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Introduction
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Problem Given a set of six real
breast cancer microarray datasets
(including more than 1000
patients) coming from different
populations, hospitals and microar-
ray platforms (see [1]): how can
we infer a ”consensus” tran-
scriptional network in order to
discover new genetic interactions,
potentially revealing novel thera-
peutic targets or prognostic genes?

MRNET

MRNET is a transcriptional network inference method particularly adapted
for large microarray datasets [2]. MRNET infers a network using the MRMR
feature selection method (in a forward selection strategy) where each gene
in turn plays the role of the target output Xj.
Given a set XS of selected variables, the MRMR criterion updates XS by
choosing the variable

XMRMR
i = arg max

Xi∈X−i

(ui − ri)

where ui = I(Xi; Xj) is a relevance term and ri = 1
|S|

�
Xk∈XS

I(Xi; Xk) is
a redundancy term. Hence, MRNET can infer a network from the matrix of
pairwise mutual information (MI matrix).
This fast inference method is freely available in the open-source R and Bio-
conductor package MINET [3].

Meta-network

Which meta-network

 is the best (A,B or C) ?
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Methods

•Method A: Aggregate
datasets using standard
normalization: X−µ

σ

•Method B: Aggregate ma-
trices of pairwise mu-
tual information using a
weighted average based on
mj the number of samples
in dataset j:

Îemp =
n�

j

mj

m
Îemp
j

•Method C: Aggregate
networks using sum of
weights of each arc in
each network:

W = W1 + W2 + ... + Wn
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•Artificial Dataset: 300 genes, 800
samples generated with Syntren [2].

•Low heterogeneity configuration:

–n = 4 datasets

–normally distributed noise

– random noise intensity between 5%
to 15%

•High heterogeneity configuration:

–n = 10 datasets

– randomly chosen {gaussian, lognor-
mal and gamma} distributed noise

–with noise intensity between 5%
and 30%

–non-linear transformation of data
randomly chosen between {none,
x2, log(x), x3}

⇒ on 100 runs, method B significantly outperforms (in terms
of average F-score) A and C on both configurations.

Real data
Let Y be a multiclass survival variable (indicating time before metastasis),
does the set of connected nodes to Y form a predictive signature competitive
with previously published ones?

Y

•Six breast cancer datasets

•MRNET applied on each of them

•Meta-network built using Method B

• 100 selected genes connected to survival
variable (up to two levels)

Using protocols, signatures and data from [1]

•The performance of the new signature in a Dataset-CV set-
ting is competitive with the best published prognostic signa-
tures studied.

•The selected nodes are highly present in published prognostic
signatures representing many different biological processes:

function genes signatures

Proliferation 38 AURKA and GGI
Immune response 4 STAT1 and IRMODULE

Stroma 4 SDPP
Commercial progn. 8 GENE70-76 and ONCOTYPE
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