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Introduction
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discover new genetic interactions,

potentially revealing novel thera-

peutic targets or prognostic genes?’

MRNET

MRNET is a transcriptional network inference method particularly adapted
for large microarray datasets |2|. MRNET infers a network using the MRMR
feature selection method (in a forward selection strategy) where each gene

in turn plays the role of the target output X,.
Given a set Xg of selected variables, the MRMR criterion updates Xg by
choosing the variable

MRMR
X; = arg max (u; — ;)
X, eX_;
where u; = I(X;; X;) is a relevance term and r; = |—é‘ D xex, L(Xi Xy) is

a redundancy term. Hence, MRNET can infer a network from the matrix of

pairwise mutual information (MI matrix).

This fast inference method is freely available in the open-source R and Bio-
conductor package MINET [3].
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Methods

e Method A: Aggregate

datasets using standard
X—p
o

normalization:
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weights of each arc in

Which meta-network cach network:

is the best (A,B or C) ?
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Synthetic Experiments
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|
|

|

: Original
| Network
|

|

e Low heterogeneity configuration:

—n = 4 datasets

—normally distributed noise

—random noise intensity between 5%

to 15%
________ L LE———_____! eHigh heterogeneity configuration:
Tnfaronce arfi| | [ Agoregaion) | o datasets
\AAA, | —randomly chosen {gaussian, lognor-

Meta-Network mal and gamma} distributed noise
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—with noise intensity between 5%
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____________________ d 1
and 30%
“““““““““ VT T —non-linear transformation of data
Precision- randomly chosen between {none,

z?, log(x), =°}
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Validation Procedure

= on 100 runs, method B significantly outperforms (in terms
of average F-score) A and C on both configurations.

Real data

Let Y be a multiclass survival variable (indicating time before metastasis),
does the set of connected nodes to Y form a predictive signature competitive
with previously published ones?
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e Six breast cancer datasets
e MRNET applied on each of them
e Meta-network built using Method B

e 100 selected genes connected to survival
variable (up to two levels)

Using protocols, signatures and data from [1]

e The performance of the new signature in a Dataset-CV set-
ting is competitive with the best published prognostic signa-
tures studied.

® The selected nodes are highly present in published prognostic
signatures representing many different biological processes:
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