
1

Artificial
Intelligence 1:
game playing

Lecturer: Tom Lenaerts
Institut de Recherches Interdisciplinaires et de
Développements en Intelligence Artificielle
(IRIDIA)

Université Libre de Bruxelles

TLo (IRIDIA) 2November 2, 2004

Outline

 What are games?

 Optimal decisions in games
 Which strategy leads to success?

 α-β pruning

 Games of imperfect information

 Games that include an element of chance

2

TLo (IRIDIA) 3November 2, 2004

What are and why study
games?
 Games are a form of multi-agent environment

 What do other agents do and how do they affect our
success?

 Cooperative vs. competitive multi-agent environments.

 Competitive multi-agent environments give rise to
adversarial problems a.k.a. games

 Why study games?
 Fun; historically entertaining

 Interesting subject of study because they are hard

 Easy to represent and agents restricted to small
number of actions

TLo (IRIDIA) 4November 2, 2004

Relation of Games to Search
 Search – no adversary

 Solution is (heuristic) method for finding goal

 Heuristics and CSP techniques can find optimal solution

 Evaluation function: estimate of cost from start to goal

through given node

 Examples: path planning, scheduling activities

 Games – adversary
 Solution is strategy (strategy specifies move for every

possible opponent reply).

 Time limits force an approximate solution

 Evaluation function: evaluate “goodness” of

game position

 Examples: chess, checkers, Othello, backgammon

3

TLo (IRIDIA) 5November 2, 2004

Types of Games

TLo (IRIDIA) 6November 2, 2004

Game setup

 Two players: MAX and MIN
 MAX moves first and they take turns until the game is

over. Winner gets award, looser gets penalty.
 Games as search:

 Initial state: e.g. board configuration of chess

 Successor function: list of (move,state) pairs specifying
legal moves.

 Terminal test: Is the game finished?

 Utility function: Gives numerical value of terminal states.
E.g. win (+1), loose (-1) and draw (0) in tic-tac-toe (next)

 MAX uses search tree to determine next move.

4

TLo (IRIDIA) 7November 2, 2004

Partial Game Tree for Tic-Tac-Toe

TLo (IRIDIA) 8November 2, 2004

Optimal strategies

 Find the contingent strategy for MAX assuming an
infallible MIN opponent.

 Assumption: Both players play optimally !!
 Given a game tree, the optimal strategy can be determined

by using the minimax value of each node:

MINIMAX-VALUE(n)=
UTILITY(n) If n is a terminal
maxs ∈ successors(n) MINIMAX-VALUE(s) If n is a max node
mins ∈ successors(n) MINIMAX-VALUE(s) If n is a max node

5

TLo (IRIDIA) 9November 2, 2004

Two-Ply Game Tree

TLo (IRIDIA) 10November 2, 2004

Two-Ply Game Tree

6

TLo (IRIDIA) 11November 2, 2004

Two-Ply Game Tree

TLo (IRIDIA) 12November 2, 2004

Two-Ply Game Tree

The minimax decision

Minimax maximizes the worst-case outcome for max.

7

TLo (IRIDIA) 13November 2, 2004

What if MIN does not play
optimally?

 Definition of optimal play for MAX assumes
MIN plays optimally: maximizes worst-case
outcome for MAX.

 But if MIN does not play optimally, MAX will do
even better. [Can be proved.]

TLo (IRIDIA) 14November 2, 2004

Minimax Algorithm
function MINIMAX-DECISION(state) returns an action
 inputs: state, current state in game
 v←MAX-VALUE(state)
 return the action in SUCCESSORS(state) with value v

function MIN-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← ∞
 for a,s in SUCCESSORS(state) do
 v ← MIN(v,MAX-VALUE(s))
 return v

function MAX-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← ∞
 for a,s in SUCCESSORS(state) do
 v ← MAX(v,MIN-VALUE(s))
 return v

8

TLo (IRIDIA) 15November 2, 2004

Properties of Minimax


YesOptimal?

O(bm)Space

O(bm)Time

YesComplete?

MinimaxCriterion







TLo (IRIDIA) 16November 2, 2004

Multiplayer games

 Games allow more than two players

 Single minimax values becomes vector

9

TLo (IRIDIA) 17November 2, 2004

Problem of minimax search

 Number of games states is exponential to the number of
moves.

 Solution: Do not examine very node

 ==> Alpha-beta pruning

 Alpha = value of best choice found so far at any choice point along
the MAX path

 Beta = value of best choice found so far at any choice point along
the MIN path

 Revisit example …

TLo (IRIDIA) 18November 2, 2004

Alpha-Beta Example

[-∞, +∞]

[-∞,+∞]

Range of possible values
Do DF-search until first leaf

10

TLo (IRIDIA) 19November 2, 2004

Alpha-Beta Example
(continued)

[-∞,3]

[-∞,+∞]

TLo (IRIDIA) 20November 2, 2004

Alpha-Beta Example
(continued)

[-∞,3]

[-∞,+∞]

11

TLo (IRIDIA) 21November 2, 2004

Alpha-Beta Example
(continued)

[3,+∞]

[3,3]

TLo (IRIDIA) 22November 2, 2004

Alpha-Beta Example
(continued)

[-∞,2]

[3,+∞]

[3,3]

This node is worse
for MAX

12

TLo (IRIDIA) 23November 2, 2004

Alpha-Beta Example
(continued)

[-∞,2]

[3,14]

[3,3] [-∞,14]

,

TLo (IRIDIA) 24November 2, 2004

Alpha-Beta Example
(continued)

[_∞,2]

[3,5]

[3,3] [-∞,5]

,

13

TLo (IRIDIA) 25November 2, 2004

Alpha-Beta Example
(continued)

[2,2][_∞,2]

[3,3]

[3,3]

TLo (IRIDIA) 26November 2, 2004

Alpha-Beta Example
(continued)

[2,2][-∞,2]

[3,3]

[3,3]

14

TLo (IRIDIA) 27November 2, 2004

Alpha-Beta Algorithm

function ALPHA-BETA-SEARCH(state) returns an action
 inputs: state, current state in game
 v←MAX-VALUE(state, - ∞ , +∞)
 return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state,α , β) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← - ∞
 for a,s in SUCCESSORS(state) do
 v ← MAX(v,MIN-VALUE(s), α , β)
 if v ≥ β then return v
 α ← MAX(α ,v)
 return v

TLo (IRIDIA) 28November 2, 2004

Alpha-Beta Algorithm

function MIN-VALUE(state, α , β) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← + ∞
 for a,s in SUCCESSORS(state) do
 v ← MIN(v,MAX-VALUE(s), α , β)
 if v ≤ α then return v
 β ← MIN(β ,v)
 return v

15

TLo (IRIDIA) 29November 2, 2004

General alpha-beta pruning

 Consider a node n somewhere
in the tree

 If player has a better choice at
 Parent node of n

 Or any choice point further

up

 n will never be reached in
actual play.

 Hence when enough is known
about n, it can be pruned.

TLo (IRIDIA) 30November 2, 2004

Final Comments about Alpha-
Beta Pruning
 Pruning does not affect final results

 Entire subtrees can be pruned.

 Good move ordering improves effectiveness of pruning

 With “perfect ordering,” time complexity is O(bm/2)
 Branching factor of sqrt(b) !!

 Alpha-beta pruning can look twice as far as minimax in
the same amount of time

 Repeated states are again possible.
 Store them in memory = transposition table

16

TLo (IRIDIA) 31November 2, 2004

Games of imperfect information

 Minimax and alpha-beta pruning require to much
leaf-node evaluations.

 May be impractical within a reasonable amount of
time.

 SHANNON (1950):
 Cut off search earlier (replace TERMINAL-TEST by

CUTOFF-TEST)

 Apply heuristic evaluation function EVAL (replacing
utility function of alpha-beta)

TLo (IRIDIA) 32November 2, 2004

Cutting off search

 Change:
 if TERMINAL-TEST(state) then return UTILITY(state)

into
 if CUTOFF-TEST(state,depth) then return EVAL(state)

 Introduces a fixed-depth limit depth
 Is selected in so that the amount of time will not exceed what the

rules of the game allow.

 When cuttoff occurs, the evaluation is performed.

17

TLo (IRIDIA) 33November 2, 2004

Heuristic EVAL

 Idea: produce an estimate of the expected utility of the
game from a given position.

 Performance depends on quality of EVAL.
 Requirements:

 EVAL should order terminal-nodes in the same way as
UTILITY.

 Computation may not take too long.

 For non-terminal states the EVAL should be strongly
correlated with the actual chance of winning.

 Only useful for quienscent (no wild swings in value in
near future) states

TLo (IRIDIA) 34November 2, 2004

Heuristic EVAL example

Eval(s) = w1 f1(s) + w2 f2(s) + … + wnfn(s)

18

TLo (IRIDIA) 35November 2, 2004

Heuristic EVAL example

Eval(s) = w1 f1(s) + w2 f2(s) + … + wnfn(s)

Addition assumes
independence

TLo (IRIDIA) 36November 2, 2004

Heuristic difficulties
Heuristic counts pieces won

19

TLo (IRIDIA) 37November 2, 2004

Horizon effect Fixed depth search
thinks it can avoid
the queening move

TLo (IRIDIA) 38November 2, 2004

Games that include chance

 Possible moves (5-10,5-11), (5-11,19-24),(5-10,10-16)
and (5-11,11-16)

20

TLo (IRIDIA) 39November 2, 2004

Games that include chance

 Possible moves (5-10,5-11), (5-11,19-24),(5-10,10-16) and (5-
11,11-16)

 [1,1], [6,6] chance 1/36, all other chance 1/18

chance nodes

TLo (IRIDIA) 40November 2, 2004

Games that include chance

 [1,1], [6,6] chance 1/36, all other chance 1/18
 Can not calculate definite minimax value, only expected value

21

TLo (IRIDIA) 41November 2, 2004

Expected minimax value

EXPECTED-MINIMAX-VALUE(n)=

UTILITY(n) If n is a terminal
maxs ∈ successors(n) MINIMAX-VALUE(s) If n is a max node

mins ∈ successors(n) MINIMAX-VALUE(s) If n is a max node
∑s ∈ successors(n) P(s) . EXPECTEDMINIMAX(s) If n is a chance node

These equations can be backed-up recursively all
the way to the root of the game tree.

TLo (IRIDIA) 42November 2, 2004

Position evaluation with chance
nodes

 Left, A1 wins
 Right A2 wins
 Outcome of evaluation function may not change when values are

scaled differently.
 Behavior is preserved only by a positive linear transformation of

EVAL.

22

TLo (IRIDIA) 43November 2, 2004

Discussion

 Examine section on state-of-the-art games yourself

 Minimax assumes right tree is better than left, yet …
 Return probability distribution over possible values

 Yet expensive calculation

TLo (IRIDIA) 44November 2, 2004

Discussion

 Utility of node expansion
 Only expand those nodes which lead to significanlty

better moves

 Both suggestions require meta-reasoning

23

TLo (IRIDIA) 45November 2, 2004

Summary

 Games are fun (and dangerous)

 They illustrate several important points about AI
 Perfection is unattainable -> approximation

 Good idea what to think about

 Uncertainty constrains the assignment of values to
states

 Games are to AI as grand prix racing is to
automobile design.

