
1

Artificial intelli-
gence 1:Inference
in first-order logic

Lecturer: Tom Lenaerts
Institut de Recherches Interdisciplinaires et de
Développements en Intelligence Artificielle
(IRIDIA)

Université Libre de Bruxelles

Based on AIMA PPT slides

TLo (IRIDIA) 2November 23, 2004

Outline

 Reducing first-order inference to propositional
inference

 Unification

 Generalized Modus Ponens

 Forward chaining

 Backward chaining

 Resolution

2

TLo (IRIDIA) 3November 23, 2004

Universal instantiation (UI)

 Every instantiation of a universally quantified sentence is entailed by it:
∀v α

Subst({v/g}, α)

for any variable v and ground term g

 E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:
King(John) ∧ Greedy(John) ⇒ Evil(John)

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

.

.

.

TLo (IRIDIA) 4November 23, 2004

Existential instantiation (EI)

 For any sentence α, variable v, and constant symbol k that
does not appear elsewhere in the knowledge base:

∃v α
Subst({v/k}, α)

 E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown(C1) ∧ OnHead(C1,John)

provided C1 is a new constant symbol, called a Skolem
constant

3

TLo (IRIDIA) 5November 23, 2004

Existential instantiation cont’d

 UI can be applied several times to add new
sentences; the new KB is logically equivalent to
the old.

 EI can be applied once to replace the existential
sentence; the new KB is not equivalent to the old
but is satifiable if the old KB was satisfiable.

TLo (IRIDIA) 6November 23, 2004

Reduction to propositional
inference
 Suppose the KB contains just the following:

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)

 Instantiating the universal sentence in all possible ways, we have:
King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

 The new KB is propositionalized: proposition symbols are
 King(John), Greedy(John), Evil(John), King(Richard), etc.

4

TLo (IRIDIA) 7November 23, 2004

Reduction contd.

 CLAIM: A ground sentence is entailed by a new KB iff
entailed by the original KB.

 CLAIM: Every FOL KB can be propositionalized so as to
preserve entailment

 IDEA: propositionalize KB and query, apply resolution,
return result

 PROBLEM: with function symbols, there are infinitely
many ground terms,

e.g., Father(Father(Father(John)))

TLo (IRIDIA) 8November 23, 2004

Reduction contd.

 THEOREM: Herbrand (1930). If a sentence α is entailed by an FOL
KB, it is entailed by a finite subset of the propositionalized KB

 IDEA: For n = 0 to ∞ do
 create a propositional KB by instantiating with depth-n terms

 see if α is entailed by this KB

 PROBLEM: works if α is entailed, loops if α is not entailed
 THEOREM: Turing (1936), Church (1936) Entailment for FOL is

semidecidable
 algorithms exist that say yes to every entailed sentence, but no

algorithm exists that also says no to every nonentailed sentence.

5

TLo (IRIDIA) 9November 23, 2004

Problems with propositionalization

 Propositionalization seems to generate lots of irrelevant
sentences.
 E.g., from:

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
∀y Greedy(y)
Brother(Richard,John)

 It seems obvious that Evil(John), but propositionalization
produces lots of facts such as Greedy(Richard) that are
irrelevant.
 With p k-ary predicates and n constants, there are p·nk

instantiations!

TLo (IRIDIA) 10November 23, 2004

Unification

 We can get the inference immediately if we can find a substitution α such
that King(x) and Greedy(x) match King(John) and Greedy(y)

α = {x/John,y/John} works

 Unify(α ,β) = θ if αθ = βθ
p q θ
Knows(John,x) Knows(John,Jane)
Knows(John,x) Knows(y,OJ)
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,OJ)

 Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

6

TLo (IRIDIA) 11November 23, 2004

Unification

 We can get the inference immediately if we can find a substitution α such that
King(x) and Greedy(x) match King(John) and Greedy(y)

α = {x/John,y/John} works

 Unify(α ,β) = θ if αθ = βθ
p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}
Knows(John,x) Knows(y,OJ)
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,OJ)

 Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

TLo (IRIDIA) 12November 23, 2004

Unification

 We can get the inference immediately if we can find a substitution α such that
King(x) and Greedy(x) match King(John) and Greedy(y)

α = {x/John,y/John} works

 Unify(α ,β) = θ if αθ = βθ
p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,OJ)

 Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

7

TLo (IRIDIA) 13November 23, 2004

Unification

 We can get the inference immediately if we can find a substitution α such that
King(x) and Greedy(x) match King(John) and Greedy(y)

α = {x/John,y/John} works

 Unify(α ,β) = θ if αθ = βθ
p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) Knows(x,OJ)

 Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

TLo (IRIDIA) 14November 23, 2004

Unification

 We can get the inference immediately if we can find a substitution α such that
King(x) and Greedy(x) match King(John) and Greedy(y)

α = {x/John,y/John} works

 Unify(α ,β) = θ if αθ = βθ
p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) Knows(x,OJ) {fail}

 Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

8

TLo (IRIDIA) 15November 23, 2004

Unification

 To unify Knows(John,x) and Knows(y,z),
 α = {y/John, x/z } or α = {y/John, x/John, z/John}

 The first unifier is more general than the second.

 There is a single most general unifier (MGU) that is
unique up to renaming of variables.

MGU = { y/John, x/z }

TLo (IRIDIA) 16November 23, 2004

The unification algorithm

9

TLo (IRIDIA) 17November 23, 2004

The unification algorithm

TLo (IRIDIA) 18November 23, 2004

Generalized Modus Ponens (GMP)

p1', p2', … , pn', (p1 ∧ p2 ∧ … ∧ pn ⇒q)

 qθ
p1' is King(John) p1 is King(x)
p2' is Greedy(y) p2 is Greedy(x)
θ is {x/John,y/John} q is Evil(x)
qθ is Evil(John)

 GMP used with KB of definite clauses (exactly one positive literal).
 All variables assumed universally quantified.

where pi'θ = piθ for all i

10

TLo (IRIDIA) 19November 23, 2004

Soundness of GMP
 Need to show that

p1', …, pn', (p1 ∧ … ∧ pn ⇒ q) |= qθ

provided that pi'θ = piθ for all I

 LEMMA: For any sentence p, we have p |= pθ by UI

1. (p1 ∧ … ∧ pn ⇒ q) |= (p1 ∧ … ∧ pn ⇒ q)θ = (p1θ ∧ … ∧ pnθ ⇒ qθ)
2. p1', …, pn' |= p1' ∧ … ∧ pn' |= p1'θ ∧ … ∧ pn'θ
3. From 1 and 2, qθ follows by ordinary Modus Ponens.

TLo (IRIDIA) 20November 23, 2004

Example knowledge base

 The law says that it is a crime for an American to sell
weapons to hostile nations. The country Nono, an enemy of
America, has some missiles, and all of its missiles were sold
to it by Colonel West, who is American.

 Prove that Col. West is a criminal

11

TLo (IRIDIA) 21November 23, 2004

Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

TLo (IRIDIA) 22November 23, 2004

Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

12

TLo (IRIDIA) 23November 23, 2004

Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles

TLo (IRIDIA) 24November 23, 2004

Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

13

TLo (IRIDIA) 25November 23, 2004

Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West

TLo (IRIDIA) 26November 23, 2004

Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

14

TLo (IRIDIA) 27November 23, 2004

Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:

TLo (IRIDIA) 28November 23, 2004

Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

15

TLo (IRIDIA) 29November 23, 2004

Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:

TLo (IRIDIA) 30November 23, 2004

Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

16

TLo (IRIDIA) 31November 23, 2004

Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …

TLo (IRIDIA) 32November 23, 2004

Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
American(West)

17

TLo (IRIDIA) 33November 23, 2004

Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …

TLo (IRIDIA) 34November 23, 2004

Example knowledge base
contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)

18

TLo (IRIDIA) 35November 23, 2004

Forward chaining algorithm

TLo (IRIDIA) 36November 23, 2004

Forward chaining proof

19

TLo (IRIDIA) 37November 23, 2004

Forward chaining proof

TLo (IRIDIA) 38November 23, 2004

Forward chaining proof

20

TLo (IRIDIA) 39November 23, 2004

Properties of forward chaining

 Sound and complete for first-order definite clauses.
 Cfr. Propositional logic proof.

 Datalog = first-order definite clauses + no functions (e.g.
crime KB)
 FC terminates for Datalog in finite number of iterations

 May not terminate in general if α is not entailed
 This is unavoidable: entailment with definite clauses is

semidecidable

TLo (IRIDIA) 40November 23, 2004

Efficiency of forward chaining

 Incremental forward chaining: no need to match a rule on iteration k if
a premise wasn't added on iteration k-1
 match each rule whose premise contains a newly added

positive literal.

 Matching itself can be expensive:
 Database indexing allows O(1) retrieval of known facts

 e.g., query Missile(x) retrieves Missile(M1)

 Matching conjunctive premises against known facts is NP-hard.
 Forward chaining is widely used in deductive databases

21

TLo (IRIDIA) 41November 23, 2004

Hard matching example

 Colorable() is inferred iff the CSP has a solution
 CSPs include 3SAT as a special case, hence matching is

N P - h a r d

Diff(wa,nt) ∧ Diff(wa,sa) ∧ Diff(nt,q) ∧
Diff(nt,sa) ∧ Diff(q,nsw) ∧ Diff(q,sa) ∧
Diff(nsw,v) ∧ Diff(nsw,sa) ∧ Diff(v,sa) ⇒
Colorable()

Diff(Red,Blue) Diff (Red,Green)
Diff(Green,Red) Diff(Green,Blue)
Diff(Blue,Red) Diff(Blue,Green)

TLo (IRIDIA) 42November 23, 2004

Backward chaining algorithm

SUBST(COMPOSE(α1, α2), p) = SUBST(α2, SUBST(α1, p))

22

TLo (IRIDIA) 43November 23, 2004

Backward chaining example

TLo (IRIDIA) 44November 23, 2004

Backward chaining example

23

TLo (IRIDIA) 45November 23, 2004

Backward chaining example

TLo (IRIDIA) 46November 23, 2004

Backward chaining example

24

TLo (IRIDIA) 47November 23, 2004

Backward chaining example

TLo (IRIDIA) 48November 23, 2004

Backward chaining example

25

TLo (IRIDIA) 49November 23, 2004

Backward chaining example

TLo (IRIDIA) 50November 23, 2004

Backward chaining example

26

TLo (IRIDIA) 51November 23, 2004

Properties of backward chaining

 Depth-first recursive proof search: space is linear in size
of proof.

 Incomplete due to infinite loops
 fix by checking current goal against every goal on stack

 Inefficient due to repeated subgoals (both success and
failure)
 fix using caching of previous results (extra space!!)

 Widely used for logic programming

TLo (IRIDIA) 52November 23, 2004

Logic programming

 Logic programming
 Identify problem

 Assemble information

 <coffee break>

 Encode info in KB

 Encode problem
instances as facts

 Ask queries

 Find false facts.

 Procedural programming
 Indentify problem

 Assemble information

 Figure out solution

 Program solution

 Encode problem
instance as data

 Apply program to data

 Debug procedural errors

Should be easier to debug Capital(NY, US) than x=x+2

27

TLo (IRIDIA) 53November 23, 2004

Logic programming: Prolog
 BASIS: backward chaining with Horn clauses + bells & whistles

Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques ⇒ 60 million LIPS

 Program = set of clauses = head :- literal1, … literaln.
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z),

hostile(Z).

 Efficient unification and retrieval of matching clauses.
 Depth-first, left-to-right backward chaining
 Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
 Built-in predicates that have side effects (e.g., input and output predicates,

assert/retract predicates)
 Closed-world assumption ("negation as failure")

 e.g., given alive(X) :- not dead(X).
 alive(joe) succeeds if dead(joe) fails

TLo (IRIDIA) 54November 23, 2004

Prolog

 Appending two lists to produce a third:
append([],Y,Y).

append([X|L],Y,[X|Z]) :- append(L,Y,Z).

 query: append(A,B,[1,2]) ?

 answers: A=[] B=[1,2]

 A=[1] B=[2]

 A=[1,2] B=[]

28

TLo (IRIDIA) 55November 23, 2004

Resolution: brief summary

 Full first-order version:
l1 ∨ ··· ∨ lk, m1 ∨ ··· ∨ mn

(l1 ∨ ··· ∨ li-1 ∨ li+1 ∨ ··· ∨ lk ∨ m1 ∨ ··· ∨ mj-1 ∨ mj+1 ∨ ··· ∨ mn)θ

where Unify(li, ¬mj) = θ.
 The two clauses are assumed to be standardized apart so that they share no variables.
 For example,

¬Rich(x) ∨ Unhappy(x)
 Rich(Ken)

Unhappy(Ken)
with θ = {x/Ken}

 Apply resolution steps to CNF(KB ∧ ¬α); complete for FOL

TLo (IRIDIA) 56November 23, 2004

Conversion to CNF

 Everyone who loves all animals is loved by someone:
∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)]

 Eliminate biconditionals and implications
∀x [¬∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)]

 Move ¬ inwards: ¬∀x p ≡ ∃x ¬p, ¬ ∃x p ≡ ∀x ¬p
∀x [∃y ¬(¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)]
∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]

29

TLo (IRIDIA) 57November 23, 2004

Conversion to CNF contd.

 Standardize variables: each quantifier should use a different one:
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)]

 Skolemize: a more general form of existential instantiation.Each existential
variable is replaced by a Skolem function of the enclosing universally
quantified variables:
∀x [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

 Drop universal quantifiers:
[Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

 Distribute ∨ over ∧ :
[Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)]

TLo (IRIDIA) 58November 23, 2004

Resolution proof: definite clauses

