
1

Artificial Intelligence

1: Constraint Satis-

faction problems

Lecturer: Tom Lenaerts
Institut de Recherches Interdisciplinaires et de
Développements en Intelligence Artificielle
(IRIDIA)

Université Libre de Bruxelles

TLo (IRIDIA) 2October 17, 2004

Outline

 CSP?

 Backtracking for CSP

 Local search for CSPs

 Problem structure and decomposition

2

TLo (IRIDIA) 3October 17, 2004

Constraint satisfaction
problems
 What is a CSP?

 Finite set of variables V1, V2, …, Vn

 Finite set of variables C1, C2, …, Cm

 Nonemtpy domain of possible values for each variable
DV1, DV2, … DVn

 Each constraint Ci limits the values that variables can
take, e.g., V1 ≠ V2

 A state is defined as an assignment of values to some or
all variables.

 Consistent assignment: assignment does not not violate
the constraints.

TLo (IRIDIA) 4October 17, 2004

Constraint satisfaction
problems
 An assignment is complete when every value is

mentioned.
 A solution to a CSP is a complete assignment that

satisfies all constraints.
 Some CSPs require a solution that maximizes an

objective function.
 Applications: Scheduling the time of observations on the

Hubble Space Telescope, Floor planning, Map coloring,
Cryptography

3

TLo (IRIDIA) 5October 17, 2004

CSP example: map coloring

 Variables: WA, NT, Q, NSW, V, SA, T
 Domains: Di={red,green,blue}
 Constraints:adjacent regions must have different colors.

 E.g. WA ≠ NT (if the language allows this)
 E.g. (WA,NT) ≠ {(red,green),(red,blue),(green,red),…}

TLo (IRIDIA) 6October 17, 2004

CSP example: map coloring

 Solutions are assignments satisfying all constraints, e.g.
 {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

4

TLo (IRIDIA) 7October 17, 2004

Constraint graph

 CSP benefits
 Standard representation pattern

 Generic goal and successor functions

 Generic heuristics (no domain
specific expertise).

 Constraint graph = nodes are variables, edges show constraints.
 Graph can be uses to simplify search.

 e.g. Tasmania is an independent subproblem.

TLo (IRIDIA) 8October 17, 2004

Varieties of CSPs

 Discrete variables
 Finite domains; size d ⇒O(dn) complete assignments.

 E.g. Boolean CSPs, include. Boolean satisfiability (NP-complete).
 Infinite domains (integers, strings, etc.)

 E.g. job scheduling, variables are start/end days for each job
 Need a constraint language e.g StartJob1 +5 ≤ StartJob3.
 Linear constraints solvable, nonlinear undecidable.

 Continuous variables
 e.g. start/end times for Hubble Telescope observations.

 Linear constraints solvable in poly time by LP methods.

5

TLo (IRIDIA) 9October 17, 2004

Varieties of constraints

 Unary constraints involve a single variable.
 e.g. SA ≠ green

 Binary constraints involve pairs of variables.
 e.g. SA ≠ WA

 Higher-order constraints involve 3 or more variables.
 e.g. cryptharithmetic column constraints.

 Preference (soft constraints) e.g. red is better than green
often representable by a cost for each variable assignment
→ constrained optimization problems.

TLo (IRIDIA) 10October 17, 2004

Example; cryptharithmetic

6

TLo (IRIDIA) 11October 17, 2004

CSP as a standard search
problem
 A CSP can easily expressed as a standard search

problem.

 Incremental formulation
 Initial State: the empty assignment {}.

 Successor function: Assign value to unassigned
variable provided that there is not conflict.

 Goal test: the current assignment is complete.

 Path cost: as constant cost for every step.

TLo (IRIDIA) 12October 17, 2004

CSP as a standard search
problem
 This is the same for all CSP’s !!!

 Solution is found at depth n (if there are n variables).
 Hence depth first search can be used.

 Path is irrelevant, so complete state representation can
also be used.

 Branching factor b at the top level is nd.

 b=(n-l)d at depth l, hence n!dn leaves (only dn complete
assignments).

7

TLo (IRIDIA) 13October 17, 2004

Commutativity

 CSPs are commutative.
 The order of any given set of actions has no effect

on the outcome.

 Example: choose colors for Australian territories
one at a time

 [WA=red then NT=green] same as [NT=green then
WA=red]

 All CSP search algorithms consider a single variable
assignment at a time ⇒ there are dn leaves.

TLo (IRIDIA) 14October 17, 2004

Backtracking search

 Cfr. Depth-first search

 Chooses values for one variable at a time and
backtracks when a variable has no legal values
left to assign.

 Uninformed algorithm
 No good general performance (see table p. 143)

8

TLo (IRIDIA) 15October 17, 2004

Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
if assignment is complete then return assignment
var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to CONSTRAINTS[csp] then
add {var=value} to assignment
result ← RRECURSIVE-BACTRACKING(assignment, csp)
if result ≠ failure then return result

remove {var=value} from assignment
return failure

TLo (IRIDIA) 16October 17, 2004

Backtracking example

9

TLo (IRIDIA) 17October 17, 2004

Backtracking example

TLo (IRIDIA) 18October 17, 2004

Backtracking example

10

TLo (IRIDIA) 19October 17, 2004

Backtracking example

TLo (IRIDIA) 20October 17, 2004

Improving backtracking efficiency

 Previous improvements → introduce heuristics

 General-purpose methods can give huge gains in
speed:
 Which variable should be assigned next?

 In what order should its values be tried?

 Can we detect inevitable failure early?

 Can we take advantage of problem structure?

11

TLo (IRIDIA) 21October 17, 2004

Minimum remaining values

var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

 A.k.a. most constrained variable heuristic
 Rule: choose variable with the fewest legal moves
 Which variable shall we try first?

TLo (IRIDIA) 22October 17, 2004

Degree heuristic

 Use degree heuristic
 Rule: select variable that is involved in the largest number of

constraints on other unassigned variables.
 Degree heuristic is very useful as a tie breaker.
 In what order should its values be tried?

12

TLo (IRIDIA) 23October 17, 2004

Least constraining value

 Least constraining value heuristic
 Rule: given a variable choose the least constraing value i.e. the one

that leaves the maximum flexibility for subsequent variable
assignments.

TLo (IRIDIA) 24October 17, 2004

Forward checking

 Can we detect inevitable failure early?
 And avoid it later?

 Forward checking idea: keep track of remaining legal values for
unassigned variables.

 Terminate search when any variable has no legal values.

13

TLo (IRIDIA) 25October 17, 2004

Forward checking

 Assign {WA=red}
 Effects on other variables connected by constraints with WA

 NT can no longer be red

 SA can no longer be red

TLo (IRIDIA) 26October 17, 2004

Forward checking

 Assign {Q=green}
 Effects on other variables connected by constraints with WA

 NT can no longer be green

 NSW can no longer be green

 SA can no longer be green

 MRV heuristic will automatically select NT and SA next, why?

14

TLo (IRIDIA) 27October 17, 2004

Forward checking

 If V is assigned blue
 Effects on other variables connected by constraints with WA

 SA is empty

 NSW can no longer be blue

 FC has detected that partial assignment is inconsistent with the constraints
and backtracking can occur.

TLo (IRIDIA) 28October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

[4-Queens slides copied from B.J. Dorr CMSC 421 course on AI]

15

TLo (IRIDIA) 29October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

TLo (IRIDIA) 30October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

16

TLo (IRIDIA) 31October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

TLo (IRIDIA) 32October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{1,2,3,4}

X3
{ , , , }

X4
{ ,2,3, }

X2
{ , ,3,4}

17

TLo (IRIDIA) 33October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

TLo (IRIDIA) 34October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

18

TLo (IRIDIA) 35October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

TLo (IRIDIA) 36October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

19

TLo (IRIDIA) 37October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

TLo (IRIDIA) 38October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

20

TLo (IRIDIA) 39October 17, 2004

Example: 4-Queens Problem

1

3

2

4

32 41

X1
{ ,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

TLo (IRIDIA) 40October 17, 2004

Constraint propagation

 Solving CSPs with combination of heuristics plus forward checking
is more efficient than either approach alone.

 FC checking propagates information from assigned to unassigned
variables but does not provide detection for all failures.
 NT and SA cannot be blue!

 Constraint propagation repeatedly enforces constraints locally

21

TLo (IRIDIA) 41October 17, 2004

Arc consistency

 X → Y is consistent iff
for every value x of X there is some allowed y

 SA → NSW is consistent iff
SA=blue and NSW=red

TLo (IRIDIA) 42October 17, 2004

Arc consistency

 X → Y is consistent iff
for every value x of X there is some allowed y

 NSW → SA is consistent iff
NSW=red and SA=blue
NSW=blue and SA=???

Arc can be made consistent by removing blue from NSW

22

TLo (IRIDIA) 43October 17, 2004

Arc consistency

 Arc can be made consistent by removing blue from NSW
 RECHECK neighbours !!

 Remove red from V

TLo (IRIDIA) 44October 17, 2004

Arc consistency

 Arc can be made consistent by removing blue from NSW
 RECHECK neighbours !!

 Remove red from V

 Arc consistency detects failure earlier than FC
 Can be run as a preprocessor or after each assignment.

 Repeated until no inconsistency remains

23

TLo (IRIDIA) 45October 17, 2004

Arc consistency algorithm

function AC-3(csp) return the CSP, possibly with reduced domains
inputs: csp, a binary csp with variables {X1, X2, …, Xn}
local variables: queue, a queue of arcs initially the arcs in csp

while queue is not empty do
(Xi, Xj) ← REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then

for each Xk in NEIGHBORS[Xi] do
add (Xi, Xj) to assignment

function REMOVE-INCONSISTENT-VALUES(Xi, Xj) return true iff we remove a value
removed ← false

for each x in DOMAIN[Xi] do
if no value y in DOMAIN[Xi] allows (x,y) to satisfy the constraints between Xi and Xj

then delete x from DOMAIN[Xi]; removed ← true
return removed

TLo (IRIDIA) 46October 17, 2004

K-consistency

 Arc consistency does not detect all inconsistencies:
 Partial assignment {WA=red, NSW=red} is inconsistent.

 Stronger forms of propagation can be defined using the
notion of k-consistency.

 A CSP is k-consistent if for any set of k-1 variables and
for any consistent assignment to those variables, a
consistent value can always be assigned to any kth
variable.
 E.g. 1-consistency or node-consistency

 E.g. 2-consistency or arc-consistency

 E.g. 3-consistency or path-consistency

24

TLo (IRIDIA) 47October 17, 2004

K-consistency

 A graph is strongly k-consistent if
 It is k-consistent and

 Is also (k-1) consistent, (k-2) consistent, … all the way
down to 1-consistent.

 This is ideal since a solution can be found in time O(nd)
instead of O(n2d3)

 YET no free lunch: any algorithm for establishing n-
consistency must take time exponential in n, in the worst
case.

TLo (IRIDIA) 48October 17, 2004

Further improvements

 Checking special constraints
 Checking Alldif(…) constraint

 E.g. {WA=red, NSW=red}
 Checking Atmost(…) constraint

 Bounds propagation for larger value domains

 Intelligent backtracking
 Standard form is chronological backtracking i.e. try different

value for preceding variable.

 More intelligent, backtrack to conflict set.

 Set of variables that caused the failure or set of previously assigned
variables that are connected to X by constraints.

 Backjumping moves back to most recent element of the conflict set.
 Forward checking can be used to determine conflict set.

25

TLo (IRIDIA) 49October 17, 2004

Local search for CSP

 Use complete-state representation

 For CSPs
 allow states with unsatisfied constraints

 operators reassign variable values

 Variable selection: randomly select any conflicted
variable

 Value selection: min-conflicts heuristic
 Select new value that results in a minimum number of

conflicts with the other variables

TLo (IRIDIA) 50October 17, 2004

Local search for CSP

function MIN-CONFLICTS(csp, max_steps) return solution or failure
inputs: csp, a constraint satisfaction problem

max_steps, the number of steps allowed before giving up

current ← an initial complete assignment for csp
for i = 1 to max_steps do

if current is a solution for csp then return current
var ← a randomly chosen, conflicted variable from VARIABLES[csp]
value ← the value v for var that minimizes CONFLICTS(var,v,current,csp)
set var = value in current

return faiilure

26

TLo (IRIDIA) 51October 17, 2004

Min-conflicts example 1

 Use of min-conflicts heuristic in hill-climbing.

h=5 h=3 h=1

TLo (IRIDIA) 52October 17, 2004

Min-conflicts example 2

 A two-step solution for an 8-queens problem using min-conflicts
heuristic.

 At each stage a queen is chosen for reassignment in its column.
 The algorithm moves the queen to the min-conflict square breaking

ties randomly.

27

TLo (IRIDIA) 53October 17, 2004

Problem structure

 How can the problem structure help to find a solution quickly?
 Subproblem identification is important:

 Coloring Tasmania and mainland are independent subproblems

 Identifiable as connected components of constrained graph.

 Improves performance

TLo (IRIDIA) 54October 17, 2004

Problem structure

 Suppose each problem has c variables out of a total of n.
 Worst case solution cost is O(n/c dc), i.e. linear in n

 Instead of O(d n), exponential in n

 E.g. n= 80, c= 20, d=2
 280 = 4 billion years at 1 million nodes/sec.

 4 * 220= .4 second at 1 million nodes/sec

28

TLo (IRIDIA) 55October 17, 2004

Tree-structured CSPs

 Theorem: if the constraint graph has no loops then CSP can be
solved in O(nd 2) time

 Compare difference with general CSP, where worst case is
O(d n)

TLo (IRIDIA) 56October 17, 2004

Tree-structured CSPs

 In most cases subproblems of a CSP are connected as a tree
 Any tree-structured CSP can be solved in time linear in the number of

variables.
 Choose a variable as root, order variables from root to leaves such that

every node’s parent precedes it in the ordering.

 For j from n down to 2, apply REMOVE-INCONSISTENT-VALUES(Parent(Xj),Xj)

 For j from 1 to n assign Xj consistently with Parent(Xj)

29

TLo (IRIDIA) 57October 17, 2004

Nearly tree-structured CSPs

 Can more general constraint graphs be reduced to trees?

 Two approaches:
 Remove certain nodes

 Collapse certain nodes

TLo (IRIDIA) 58October 17, 2004

Nearly tree-structured CSPs

 Idea: assign values to some variables so that the remaining variables
form a tree.

 Assume that we assign {SA=x} ← cycle cutset
 And remove any values from the other variables that are

inconsistent.

 The selected value for SA could be the wrong one so we have to
try all of them

30

TLo (IRIDIA) 59October 17, 2004

Nearly tree-structured CSPs

 This approach is worthwhile if cycle cutset is small.
 Finding the smallest cycle cutset is NP-hard

 Approximation algorithms exist

 This approach is called cutset conditioning.

TLo (IRIDIA) 60October 17, 2004

Nearly tree-structured CSPs

 Tree decomposition of the
constraint graph in a set of
connected subproblems.

 Each subproblem is solved
independently

 Resulting solutions are combined.
 Necessary requirements:

 Every variable appears in ar
least one of the subproblems.

 If two variables are connected
in the original problem, they
must appear together in at
least one subproblem.

 If a variable appears in two
subproblems, it must appear in
eacht node on the path.

31

TLo (IRIDIA) 61October 17, 2004

Summary

 CSPs are a special kind of problem: states defined by values of a
fixed set of variables, goal test defined by constraints on variable
values

 Backtracking=depth-first search with one variable assigned per node
 Variable ordering and value selection heuristics help significantly
 Forward checking prevents assignments that lead to failure.
 Constraint propagation does additional work to constrain values and

detect inconsistencies.
 The CSP representation allows analysis of problem structure.
 Tree structured CSPs can be solved in linear time.
 Iterative min-conflicts is usually effective in practice.

