Artificial Intelligence
1: Constraint Satis-

faction problems

Lecturer: Tom Lenaerts

Institut de Recherches Interdisciplinaires et de

Développements en Intelligence Artificielle
(IRIDIA)

Université Libre de Bruxelles

Outline

m CSP?
m Backtracking for CSP
m [ocal search for CSPs

m Problem structure and decomposition

October 17, 2004 TLo (IRIDIA) 2

"
Constraint satisfaction

problems
m What is a CSP?

Finite set of variables V,, V,, ..., V,
Finite set of variables C,, C,, ..., C,,

Nonemtpy domain of possible values for each variable
Dy, Dy, ... Dy,

Each constraint C, limits the values that variables can
take, e.g., V, #V,

m A state is defined as an assignment of values to some or
all variables.

m Consistent assignment: assignment does not not violate
the constraints.

October 17, 2004 TLo (IRIDIA)

" S
Constraint satisfaction
problems

m An assignment is complete when every value is
mentioned.

m A solution to a CSP is a complete assignment that
satisfies all constraints.

m Some CSPs require a solution that maximizes an
objective function.

m Applications: Scheduling the time of observations on the
Hubble Space Telescope, Floor planning, Map coloring,

Cryptography

October 17, 2004 TLo (IRIDIA)

CSP example: map coloring

Western
Australia

Queensland

New South Wales

Tasmania

m Variables: WA, NT, Q, NSW, V, SA, T
m Domains: D,={red green,blue}

m Constraints:adjacent regions must have different colors.
m E.g. WA = NT (if the language allows this)
m E.g. (WA NT) = {(red,green),(red,blue),(green,red), ...}

October 17, 2004 TLo (IRIDIA) 5

CSP example: map coloring

Tasm'ia

m Solutions are assignments satisfying all constraints, e.g.
{WA=red, NT=green,Q=red, NSW=green,V=red,SA=blue, T=green}

October 17, 2004 TLo (IRIDIA) 6

Constraint graph
()

m CSP benefits @‘

Standard representation pattern @

N

Generic goal and successor functic

i

Generic heuristics (no domain
specific expertise).

©)

m Constraint graph = nodes are variables, edges show constraints.
Graph can be uses to simplify search.
m c.g. Tasmania is an independent subproblem.

October 17, 2004 TLo (IRIDIA) 7

Varieties of CSPs

m Discrete variables
Finite domains; size d =0(d") complete assignments.
= E.g. Boolean CSPs, include. Boolean satisfiability (NP-complete).
Infinite domains (integers, strings, etc.)
= E.g. job scheduling, variables are start/end days for each job
= Need a constraint language e.g StartJob, +5 < StartJob;.
m Linear constraints solvable, nonlinear undecidable.

m Continuous variables
e.g. start/end times for Hubble Telescope observations.
Linear constraints solvable in poly time by LP methods.

October 17, 2004 TLo (IRIDIA) 8

Varieties of constraints

m Unary constraints involve a single variable.
e.g. SA = green

m Binary constraints involve pairs of variables.
e.g. SA = WA

m Higher-order constraints involve 3 or more variables.
e.g. cryptharithmetic column constraints.

m Preference (soft constraints) e.g. red is better than green
often representable by a cost for each variable assignment
— constrained optimization problems.

October 17, 2004 TLo (IRIDIA) 9

Example; cryptharithmetic

M|+
o+ -
clss
A0 0

Variables: F T'U W R O X, X3 X3
Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints
alldiff F, T, U, W, R, O)
O+0=R+10- X4, etc.

October 17, 2004 TLo (IRIDIA) 10

" S
CSP as a standard search
problem

m A CSP can easily expressed as a standard search
problem.

m Incremental formulation
Initial State: the empty assignment {}.

Successor function: Assign value to unassigned
variable provided that there is not conflict.

Goal test: the current assignment is complete.
Path cost: as constant cost for every step.

October 17, 2004 TLo (IRIDIA) 11

"
CSP as a standard search

problem
This is the same for all CSP’s !!!
Solution is found at depth n (if there are n variables).

Hence depth first search can be used.

Path is irrelevant, so complete state representation can
also be used.

Branching factor b at the top level is nd.

b=(n-1)d at depth [/, hence n!/d" leaves (only d" complete
assignments).

October 17, 2004 TLo (IRIDIA) 12

Commutativity

m CSPs are commutative.

The order of any given set of actions has no effect
on the outcome.

Example: choose colors for Australian territories
one at a time

m [WA=red then NT=green] same as [NT=green then
WA=red]

m All CSP search algorithms consider a single variable
assignment at a time = there are d" leaves.

October 17, 2004 TLo (IRIDIA) 13

Backtracking search

m Cfr. Depth-first search

m Chooses values for one variable at a time and
backtracks when a variable has no legal values
left to assign.

m Uninformed algorithm

No good general performance (see table p. 143)

October 17, 2004 TLo (IRIDIA) 14

Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
if assignment is complete then return assignment
var <= SELECT-UNASSIGNED-VARIABLE(VARIABLES(csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment according to CONSTRAINTS[csp] then
add {var=value} to assignment
result < RRECURSIVE-BACTRACKING(assignment, csp)
if result = failure then return result

remove {var=value} from assignment
return failure

October 17, 2004 TLo (IRIDIA) 15

Backtracking example

Horthern
Territory

Western

Queensland
Australia

Australia

New South Wales

Tasmania

October 17, 2004 TLo (IRIDIA) 16

Backtracking example

SO

— |

 SSl SSR S

Backtracking example

NS

— T
¢ & ¢

A
¢ ¢

Backtracking example

October 17, 2004 TLo (IRIDIA)

19

Improving backtracking efficiency

m Previous improvements — introduce heuristics

m General-purpose methods can give huge gains in

speed:

Which variable should be assigned next?
In what order should its values be tried?

Can we detect inevitable failure early?

Can we take advantage of problem structure?

October 17, 2004 TLo (IRIDIA)

20

10

Minimum remaining values

SS St Sty LS

var <= SELECT-UNASSIGNED-VARIABLE(VARIABLES(csp],assignment,csp)

m A k.a. most constrained variable heuristic
m Rule: choose variable with the fewest legal moves
m Which variable shall we try first?

October 17, 2004 TLo (IRIDIA) 21

Degree heuristic

CRy—R

m Use degree heuristic

m Rule: select variable that is involved in the largest number of
constraints on other unassigned variables.

m Degree heuristic is very useful as a tie breaker.
m [n what order should its values be tried?

October 17, 2004 TLo (IRIDIA) 22

Least constraining value

‘\g% Allows 1 value for SA
_L}: T ‘_L‘: T “QLT: <‘p‘_}% Allows 0 values for SA

m [east constraining value heuristic

m Rule: given a variable choose the least constraing value i.e. the one
that leaves the maximum flexibility for subsequent variable
assignments.

October 17, 2004 TLo (IRIDIA) 23

Forward checking

WA NT Q NSW v SA T

m Can we detect inevitable failure early?
And avoid it later?

m Forward checking idea: keep track of remaining legal values for
unassigned variables.

m Terminate search when any variable has no legal values.

October 17, 2004 TLo (IRIDIA) 24

12

Forward checking

SSe o
WA NT Q NSW v SA T

I I ICECICEC ICECICECd
(| e EeSE/eSE] SE]e S

Assign {WA=red}

Effects on other variables connected by constraints with WA
NT can no longer be red
SA can no longer be red

October 17, 2004 TLo (IRIDIA)

Forward checking

Assign {O=green}

Effects on other variables connected by constraints with WA
NT can no longer be green
NSW can no longer be green
SA can no longer be green

m MRV heuristic will automatically select NT and SA next, why?

October 17, 2004 TLo (IRIDIA)

13

Forward checking

s O g
waA NT Q NSW A\ SA T

(] W[] [m =]

m If VVis assigned blue

m Effects on other variables connected by constraints with WA
SA is empty
NSW can no longer be blue

m FC has detected that partial assignment is inconsistent with the constraints
and backtracking can occur.

October 17, 2004 TLo (IRIDIA) 27

Example: 4-Queens Problem

X1 X2
1 2 3 4 {1,2,3,4} {1,2,3,4}
1
2
3
4 X3 X4
{1,2,3,4} {1,2,3,4}

[4-Queens slides copied from B.J. Dorr CMSC 421 course on AI]

October 17, 2004 TLo (IRIDIA) 28

14

Example: 4-Queens Problem

October 17, 2004

X1
{1I213I4}

X2
{1,2,3,4}

X3
{1,2,3,4}

TLo (IRIDIA)

X4
11,2,3,4}

Example: 4-Queens Problem

October 17, 2004

TLo (IRIDIA)

X1 X2
{1I213I4} { ! I3I4}
X3 X4
{ Izl I4} { I2I3I }

15

Example: 4-Queens Problem

October 17, 2004

TLo (IRIDIA)

X1 X2
{1I213I4} { ! I3I4}
X3 X4
{ I2I I4} { I2I3I }

31

Example: 4-Queens Problem

October 17, 2004

X1 X2
{1I213I4} { ! I3I4}
X3 X4
{ ror 7 } { I2I3I }

TLo (IRIDIA)

32

16

Example: 4-Queens Problem

1

H W N =

October 17, 2004

2 3 4

X1

{ I2I3I4}

X3

X2
{1,2,3,4}

{1,2,3,4}

TLo (IRIDIA)

X4
11,2,3,4}

Example: 4-Queens Problem

1

October 17, 2004

2 3 4

TLo (IRIDIA)

X1 X2
{ I2I3I4} { r 7 14}

X3 X4
{ll I3I } {ll 1314}

17

Example: 4-Queens Problem

October 17, 2004

TLo (IRIDIA)

X1 X2
{ I2I3I4} { 7 I4}
X3 X4
{ll I3I } {ll 1314}

Example: 4-Queens Problem

October 17, 2004

X1 X2
{ I2I3I4} { 7 I4}
X3 X4
{ll o7 } {ll I3I }

TLo (IRIDIA)

18

Example: 4-Queens Problem

October 17, 2004

X1 X2
{ I2I3I4} { 7 I4}
X3 X4
{1I 7 } {ll I3I }

TLo (IRIDIA)

37

Example: 4-Queens Problem

October 17, 2004

X1 X2
{ I2I3I4} { 7 I4}
X3 X4
{1I 7 } { ! I3I }

TLo (IRIDIA)

19

Example: 4-Queens Problem

X1 X2
{ I2I3I4} { 7 I4}
X3 X4

{1I I 7 } { 14 I3I }

October 17, 2004 TLo (IRIDIA) 39

Constraint propagation

Ho—@-—e—eD
WA NT aQ NSW v SA T
CI I I Ire Irey Irey 1rer i

(] e[Sl] —] [

m Solving CSPs with combination of heuristics plus forward checking
is more efficient than either approach alone.

m FC checking propagates information from assigned to unassigned
variables but does not provide detection for all failures.
NT and SA cannot be blue!

m Constraint propagation repeatedly enforces constraints locally

October 17, 2004 TLo (IRIDIA) 40

20

Arc consistency

SIS R S

WA NT a NSW W sA T

__é__,/

m X — Yis consistent iff

for every value x of X there is some allowed y
m S4 — NSW is consistent iff
SA=blue and NSW=red

October 17, 2004 TLo (IRIDIA)

aM

"
Arc consistency

-0k

WA NT Lo NSW v SA T

"\é___,/

m X — Yis consistent iff
for every value x of X there is some allowed y
m NSW — S4 is consistent iff
NSW=red and SA=blue
NSW=blue and SA=???
Arc can be made consistent by removing blue from NSW

October 17, 2004 TLo (IRIDIA)

42

21

Arc consistency

H:_"H:_"H%
WA NT a NSW v SA T

L 1N IR oGl 1IN 1]
_</

m Arc can be made consistent by removing blue from NSW
m RECHECK neighbours !!

Remove red from V

October 17, 2004 TLo (IRIDIA)

Arc consistency

ek

wa NT Q NSW v sA T
[] [JIE]] [] [T |

m Arc can be made consistent by removing blue from NSW
RECHECK neighbours !!

Remove red from V

Arc consistency detects failure earlier than FC

Can be run as a preprocessor or after each assignment.
Repeated until no inconsistency remains

October 17, 2004 TLo (IRIDIA)

22

Arc consistency algorithm

function AC-3(csp) return the CSP, possibly with reduced domains
inputs: csp, a binary csp with variables /X, X, ..., X}
local variables: queue, a queue of arcs initially the arcs in csp

while queue is not empty do
(X, X)) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X, X)) then
for each X, in NEIGHBORS[X; | do
add (X, X)) to assignment

function REMOVE-INCONSISTENT-VALUES(X;, X)) return frue iff we remove a value
removed < false
for each x in DOMAIN[.X]] do
if no value y in DOMAIN[X]] allows (x,y) to satisfy the constraints between X; and X
then delete x from DOMAIN[X]; removed < true
return removed

October 17, 2004 TLo (IRIDIA)

K-consistency

m Arc consistency does not detect all inconsistencies:
Partial assignment {WA=red, NSW=red} is inconsistent.

m Stronger forms of propagation can be defined using the
notion of k-consistency.

m A CSP is k-consistent if for any set of k-1 variables and
for any consistent assignment to those variables, a
consistent value can always be assigned to any kth
variable.

E.g. 1-consistency or node-consistency
E.g. 2-consistency or arc-consistency
E.g. 3-consistency or path-consistency

October 17, 2004 TLo (IRIDIA)

23

K-consistency

m A graph is strongly k-consistent if
It is k-consistent and

Is also (k-1) consistent, (k-2) consistent, ... all the way
down to 1-consistent.

m This is ideal since a solution can be found in time O(nd)
instead of O(n’d’)

m YET no free lunch: any algorithm for establishing n-
consistency must take time exponential in n, in the worst
case.

October 17, 2004 TLo (IRIDIA) 47

Further improvements

m Checking special constraints
Checking Alldif(...) constraint
n E.g {WA=red, NSW=red}
Checking Atmost(...) constraint
m Bounds propagation for larger value domains
m Intelligent backtracking

Standard form is chronological backtracking i.e. try different
value for preceding variable.

More intelligent, backtrack to conflict set.

m Set of variables that caused the failure or set of previously assigned
variables that are connected to X by constraints.

= Backjumping moves back to most recent element of the conflict set.
m Forward checking can be used to determine conflict set.

October 17, 2004 TLo (IRIDIA) 48

24

Local search for CSP

m Use complete-state representation
m For CSPs

allow states with unsatisfied constraints

operators reassign variable values

m Variable selection: randomly select any conflicted
variable

m Value selection: min-conflicts heuristic

Select new value that results in a minimum number of
conflicts with the other variables

October 17, 2004 TLo (IRIDIA) 49

Local search for CSP

function MIN-CONFLICTS(csp, max_steps) return solution or failure
inputs: csp, a constraint satisfaction problem
max_steps, the number of steps allowed before giving up

current <— an initial complete assignment for csp

for i = 1 to max_steps do
if current is a solution for csp then return current
var < arandomly chosen, conflicted variable from VARIABLES[csp]
value < the value v for var that minimizes CONFLICTS(var,v,current,csp)
set var = value in current

return faiilure

October 17, 2004 TLo (IRIDIA) 50

25

Min-conflicts example 1

,_

m Use of min-conflicts heuristic in hill-climbing.

h=5 h=3

October 17, 2004 TLo (IRIDIA) 51

Min-conflicts example 2

m A two-step solution for an 8-queens problem using min-conflicts
heuristic.

m At each stage a queen is chosen for reassignment in its column.

m The algorithm moves the queen to the min-conflict square breaking
ties randomly.

October 17, 2004 TLo (IRIDIA) 52

26

Problem structure

m How can the problem structure help to find a solution quickly?

m Subproblem identification is important:
Coloring Tasmania and mainland are independent subproblems
Identifiable as connected components of constrained graph.

m [mproves performance

October 17, 2004 TLo (IRIDIA)

Problem structure

m Suppose each problem has ¢ variables out of a total of .
m Worst case solution cost is O(n/c d°), i.e. linear in n

Instead of O(d "), exponential in n

m Eg n=2380c=20,d=2
280 = 4 pillion years at 1 million nodes/sec.
4 * 220= 4 second at 1 million nodes/sec

October 17, 2004 TLo (IRIDIA)

Tree-structured CSPs

m Theorem: if the constraint graph has no loops then CSP can be
solved in O(nd ?) time

m Compare difference with general CSP, where worst case is
o@d")

October 17, 2004 TLo (IRIDIA) 55

Tree-structured CSPs

by

m In most cases subproblems of a CSP are connected as a tree
m Any tree-structured CSP can be solved in time linear in the number of
variables.

Choose a variable as root, order variables from root to leaves such that
every node’s parent precedes it in the ordering.

For jfrom n down to 2, apply REMOVE-INCONSISTENT-VALUES(Parent(X)).X))
For jfrom 1 to n assign X; consistently with Parent(X;)

October 17, 2004 TLo (IRIDIA) 56

28

Nearly tree-structured CSPs

® ©

m Can more general constraint graphs be reduced to trees?

m Two approaches:
Remove certain nodes

Collapse certain nodes

October 17, 2004 TLo (IRIDIA) 57

Nearly tree-structured CSPs

® ©

m [dea: assign values to some variables so that the remaining variables
form a tree.
m Assume that we assign {S4A=x} < cycle cutset

And remove any values from the other variables that are
inconsistent.

The selected value for SA could be the wrong one so we have to
try all of them

October 17, 2004 TLo (IRIDIA) 58

Nearly tree-structured CSPs

® @

m This approach is worthwhile if cycle cutset is small.
m Finding the smallest cycle cutset is NP-hard

Approximation algorithms exist

m This approach is called cutset conditioning.

October 17, 2004 TLo (IRIDIA) 59

Nearly tree-structured CSPs

m Tree decomposition of the
constraint graph in a set of
connected subproblems.

m Each subproblem is solved
independently

m Resulting solutions are combined.

m Necessary requirements:

Every variable appears in ar
least one of the subproblems.

If two variables are connected

in the original problem, they
must appear together in at
least one subproblem.

If a variable appears in two

subproblems, it must appear in
eacht node on the path.

October 17, 2004 TLo (IRIDIA) 60

30

Summary

CSPs are a special kind of problem: states defined by values of a
fixed set of variables, goal test defined by constraints on variable
values

Backtracking=depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that lead to failure.

Constraint propagation does additional work to constrain values and
detect inconsistencies.

The CSP representation allows analysis of problem structure.
Tree structured CSPs can be solved in linear time.

m [terative min-conflicts is usually effective in practice.

October 17, 2004 TLo (IRIDIA) 61

31

