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Outline

 What are games?

 Optimal decisions in games
 Which strategy  leads to success?

  α-β pruning

 Games of imperfect information

 Games that include an element of chance
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What are and why study
games?
 Games are a form of multi-agent environment

 What do other agents do and how do they affect our
success?

 Cooperative vs. competitive multi-agent environments.

 Competitive multi-agent environments give rise to
adversarial problems a.k.a. games

 Why study games?
 Fun; historically entertaining

 Interesting subject of study because they are hard

 Easy to represent and agents restricted to small
number of actions
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Relation of Games to Search
 Search – no adversary

 Solution is (heuristic) method for finding goal

 Heuristics and CSP techniques can find optimal solution

 Evaluation function: estimate of cost from start to goal

through given node

 Examples: path planning, scheduling activities

 Games – adversary
 Solution is strategy (strategy specifies move for every

possible opponent reply).

 Time limits force an approximate solution

 Evaluation function: evaluate “goodness” of

game position

 Examples: chess, checkers, Othello, backgammon
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Types of Games
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Game setup

 Two players: MAX and MIN
 MAX moves first and they take turns until the game is

over. Winner gets award, looser gets penalty.
 Games as search:

 Initial state: e.g. board configuration of chess

 Successor function: list of (move,state) pairs specifying
legal moves.

 Terminal test: Is the game finished?

 Utility function: Gives numerical value of terminal states.
E.g. win (+1), loose (-1) and draw (0) in tic-tac-toe (next)

 MAX uses  search tree to determine next move.
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Partial Game Tree for Tic-Tac-Toe
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Optimal strategies

 Find the contingent strategy for MAX assuming an
infallible MIN opponent.

 Assumption: Both players play optimally !!
 Given a game tree, the optimal strategy can be determined

by using the minimax value of each node:

MINIMAX-VALUE(n)=
UTILITY(n) If n is a terminal
maxs ∈ successors(n) MINIMAX-VALUE(s) If n is a max node
mins ∈ successors(n) MINIMAX-VALUE(s) If n is a max node
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Two-Ply Game Tree
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Two-Ply Game Tree
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Two-Ply Game Tree
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Two-Ply Game Tree

The minimax decision

Minimax maximizes the worst-case outcome for max.
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What if MIN does not play
optimally?

 Definition of optimal play for MAX assumes
MIN plays optimally: maximizes worst-case
outcome for MAX.

 But if MIN does not play optimally, MAX will do
even better.  [Can be proved.]
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Minimax Algorithm
function MINIMAX-DECISION(state) returns an action
   inputs: state, current state in game
   v←MAX-VALUE(state)
   return the action in SUCCESSORS(state) with value v

function MIN-VALUE(state) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v ← ∞
   for a,s in SUCCESSORS(state) do
      v ← MIN(v,MAX-VALUE(s))
   return v

function MAX-VALUE(state) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v ← ∞
   for a,s in SUCCESSORS(state) do
      v ← MAX(v,MIN-VALUE(s))
   return v
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Properties of Minimax


YesOptimal?

O(bm)Space

O(bm)Time

YesComplete?

MinimaxCriterion






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Multiplayer games

 Games allow more than two players

 Single minimax values becomes vector
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Problem of minimax search

 Number of games states is exponential to the number of
moves.

 Solution: Do not examine very node

 ==> Alpha-beta pruning

 Alpha = value of best choice found so far at any choice point along
the MAX path

 Beta = value of best choice found so far at any choice point along
the MIN path

 Revisit example …
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Alpha-Beta Example

[-∞, +∞]

[-∞,+∞]

Range of possible values
Do DF-search until first leaf
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Alpha-Beta Example
(continued)

[-∞,3]

[-∞,+∞]

TLo (IRIDIA) 20November 2, 2004

Alpha-Beta Example
(continued)

[-∞,3]

[-∞,+∞]
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Alpha-Beta Example
(continued)

[3,+∞]

[3,3]
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Alpha-Beta Example
(continued)

[-∞,2]

[3,+∞]

[3,3]

This node is worse 
for MAX
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Alpha-Beta Example
(continued)

[-∞,2]

[3,14]

[3,3] [-∞,14]

,
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Alpha-Beta Example
(continued)

[_∞,2]

[3,5]

[3,3] [-∞,5]

,
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Alpha-Beta Example
(continued)

[2,2][_∞,2]

[3,3]

[3,3]
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Alpha-Beta Example
(continued)

[2,2][-∞,2]

[3,3]

[3,3]
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Alpha-Beta Algorithm

function ALPHA-BETA-SEARCH(state) returns an action
   inputs: state, current state in game
   v←MAX-VALUE(state, - ∞ , +∞)
   return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state,α , β) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v ← - ∞
   for a,s in SUCCESSORS(state) do
      v ← MAX(v,MIN-VALUE(s), α , β)
     if v ≥ β then return v
     α ← MAX(α ,v)
   return v
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Alpha-Beta Algorithm

function MIN-VALUE(state, α , β) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v ← + ∞
   for a,s in SUCCESSORS(state) do
      v ← MIN(v,MAX-VALUE(s), α , β)
     if v ≤ α then return v
      β ← MIN(β ,v)
   return v
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General alpha-beta pruning

 Consider a node n somewhere
in the tree

 If player has a better choice at
 Parent node of n

 Or any choice point further

up

 n will never be reached in
actual play.

 Hence when enough is known
about n, it can be pruned.
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Final Comments about Alpha-
Beta Pruning
 Pruning does not affect final results

 Entire subtrees can be pruned.

 Good move ordering improves effectiveness of pruning

 With “perfect ordering,” time complexity is O(bm/2)
 Branching factor of sqrt(b) !!

 Alpha-beta pruning can look twice as far as minimax in
the same amount of time

 Repeated states are again possible.
 Store them in memory = transposition table
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Games of imperfect information

 Minimax and alpha-beta pruning require to much
leaf-node evaluations.

 May be impractical within a reasonable amount of
time.

 SHANNON (1950):
 Cut off search earlier (replace TERMINAL-TEST by

CUTOFF-TEST)

 Apply heuristic evaluation function EVAL (replacing
utility function of alpha-beta)
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Cutting off search

 Change:
 if TERMINAL-TEST(state) then return UTILITY(state)

into
 if CUTOFF-TEST(state,depth) then return EVAL(state)

 Introduces a fixed-depth limit depth
 Is selected in so that the amount of time will not exceed what the

rules of the game allow.

 When cuttoff occurs, the evaluation is performed.
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Heuristic EVAL

 Idea: produce an estimate of the expected utility of the
game from a given position.

 Performance depends on quality of EVAL.
 Requirements:

 EVAL should order terminal-nodes in the same way as
UTILITY.

 Computation may not take too long.

 For non-terminal states the EVAL should be strongly
correlated with the actual chance of winning.

 Only useful for quienscent (no wild swings in value in
near future) states
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Heuristic EVAL example

Eval(s) = w1 f1(s) + w2 f2(s) + … + wnfn(s)
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Heuristic EVAL example

Eval(s) = w1 f1(s) + w2 f2(s) + … + wnfn(s)

Addition assumes 
independence
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Heuristic difficulties
Heuristic counts pieces won 
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Horizon effect Fixed depth search 
thinks it can avoid
the queening move
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Games that include chance

 Possible moves (5-10,5-11), (5-11,19-24),(5-10,10-16)
and (5-11,11-16)
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Games that include chance

 Possible moves (5-10,5-11), (5-11,19-24),(5-10,10-16) and (5-
11,11-16)

 [1,1], [6,6] chance 1/36, all other chance 1/18

chance nodes
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Games that include chance

 [1,1], [6,6] chance 1/36, all other chance 1/18
 Can not calculate definite minimax value, only expected value
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Expected minimax value

EXPECTED-MINIMAX-VALUE(n)=

UTILITY(n)     If n is a terminal
maxs ∈ successors(n) MINIMAX-VALUE(s)     If n is a max node

mins ∈ successors(n) MINIMAX-VALUE(s)     If n is a max node
∑s ∈ successors(n) P(s) . EXPECTEDMINIMAX(s)  If n is a chance node

These equations can be backed-up recursively all
the way to the root of the game tree.
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Position evaluation with chance
nodes

 Left, A1 wins
 Right A2 wins
 Outcome of evaluation function may not change when values are

scaled differently.
 Behavior is preserved only by a positive linear transformation of

EVAL.
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Discussion

 Examine section on state-of-the-art games yourself

 Minimax assumes right tree is better than left, yet …
 Return probability distribution over possible values

 Yet expensive calculation
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Discussion

 Utility of node expansion
 Only expand those nodes which lead to significanlty

better moves

 Both suggestions require meta-reasoning
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Summary

 Games are fun (and dangerous)

 They illustrate several important points about AI
 Perfection is unattainable -> approximation

 Good idea what to think about

 Uncertainty constrains the assignment of values to
states

 Games are to AI as grand prix racing is to
automobile design.


