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1. Background

SINCE the advent of array-based technology and the sequencing of the human genome, scientists
attempted to bring new insights into breast cancer biology and prognosis. The identification of

natural groups of tumors (called subtypes) from gene expression data was the subject of intense
research this last decade. Such an identification usually involved two steps:
1. Identification of sets of co-expressed genes (gene clustering).
2. Identification of groups of similar tumors (sample clustering).

Perou and Sorlie et al. were the first to conduct a gene expression profiling study of breast tumors
in order to highlight the existence of subtypes, i.e. groups of tumors exhibiting similar ”genetic por-
traits”. Their method consisted in (i) identifying the genes with low variance between tumor samples
from the same patient but high variance between tumor samples from different patients (referred to
as intrinsic gene list in the literature); (ii) performing a two-way hierarchical clustering to identify sets
of co-expressed genes (Figure 1) and groups of similar tumors (Figure 2). In addition to highlight
the importance of ER and HER2 phenotypes and proliferation, they also shown that the molecular
subtypes exhibited different clinical outcome as illustrated by the survival curves in Figure 3.

Fig. 1. Gene expression patterns of 85 experimental samples representing 78 carcinomas, three benign tumors, and four normal tissues, analyzed by hierarchical
clustering using the 476 cDNA intrinsic clone set. (A) The tumor specimens were divided into five (or six) subtypes based on differences in gene expression. The
cluster dendrogram showing the five (six) subtypes of tumors are colored as: luminal subtype A, dark blue; luminal subtype B, yellow; luminal subtype C, light
blue; normal breast-like, green; basal-like, red; and ERBB2!, pink. (B) The full cluster diagram scaled down (the complete 456-clone cluster diagram is available
as Fig. 4). The colored bars on the right represent the inserts presented in C–G. (C) ERBB2 amplicon cluster. (D) Novel unknown cluster. (E) Basal epithelial
cell-enriched cluster. (F) Normal breast-like cluster. (G) Luminal epithelial gene cluster containing ER.
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Figure 1: Gene clustering [5].

Fig. 1. Gene expression patterns of 85 experimental samples representing 78 carcinomas, three benign tumors, and four normal tissues, analyzed by hierarchical
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Figure 2: Sample clustering [5].

prognosis and are associated with poor response to systemic
therapy (7, 8, 18, 19). Our findings of TP53 mutations in tumors
simultaneously expressing genes in the ERBB2 amplicon at high
levels supports previous observations of an interdependent role
for TP53 and ERBB2 (15, 20).

Identification of Tumor Subtypes using SAM Supervised by Patient
Survival. To search for additional sets of genes useful for tumor
classification, we performed SAM (16), using patient survival as
the supervising variable on the data set comprising the 76
carcinomas from which clinical data were available (i.e., exclud-
ing patient H6 and the second tumor in patient 65). Starting with
their expression values from the set of 1,753 genes (14), this
approach resulted in a list of 264 cDNA clones, using a signif-
icance threshold expected to produce fewer than 30 false posi-
tives. This SAM264 clone set was used to perform a hierarchical-
clustering analysis on all samples, and the resulting diagram
showed that almost all of the 264 cDNA clones that were selected
in this analysis fell into three main gene expression clusters, the
luminal!ER! cluster, the basal epithelial cluster that contained
keratins 5 and 17, and the previously described proliferation
cluster (Figs. 7 and 8, which are published as supporting infor-
mation). The branching patterns in the resulting dendrogram
organized the tumors into four main groups. The largest group
(Fig. 7, dark blue labels) consisted of tumors with the luminal!
ER! characteristics and corresponded almost exactly to the
luminal subtype A from Fig. 1. The genes comprising the ERBB2
amplicon from the intrinsic gene list were not included in the
SAM clone set, which resulted in a merging of the ERBB2!
subtype with the basal-like tumors into a larger group (Fig. 7, red
and pink sample names); notably, all but one of the basal-like
tumors clustered together on a distal branch within this larger
group. The luminal subtype C and the normal breast-like group
were seen, whereas the luminal subtype B samples were spilt

between subtypes A and C. In conclusion, 71 of 78 carcinomas
were organized into the same main subtypes when using the list
of 264 survival-correlated cDNA clones as compared with using
the intrinsic set of 456 clones (with only 81 genes overlap).

Correlations to Clinical Outcome. To investigate whether the five
different groups identified by hierarchical clustering may rep-
resent clinically distinct subgroups of patients, univariate sur-
vival analyses comparing the subtypes with respect to overall
survival and relapse-free survival were performed (Fig. 3). For
all of the following analyses, only 49 of the patients from the
prospective study with locally advanced disease and with no
distant metastases were used (see Statistical Analysis section).
Including the two patients with minor metastases did not influ-
ence the outcome of the survival analysis. The Kaplan–Meier
curves based on the subclasses from Fig. 1 showed a highly
significant difference in overall survival between the subtypes
(Fig. 3A, P " 0.01), with the basal-like and ERBB2! subtypes
associated with the shortest survival times. Similar results were
obtained with respect to relapse-free survival (Fig. 3B). These
two tumor subtypes were characterized by distinct variations in
gene expression that were different from the luminal subtype
tumors. Overexpression of the ERBB2 oncoprotein is a well-
known prognostic factor associated with poor survival in breast
cancer, which also was found for the ERBB2! group defined in
this study. The basal-like subtype may represent a different
clinical entity that is associated with shorter survival times and
a high frequency of TP53 mutations. Interestingly, the two
deaths among the T1!T2 tumors (new york 2, new york 3)
withdrawn from the data set for the purpose of the survival
analysis, occurred in this subgroup of tumors; both harbored
mutations in the TP53 gene.

We observed a difference in outcome for tumors classified as
luminal A versus luminal B ! C. Whereas the ER protein value

Fig. 3. Overall and relapse-free survival analysis of the 49 breast cancer patients, uniformly treated in a prospective study, based on different gene expression
classification. (A) Overall survival and (B) relapse-free survival for the five expression-based tumor subtypes based on the classification presented in Fig. 1 (luminals
B and C were considered one group). (C) Overall survival estimated for the six-subtype classification with the three different luminal subtypes presented in Fig.
1. (D) Overall survival based on the five-subtype classification presented in Figs. 2 Lower and 5.
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Figure 3: Survival curves for each subtype [5].

Although these results brought new insights into breast cancer biology, the method suffers from seri-
ous drawbacks [4]:
• The dendrogram was cut subjectively to identify the subtypes, making difficult the implementation

of an automatic tool.
• The hierarchical clustering used in combination with a large number of genes is unstable due to

the curse of dimensionality, making difficult the reproducibility of the results.
• The model fitted by hierarchical clustering does not allow for an easy application to new data, mak-

ing difficult the validation of the method and the classification of a new patient. To circumvent this
difficulty, the authors developed a nearest centroid classifier, called the single sample predictor
(SSP).
• The model fitted from hierarchical clustering or the SSP lead to a crisp partition of the dataset with

no accurate estimation of the classification uncertainty.

In order to address these issues, we sought to develop a novel method for identifying the molec-
ular subtypes in breast cancer. This method, in addition to exhibit several advantages compared
to the hierarchical clustering used in the initial publications, yielded robust classification in several
independent microarray datasets.

2. Materials and Methods

WE recently introduced a novel clustering model to robustly identify the breast cancer molecu-
lar subtypes. This model consists in: (i) identifying gene modules, i.e. sets of genes that are

specifically co-expressed with genes of interest; and (ii) identifying molecular subtypes using a simple
model-based clustering in a low dimensional space defined by these gene modules.

2.1 Gene Modules
The aim of gene modules is the identification of co-expressed genes related to a biological process
of interest. Contrary to the method of Perou and Sorlie et al., we used a priori biological knowledge
to find clusters of co-expressed genes.
The method includes the following steps:
1. Choice of the biological processes of interest (ER, HER2 phenotypes, proliferation, . . . ).
2. Selection of a prototype for each biological process.
• A prototype is a gene known to be related to the biological process of interest (e.g. ESR1 for ER

phenotype or AURKA for proliferation).
3. Identification of the genes specifically co-expressed with each prototype to populate gene modules.
• A gene j is specifically co-expressed with a prototype q if the co-expression of gene j with proto-

type q is statistically higher than with the other prototypes.
4. Finally, a summary of a gene module, called a gene module score, is computed by averaging the

expressions of the genes in the module.

2.2 Model-Based Clustering
We know from early microarray studies that breast cancer is a molecularly heterogeneous disease.
ER and HER2 phenotypes being to be the main discriminators. Moreover, Kapp et al. showed that
robust clusters were only identified using pairs of genes related to ER and HER2 phenotypes [3].

In order to robustly identified the breast cancer subtypes, we introduced a simple model-based clus-
tering (mixture of Gaussians) in a two-dimensional space defined by the ESR1 and ERBB2 module
scores. This model allows for estimating for the tumors, the probability to belong to each subtype.
We used the Bayesian information criterion to select the most likely number of subtypes [2].

We retrieved 15 public microarray datasets of breast cancer patients to validate our model by esti-
mating the prediction strength [6].

3. Results

FROM two large microarray datasets (≈ 600 patients, VDX & NKI),
seven gene modules were built in order to represent key biological

processes in breast cancer : ER phnotype (ESR1), HER2 phenotype
(ERBB2), proliferation (AURKA), immune response (STAT1), angiogen-
esis (VEGF), tumor invasion (PLAU) and apoptosis (CASP3). We found
gene modules of various size. As expected, the largest gene modules are
related to ER phenotype and proliferation. A gene ontology analysis con-
firmed the coherence of the gene modules with respect to the prototypes
or biological processes of interest.

Gene module Size
ESR1 468

AURKA 228
STAT1 94
PLAU 67

ERBB2 27
VEGF 13

CASP3 8

We used the ESR1 and ERBB2 module scores as input space for the model-based clustering to
identify the breast cancer subtypes. We fitted our model on VDX (Figure 4) and validated it on 14
independent datasets (≈ 2700 patients). As sketched by Figure 5, we confirmed that molecular
subtypes exhibit different clinical outcome.
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Figure 4: Model-based clustering fitted on the training set (VDX).

We computed the prediction strengths of our model in all the datasets and compared them to the
estimates obtained for the SSP.

Dataset ER-/HER2- HER2+ ER+/HER2-
VDX 1.00 1.00 1.00
NKI 1.00 1.00 0.99

TBG 1.00 1.00 0.83
UPP 1.00 1.00 0.84
UNT 1.00 0.89 0.94

MAINZ 1.00 1.00 0.91
STNO2 1.00 0.69 0.97

NCI 0.85 0.83 0.93
MSK 1.00 1.00 0.96
STK 1.00 0.91 0.88

DUKE 1.00 0.82 0.92
UNC2 1.00 0.87 0.96

CAL 1.00 1.00 0.95
DUKE2 1.00 0.64 0.95

NCH 1.00 0.82 0.98

Dataset Basal ERBB2 LuminalA LuminalB Normal
VDX 0.86 0.00 0.50 1.00 0.00
NKI 0.97 0.33 0.64 0.54 0.35

TBG 0.82 0.80 0.50 0.54 0.54
UPP 0.51 0.56 0.94 0.52 0.67
UNT 0.39 0.18 0.88 0.45 0.62

MAINZ 0.53 0.00 0.90 0.83 0.00
STNO2 0.71 0.32 0.90 0.42 0.51

NCI 0.85 0.46 1.00 0.00 0.65
MSK 0.72 0.67 0.53 0.83 0.27
STK 1.00 0.00 0.49 0.47 0.46

DUKE 0.55 0.00 0.47 1.00 1.00
UNC2 0.40 0.37 0.98 0.60 0.50

CAL 0.66 0.59 0.53 1.00 0.60
DUKE2 0.97 1.00 0.46 1.00 0.90

NCH 0.19 0.36 0.88 0.32 0.42
Table 1: Prediction strength for the model-based clustering (left) and the SSP (right).
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Figure 5: Survival curves for each sub-
type.

4. Conclusions

OUR novel method has several advantages com-
pared to the previously published hierarchical

clustering model (SSP): (i) the low-dimensionality of
the input space (two dimensions) increases the sta-
bility of the clustering and facilitates the visualization
of the clustering results; (ii) the model is easily ap-
plicable to new data; (iii) the model returns probabil-
ities for a patient to belong to each subtype, facili-
tating the interpretation of the results (classification
uncertainty). Moreover, this novel clustering model
yields robust classifications in numerous microarray
datasets. Given its easy applicability and its good
performance, this new model could be used by doc-
tors in order to study the prognosis and the effect of
treatments with respect to the molecular subtypes of
breast cancer.

This work was done in collaboration with the Swiss
Institute for Experimental Cancer Research (Bioin-
formatics Core Facility headed by Mauro Delorenzi)
and published in [1].
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