

CLL Patient Comparison According to ZAP70 mRNA Level : New Prognostic Factors, Differences In MicroRNA Expression And Distinct Interaction Capacities With The Microenvironment

B. STAMATOPOULOS* B. HAIBF-KAINS N. MFULEMAN D. BRON P. MARTIAT I. LAGNEAUX. Experimental Hematology. Bordet Institute. Brussels. Belgium. * bstamato@ulb.ac.be

Backaround:

Gene expression profile is a powerful tool to better understand the biology, the clinical outcome and the molecular mechanism implicated in chronic lymphocytic leukemia (CL). This disease presents an extremely variable clinical course with overall survival times ranging from months to decades. Therefore a plethora of prognostic factors which classified patients in poor or good behaviour have been investigated, Zeta-associated protein 70 (ZAP70) is one of the most promising prognostic factors to predict CLL evolution, Furthermore, we previously described a quantitative real-time PCR (aPCR) method to measure ZAP70 and demonstrated its prognostic power (Stamatopoulos et al Clin Chem 2007). Aims:

	2	viii:	TS		Mat. Status **	homology (%)	VH gene	Zap-70 b	erce.	Zap-10	by FC.	LPL qR	T-PCR	cus	y FC	Fallow-up or TE	S Treatment	Death
68	Grap	Sec	150	Segge				4PC8 1	Same	Nicell 4	Suns	45CR (Sister	Nort."	Seatus	recenter	Statur	Sister
1	high	F	69	Α	LIM	100.0	3115-51	1907.T	+	66	+	142.9	+	58.0	+	16.4	50X	501
2	high	м	68	с	UM	0.001	3111-46	1475.8	+	41	+	3388.5	+	56.0	+	0.5	50X	80
э	high	P	5T	в	UM	55.0	113-48	1179.2	+	57	+	1.5		50.0	+	20.3	54X	yex.
4	high	r.	67	Α.	M	\$5.2	1114-34	1137.0	+	39	+	0.1		Nan d		7.8	54X	yex
5	Ngh	м	61	С	UM	99.0	VII6-1	1174.7	+	22	+	247	+	Nas d	field	18.7	548	546
6	Ngh	F	74	C	UM	0.001	VID-8	658.3	+	42	+	349.8	+	23.0	+	24.1	545	545
,	Ngb	м	73	8	UM	100.0	781-69	643.9	+	77	+	447.8	+	38.0	+	2.4	yes	545
\$	les.	F	67	٨	м	942	383-74	61.8		2		0.1		94.0	+	111.9	10	80
9	lex.	F	68	Δ	м	55.2	3114-39	50.4		2.5				0.0		35.4	80	80
10	les.	F	59	в	м	93.9	VH1-2	18.9		14		1.7		0.0		44.6	80	80
11	lex.	М	67	в	м	92.2	VH2-26	14.2				62.4	+	58.0	+	208.6	80	80
12	lex.	М	72	в	м	55.2	VH434	9.5		3		1.9		0.0		172.3	505	80
0	lex.	м	27	Α.	м	97.7	VH1-68	7.5		12		0.1		24.0	+	0.9	505	80
14	lev.	М	69	Α	м	54.8	VH8-9	2.7		10		83		1.0		88.1	505	80
UM The The	urrects out-off (aod, N Selorar af 207	entité inel asi	sd: D, da ng ROC 19+ celli	curve analy that copro	ne sis is express a Zap-71 by med as data	flow cyton	sery, at the	ane levi									

Table 1: Patient characteristics

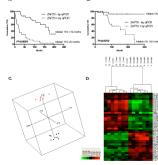


Figure 1: Gene expression profiles. A. TFS according to ZAP70 (gPCR); B. OS according to ZAP70 (qPCR); C. Multidimentional scaling; D. microarray analysis

In this study we compared gene expression profile of patients expressing high versus low ZAP70 mRNA level in order to find genes not only associated with prognosis but also with cell biology. We also confirmed some microRNA differentially expressed between these two groups and linked them to treatment-free survival (TFS) and overall survival (OS).

Methods:

a median follow-up of 74 months.

Results:

and Table 2).

ZAP70 was evaluated by gPCR in a cohort of 108 patients : two aroups of 7 patients were chosen in the top-20 of patients expressing high and low level of ZAP70 mRNA and their gene expression profiles were compared using Affymetrix technology (Table 1). Selected genes were verified by aPCR in an extended patient cohort (n=85) with a median follow-up of 72 months.

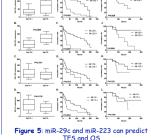
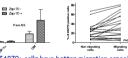

Adhesion/migratory capacities into a stromal microenvironment (SM) or in response to conditioned medium were also evaluated. Finally, we investigated some microRNA differential expression by gPCR in a cohort of 61 patients with 43 probe sets were differentially expressed with a FDR<10% (Figure 1), 135 with a P<0.001 and 932 with a P<0.05. Several of these genes were TFS and/or OS significant predictors: PDE8A and FCRL family genes were downregulated in ZAP70+ patients and can predict TFS and OS; ITGA4 mRNA --- ITG44 was upreaulated in ZAP70+ patients and can significantly predict OS (Figure 2

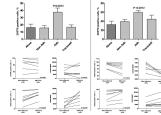
Figure 2: TFS and OS of selected genes

Symbol	Gene description	Differen	Target		Number of ZAP70+	(TIS) Overa			di Survival		
		r	Mean Without I	" Fold Change"	status ^b		putients	P	Mediev TFS		Methon
PDE8A	phosphodicsterase 8A	P<0.0001	422.5	-4.3		62	39	0.0003	35	0.012	18
					+	23	2		157		U
FCRLI	Fe receptor-like 1	0.0004	483	-1.9	-	39	27	0.0292	24.13	0.0015	153
					+	46	14		93.67		U
FCRL2	Fe receptor-like 2	P-0.0001	450	-1.8	-	22	21	P-0.0001	20.27	0.001	100
					+	63	20		93.67		U
FCRL3	Fe receptor-like 3	P-0.0001	422	-3.1		43	30	0.0065	24.2	0.0038	15
					+	42	31		107.2		U
FCRL5	Fe receptor-like 5	P<0.0001	394	-2.6		49	30	0.0006	22.3	0.0232	18
ITGM	interrin, alpha 4 (antiren	0.0102	605.5	13		36	2	0.1558	107.2	0.0075	24
HG44	CD49D, alpha 4 submit of	0.0102	605.5	1.3		34		0.3558	80,47	0.0075	24
TLR7	VLA-4 receptor) toll-like receptor 7	0.0002	472	2.0		22	21	0.0263	88.07	0.0992	1
nuc.	source receptor /	0.0002	472	2.0		63	20	0.0285	20.07	00992	15
LPL	lipoprotein lipuse	P-0.0001	111	11.8	1	42	11	0.0011	126	0.1593	24
	approximation.	1-00001		11.0		43	10	9.6451	24.1	0.1.575	21
C11C28	C-type lectin domain family	P-0.0001	186.1	5.5		ŭ	14	0.0549	80.4T	0.1838	
	2, member B				+	-	27		29.33		21
PCD49	arotecadheria 9	0.0044	577.5	2.6	-	41		0.0265	126	0.0194	
					+	38	30		29.33		13
BCL7A	B-cell CLL/tymphone 7A	0.0004	497.5	5.6		32	17	0.0754	\$5.07	0.0576	25
					+	53	24		24.13		23
CTLA4	cytotoxic T-hymphocyto-	0.0205	707	-2.3		61	36	0.0057	35.5	0.0157	11
	associated protein 4				+	- 24	5		157		1
MYBLI	v-myb mycloblastosis viral oncogene homolog (avian)-	P-0.0001	354	-6.6	•	55 10	35	0.0005	29.9	0.0154	la II

Table 2: TFS and OS of selected genes


Among the 4 microRNAs tested, we confirmed the differential expression of miR-29c and miR-223. We showed for the first time that miR-29c and miR-223 had a TFS and OS individual prognostic power (Figure 5). -- M-20 -- M-20

reveals an overrepresentation of adhesion / migration genes (Table 3). We plated CLL cells in presence of a SM (with or without contact). We found that significantly more ZAP70+ cells adhere to this SM. We also observed a downregulation of CXCR4 in stromal-adherent cells only in ZAP70+ patients indicating that only these patient cells can respond to SM stimulus CD69 recently described as a poor prognosis factor, was also upregulated in adherent cells (Figure 3), Furthermore, ZAP70+ patient cells can significantly better adhere to fibronectin and have better migration capacities (Figure 4).

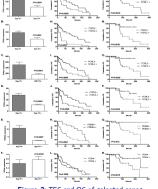

pathway

analysis

Figure 4: ZAP70+ cells have better migration capacities

Moreover

74970


Figure 3: ZAP70+ cells adhere better to the SM

GO categories	Description	P-value
GO0015629	actin cytoskeleton	0.0021
GC0030036	actin cytoskeleton organization and biogenesis	0.0027
GC0030029	actin filament-based process	0.0014
GO0018154	actine polymerization and/or depolimerization	0.0010
GO0007155	cell adhesion	8.10 ⁻⁷
GC0016387	cell-cell adhesion	0.0053
GC0007160	cell-matrix adhesion	0.0003
GC0006935	chamotaxis	0.0023
GC0005856	cytoskeleton	0.0002
GC0007010	cytoskeleton organisation and biogenesis	0.0009
GC0040011	locomotion	0.0060
GO0005874	microtubale	0.0003
GC0007018	microtubale based movement	0.0108
Kegg Pathway		
hsi04514	Cell adhesion molecules (CAMs)	0.0020
hsa04530	tight junction	2.6.10 ⁻⁷
hsa04520	adherens junction	$2.5.10^{-6}$
hsa04540	gap junction	$3.9 \cdot 10^{15}$
hsa04670	transendothelial leukocyte migration	<10 ⁻⁷
hsa04810	regulation of actin cytoskeleton	<10 ⁻⁷
hsa04510	Focal adhesion	<10'7
Broad Pathway		
SIG_CHEMOTAXIS_h	SignallingAlliance Combining with cell adhesion molecules to	0.0002
cell_adhesion_receptor_activity_h	initiate a change in cell activity.	0.0121
SIG_Regulation_of_the_actin_cytes eleton_by_Rho_GTPases_h	SignallingAlliance	0.0069
cell_adhesion_molecule_activity_h	Mediates the adhesion of the cell to other cells or to the extracellular matrix.	0.0011
cell_motility_h	Any process involved in the centrolled movement of a cell. The attachment of a cell, either to another cell	0.0005
cell adhesien h	or to the extracellular matrix, via cell adhesion molecules.	0.0004
h ST Integrin Signaling Pathway	Signalling Transduction KE	$1.9.10^{-5}$
Biocarta pathways		
h_lympathvay	adhesion and diapadis of lymphocytes	0.0012
h_integrinPathway	Integrin Signaling Pathway	0.0015
h_lymphocytePathway	Adhesion Molecules on Lymphocyte	0.0012
h_excr4Pathway	CXCR4 Signaling Pathway	0.0005

Table 3: Gene set enrichment analysis

Conclusions:

Considering all these data, we can tentatively conclude that markers such as ZAP70 LPL CD38 CD69 or CXCR4 are probably linked to the microenvironment, and classification of patients into poor or good prognosis groups with regard to these factors seems to be a reflection of microenvironment interactions. Moreover, this study identifies new prognostic factors (genes and microRNA) and shows the better adhesion/ migratory capacities of ZAP70+ cells in their microenvironment explaining their better survival and the agaressiveness of the disease.

