
1

Artificial Intelligence

1: Constraint Satis-

faction problems

Lecturer: Tom Lenaerts
Institut de Recherches Interdisciplinaires et de
Développements en Intelligence Artificielle
(IRIDIA)

Université Libre de Bruxelles

TLo (IRIDIA) 2October 17, 2004

Outline

 CSP?

 Backtracking for CSP

 Local search for CSPs

 Problem structure and decomposition

2

TLo (IRIDIA) 3October 17, 2004

Constraint satisfaction
problems
 What is a CSP?

 Finite set of variables V1, V2, …, Vn

 Finite set of variables C1, C2, …, Cm

 Nonemtpy domain of possible values for each variable
DV1, DV2, … DVn

 Each constraint Ci limits the values that variables can
take, e.g., V1 ≠ V2

 A state is defined as an assignment of values to some or
all variables.

 Consistent assignment: assignment does not not violate
the constraints.

TLo (IRIDIA) 4October 17, 2004

Constraint satisfaction
problems
 An assignment is complete when every value is

mentioned.
 A solution to a CSP is a complete assignment that

satisfies all constraints.
 Some CSPs require a solution that maximizes an

objective function.
 Applications: Scheduling the time of observations on the

Hubble Space Telescope, Floor planning, Map coloring,
Cryptography

3

TLo (IRIDIA) 5October 17, 2004

CSP example: map coloring

 Variables: WA, NT, Q, NSW, V, SA, T
 Domains: Di={red,green,blue}
 Constraints:adjacent regions must have different colors.

 E.g. WA ≠ NT (if the language allows this)
 E.g. (WA,NT) ≠ {(red,green),(red,blue),(green,red),…}

TLo (IRIDIA) 6October 17, 2004

CSP example: map coloring

 Solutions are assignments satisfying all constraints, e.g.
 {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

4

TLo (IRIDIA) 7October 17, 2004

Constraint graph

 CSP benefits
 Standard representation pattern

 Generic goal and successor functions

 Generic heuristics (no domain
specific expertise).

 Constraint graph = nodes are variables, edges show constraints.
 Graph can be uses to simplify search.

 e.g. Tasmania is an independent subproblem.

TLo (IRIDIA) 8October 17, 2004

Varieties of CSPs

 Discrete variables
 Finite domains; size d ⇒O(dn) complete assignments.

 E.g. Boolean CSPs, include. Boolean satisfiability (NP-complete).
 Infinite domains (integers, strings, etc.)

 E.g. job scheduling, variables are start/end days for each job
 Need a constraint language e.g StartJob1 +5 ≤ StartJob3.
 Linear constraints solvable, nonlinear undecidable.

 Continuous variables
 e.g. start/end times for Hubble Telescope observations.

 Linear constraints solvable in poly time by LP methods.

5

TLo (IRIDIA) 9October 17, 2004

Varieties of constraints

 Unary constraints involve a single variable.
 e.g. SA ≠ green

 Binary constraints involve pairs of variables.
 e.g. SA ≠ WA

 Higher-order constraints involve 3 or more variables.
 e.g. cryptharithmetic column constraints.

 Preference (soft constraints) e.g. red is better than green
often representable by a cost for each variable assignment
→ constrained optimization problems.

TLo (IRIDIA) 10October 17, 2004

Example; cryptharithmetic

6

TLo (IRIDIA) 11October 17, 2004

CSP as a standard search
problem
 A CSP can easily expressed as a standard search

problem.

 Incremental formulation
 Initial State: the empty assignment {}.

 Successor function: Assign value to unassigned
variable provided that there is not conflict.

 Goal test: the current assignment is complete.

 Path cost: as constant cost for every step.

TLo (IRIDIA) 12October 17, 2004

CSP as a standard search
problem
 This is the same for all CSP’s !!!

 Solution is found at depth n (if there are n variables).
 Hence depth first search can be used.

 Path is irrelevant, so complete state representation can
also be used.

 Branching factor b at the top level is nd.

 b=(n-l)d at depth l, hence n!dn leaves (only dn complete
assignments).

7

TLo (IRIDIA) 13October 17, 2004

Commutativity

 CSPs are commutative.
 The order of any given set of actions has no effect

on the outcome.

 Example: choose colors for Australian territories
one at a time

 [WA=red then NT=green] same as [NT=green then
WA=red]

 All CSP search algorithms consider a single variable
assignment at a time ⇒ there are dn leaves.

TLo (IRIDIA) 14October 17, 2004

Backtracking search

 Cfr. Depth-first search

 Chooses values for one variable at a time and
backtracks when a variable has no legal values
left to assign.

 Uninformed algorithm
 No good general performance (see table p. 143)

8

TLo (IRIDIA) 15October 17, 2004

Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
if assignment is complete then return assignment
var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to CONSTRAINTS[csp] then
add {var=value} to assignment
result ← RRECURSIVE-BACTRACKING(assignment, csp)
if result ≠ failure then return result

remove {var=value} from assignment
return failure

TLo (IRIDIA) 16October 17, 2004

Backtracking example

9

TLo (IRIDIA) 17October 17, 2004

Backtracking example

TLo (IRIDIA) 18October 17, 2004

Backtracking example

10

TLo (IRIDIA) 19October 17, 2004

Backtracking example

TLo (IRIDIA) 20October 17, 2004

Improving backtracking efficiency

 Previous improvements → introduce heuristics

 General-purpose methods can give huge gains in
speed:
 Which variable should be assigned next?

 In what order should its values be tried?

 Can we detect inevitable failure early?

 Can we take advantage of problem structure?

11

TLo (IRIDIA) 21October 17, 2004

Minimum remaining values

var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

 A.k.a. most constrained variable heuristic
 Rule: choose variable with the fewest legal moves
 Which variable shall we try first?

TLo (IRIDIA) 22October 17, 2004

Degree heuristic

 Use degree heuristic
 Rule: select variable that is involved in the largest number of

constraints on other unassigned variables.
 Degree heuristic is very useful as a tie breaker.
 In what order should its values be tried?

12

TLo (IRIDIA) 23October 17, 2004

Least constraining value

 Least constraining value heuristic
 Rule: given a variable choose the least constraing value i.e. the one

that leaves the maximum flexibility for subsequent variable
assignments.

TLo (IRIDIA) 24October 17, 2004

Forward checking

 Can we detect inevitable failure early?
 And avoid it later?

 Forward checking idea: keep track of remaining legal values for
unassigned variables.

 Terminate search when any variable has no legal values.

13

TLo (IRIDIA) 25October 17, 2004

Forward checking

 Assign {WA=red}
 Effects on other variables connected by constraints with WA

 NT can no longer be red

 SA can no longer be red

TLo (IRIDIA) 26October 17, 2004

Forward checking

 Assign {Q=green}
 Effects on other variables connected by constraints with WA

 NT can no longer be green

 NSW can no longer be green

 SA can no longer be green

 MRV heuristic will automatically select NT and SA next, why?

14

TLo (IRIDIA) 27October 17, 2004

Forward checking

 If V is assigned blue
 Effects on other variables connected by constraints with WA

 SA is empty

 NSW can no longer be blue

 FC has detected that partial assignment is inconsistent with the constraints
and backtracking can occur.

TLo (IRIDIA) 28October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

[4-Queens slides copied from B.J. Dorr CMSC 421 course on AI]

15

TLo (IRIDIA) 29October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

TLo (IRIDIA) 30October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

16

TLo (IRIDIA) 31October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

TLo (IRIDIA) 32October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ , , , }

X4
{ ,2,3, }

X2
{ , ,3,4}

17

TLo (IRIDIA) 33October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

TLo (IRIDIA) 34October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

18

TLo (IRIDIA) 35October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

TLo (IRIDIA) 36October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

19

TLo (IRIDIA) 37October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

TLo (IRIDIA) 38October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

20

TLo (IRIDIA) 39October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

TLo (IRIDIA) 40October 17, 2004

Constraint propagation

 Solving CSPs with combination of heuristics plus forward checking
is more efficient than either approach alone.

 FC checking propagates information from assigned to unassigned
variables but does not provide detection for all failures.
 NT and SA cannot be blue!

 Constraint propagation repeatedly enforces constraints locally

21

TLo (IRIDIA) 41October 17, 2004

Arc consistency

 X → Y is consistent iff
for every value x of X there is some allowed y

 SA → NSW is consistent iff
SA=blue and NSW=red

TLo (IRIDIA) 42October 17, 2004

Arc consistency

 X → Y is consistent iff
for every value x of X there is some allowed y

 NSW → SA is consistent iff
NSW=red and SA=blue
NSW=blue and SA=???

Arc can be made consistent by removing blue from NSW

22

TLo (IRIDIA) 43October 17, 2004

Arc consistency

 Arc can be made consistent by removing blue from NSW
 RECHECK neighbours !!

 Remove red from V

TLo (IRIDIA) 44October 17, 2004

Arc consistency

 Arc can be made consistent by removing blue from NSW
 RECHECK neighbours !!

 Remove red from V

 Arc consistency detects failure earlier than FC
 Can be run as a preprocessor or after each assignment.

 Repeated until no inconsistency remains

23

TLo (IRIDIA) 45October 17, 2004

Arc consistency algorithm

function AC-3(csp) return the CSP, possibly with reduced domains
inputs: csp, a binary csp with variables {X1, X2, …, Xn}
local variables: queue, a queue of arcs initially the arcs in csp

while queue is not empty do
(Xi, Xj) ← REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then

for each Xk in NEIGHBORS[Xi] do
add (Xi, Xj) to assignment

function REMOVE-INCONSISTENT-VALUES(Xi, Xj) return true iff we remove a value
removed ← false

for each x in DOMAIN[Xi] do
if no value y in DOMAIN[Xi] allows (x,y) to satisfy the constraints between Xi and Xj

then delete x from DOMAIN[Xi]; removed ← true
return removed

TLo (IRIDIA) 46October 17, 2004

K-consistency

 Arc consistency does not detect all inconsistencies:
 Partial assignment {WA=red, NSW=red} is inconsistent.

 Stronger forms of propagation can be defined using the
notion of k-consistency.

 A CSP is k-consistent if for any set of k-1 variables and
for any consistent assignment to those variables, a
consistent value can always be assigned to any kth
variable.
 E.g. 1-consistency or node-consistency

 E.g. 2-consistency or arc-consistency

 E.g. 3-consistency or path-consistency

24

TLo (IRIDIA) 47October 17, 2004

K-consistency

 A graph is strongly k-consistent if
 It is k-consistent and

 Is also (k-1) consistent, (k-2) consistent, … all the way
down to 1-consistent.

 This is ideal since a solution can be found in time O(nd)
instead of O(n2d3)

 YET no free lunch: any algorithm for establishing n-
consistency must take time exponential in n, in the worst
case.

TLo (IRIDIA) 48October 17, 2004

Further improvements

 Checking special constraints
 Checking Alldif(…) constraint

 E.g. {WA=red, NSW=red}
 Checking Atmost(…) constraint

 Bounds propagation for larger value domains

 Intelligent backtracking
 Standard form is chronological backtracking i.e. try different

value for preceding variable.

 More intelligent, backtrack to conflict set.

 Set of variables that caused the failure or set of previously assigned
variables that are connected to X by constraints.

 Backjumping moves back to most recent element of the conflict set.
 Forward checking can be used to determine conflict set.

25

TLo (IRIDIA) 49October 17, 2004

Local search for CSP

 Use complete-state representation

 For CSPs
 allow states with unsatisfied constraints

 operators reassign variable values

 Variable selection: randomly select any conflicted
variable

 Value selection: min-conflicts heuristic
 Select new value that results in a minimum number of

conflicts with the other variables

TLo (IRIDIA) 50October 17, 2004

Local search for CSP

function MIN-CONFLICTS(csp, max_steps) return solution or failure
inputs: csp, a constraint satisfaction problem

max_steps, the number of steps allowed before giving up

current ← an initial complete assignment for csp
for i = 1 to max_steps do

if current is a solution for csp then return current
var ← a randomly chosen, conflicted variable from VARIABLES[csp]
value ← the value v for var that minimizes CONFLICTS(var,v,current,csp)
set var = value in current

return faiilure

26

TLo (IRIDIA) 51October 17, 2004

Min-conflicts example 1

 Use of min-conflicts heuristic in hill-climbing.

h=5 h=3 h=1

TLo (IRIDIA) 52October 17, 2004

Min-conflicts example 2

 A two-step solution for an 8-queens problem using min-conflicts
heuristic.

 At each stage a queen is chosen for reassignment in its column.
 The algorithm moves the queen to the min-conflict square breaking

ties randomly.

27

TLo (IRIDIA) 53October 17, 2004

Problem structure

 How can the problem structure help to find a solution quickly?
 Subproblem identification is important:

 Coloring Tasmania and mainland are independent subproblems

 Identifiable as connected components of constrained graph.

 Improves performance

TLo (IRIDIA) 54October 17, 2004

Problem structure

 Suppose each problem has c variables out of a total of n.
 Worst case solution cost is O(n/c dc), i.e. linear in n

 Instead of O(d n), exponential in n

 E.g. n= 80, c= 20, d=2
 280 = 4 billion years at 1 million nodes/sec.

 4 * 220= .4 second at 1 million nodes/sec

28

TLo (IRIDIA) 55October 17, 2004

Tree-structured CSPs

 Theorem: if the constraint graph has no loops then CSP can be
solved in O(nd 2) time

 Compare difference with general CSP, where worst case is
O(d n)

TLo (IRIDIA) 56October 17, 2004

Tree-structured CSPs

 In most cases subproblems of a CSP are connected as a tree
 Any tree-structured CSP can be solved in time linear in the number of

variables.
 Choose a variable as root, order variables from root to leaves such that

every node’s parent precedes it in the ordering.

 For j from n down to 2, apply REMOVE-INCONSISTENT-VALUES(Parent(Xj),Xj)

 For j from 1 to n assign Xj consistently with Parent(Xj)

29

TLo (IRIDIA) 57October 17, 2004

Nearly tree-structured CSPs

 Can more general constraint graphs be reduced to trees?

 Two approaches:
 Remove certain nodes

 Collapse certain nodes

TLo (IRIDIA) 58October 17, 2004

Nearly tree-structured CSPs

 Idea: assign values to some variables so that the remaining variables
form a tree.

 Assume that we assign {SA=x} ← cycle cutset
 And remove any values from the other variables that are

inconsistent.

 The selected value for SA could be the wrong one so we have to
try all of them

30

TLo (IRIDIA) 59October 17, 2004

Nearly tree-structured CSPs

 This approach is worthwhile if cycle cutset is small.
 Finding the smallest cycle cutset is NP-hard

 Approximation algorithms exist

 This approach is called cutset conditioning.

TLo (IRIDIA) 60October 17, 2004

Nearly tree-structured CSPs

 Tree decomposition of the
constraint graph in a set of
connected subproblems.

 Each subproblem is solved
independently

 Resulting solutions are combined.
 Necessary requirements:

 Every variable appears in ar
least one of the subproblems.

 If two variables are connected
in the original problem, they
must appear together in at
least one subproblem.

 If a variable appears in two
subproblems, it must appear in
eacht node on the path.

31

TLo (IRIDIA) 61October 17, 2004

Summary

 CSPs are a special kind of problem: states defined by values of a
fixed set of variables, goal test defined by constraints on variable
values

 Backtracking=depth-first search with one variable assigned per node
 Variable ordering and value selection heuristics help significantly
 Forward checking prevents assignments that lead to failure.
 Constraint propagation does additional work to constrain values and

detect inconsistencies.
 The CSP representation allows analysis of problem structure.
 Tree structured CSPs can be solved in linear time.
 Iterative min-conflicts is usually effective in practice.

