qθ follows by ordinary Modus Ponens.
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Example knowledge base

 The law says that it is a crime for an American to sell
weapons to hostile nations.  The country Nono, an enemy of
America, has some missiles, and all of its missiles were sold
to it by Colonel West, who is American.

 Prove that Col. West is a criminal
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Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

TLo (IRIDIA) 22November 23, 2004

Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)
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Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles
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Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)
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Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
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Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)



14

TLo (IRIDIA) 27November 23, 2004

Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
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Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)
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Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
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Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)
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Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
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Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
American(West)
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Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
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Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)
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Forward chaining algorithm
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Forward chaining proof
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Forward chaining proof
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Forward chaining proof



20

TLo (IRIDIA) 39November 23, 2004

Properties of forward chaining

 Sound and complete for first-order definite clauses.
 Cfr. Propositional logic proof.

 Datalog = first-order definite clauses + no functions (e.g.
crime KB)
 FC terminates for Datalog in finite number of iterations

 May not terminate in general if α is not entailed
 This is unavoidable: entailment with definite clauses is

semidecidable
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Efficiency of forward chaining

 Incremental forward chaining: no need to match a rule on iteration k if
a premise wasn't added on iteration k-1
 match each rule whose premise contains a newly added

positive literal.

 Matching itself can be expensive:
 Database indexing allows O(1) retrieval of known facts

 e.g., query Missile(x) retrieves Missile(M1)

 Matching conjunctive premises against known facts is NP-hard.
 Forward chaining is widely used in deductive databases
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Hard matching example

 Colorable() is inferred iff the CSP has a solution
 CSPs include 3SAT as a special case, hence matching is

N P - h a r d

Diff(wa,nt) ∧ Diff(wa,sa) ∧ Diff(nt,q) ∧
Diff(nt,sa) ∧ Diff(q,nsw) ∧ Diff(q,sa) ∧
Diff(nsw,v) ∧ Diff(nsw,sa) ∧ Diff(v,sa) ⇒
Colorable()

Diff(Red,Blue)   Diff (Red,Green)
Diff(Green,Red)  Diff(Green,Blue)
Diff(Blue,Red)   Diff(Blue,Green)
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Backward chaining algorithm

SUBST(COMPOSE(α1, α2), p) = SUBST(α2, SUBST(α1, p))
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Properties of backward chaining

 Depth-first recursive proof search: space is linear in size
of proof.

 Incomplete due to infinite loops
 fix by checking current goal against every goal on stack

 Inefficient due to repeated subgoals (both success and
failure)
 fix using caching of previous results (extra space!!)

 Widely used for logic programming
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Logic programming

 Logic programming
 Identify problem

 Assemble information

 <coffee break>

 Encode info in KB

 Encode problem
instances as facts

 Ask queries

 Find false facts.

 Procedural programming
 Indentify problem

 Assemble information

 Figure out solution

 Program solution

 Encode problem
instance as data

 Apply program to data

 Debug procedural errors

Should be easier to debug Capital(NY, US) than x=x+2
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Logic programming: Prolog
 BASIS: backward chaining with Horn clauses + bells & whistles

Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques ⇒ 60 million LIPS

 Program = set of clauses = head :- literal1, … literaln.
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z),

hostile(Z).

 Efficient unification and retrieval of matching clauses.
 Depth-first, left-to-right backward chaining
 Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
 Built-in predicates that have side effects (e.g., input and output predicates,

assert/retract predicates)
 Closed-world assumption ("negation as failure")

 e.g., given alive(X) :- not dead(X).
 alive(joe) succeeds if dead(joe) fails
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Prolog

 Appending two lists to produce a third:
append([],Y,Y).

append([X|L],Y,[X|Z]) :- append(L,Y,Z).

 query:   append(A,B,[1,2]) ?

 answers: A=[]    B=[1,2]

         A=[1]   B=[2]

         A=[1,2] B=[]
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Resolution: brief summary

 Full first-order version:
l1 ∨ ··· ∨ lk,          m1 ∨ ··· ∨ mn

(l1 ∨ ··· ∨ li-1 ∨ li+1 ∨ ··· ∨ lk ∨ m1 ∨ ··· ∨ mj-1 ∨ mj+1 ∨ ··· ∨ mn)θ

where Unify(li, ¬mj) = θ.
 The two clauses are assumed to be standardized apart so that they share no variables.
 For example,

¬Rich(x) ∨ Unhappy(x)
                  Rich(Ken)

Unhappy(Ken)
with θ = {x/Ken}

 Apply resolution steps to CNF(KB ∧ ¬α); complete for FOL
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Conversion to CNF

 Everyone who loves all animals is loved by someone:
∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)]

 Eliminate biconditionals and implications
∀x [¬∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)]

 Move ¬ inwards: ¬∀x p ≡ ∃x ¬p,  ¬ ∃x p ≡ ∀x ¬p
∀x [∃y ¬(¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)]
∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]
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Conversion to CNF contd.

 Standardize variables: each quantifier should use a different one:
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)]

 Skolemize: a more general form of existential instantiation.Each existential
variable is replaced by a Skolem function of the enclosing universally
quantified variables:
∀x [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

 Drop universal quantifiers:
[Animal(F(x)) ∧ ¬Loves(x,F(x))]  ∨ Loves(G(x),x)

 Distribute ∨ over ∧ :
[Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)]
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Resolution proof: definite clauses


