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1. Background

DURING the last years, several groups have identified prognostic gene expression signatures
[11, 12, 9, 1, 3] that consistently outperform traditional clinical parameters (e.g. tumor size, age,

and histological grade) and guidelines (e.g. Adjuvant! Online, aka AOL [6]). Previous publications
reported that gene signatures exhibited similar classification and performance for survival prediction
[4, 10]. Although these studies yielded promising conclusions, some issues remained open:
• The dataset which was considered for these studies was the one employed also for the identifica-

tion of some gene sets and as such it could not be considered as an independent test set.
• Since some of these signatures were developed on another platform, the initial algorithms could

not be applied due to different or missing probe sequences and difference in gene expressions
measurement.

Therefore, these gene signatures were never compared on an independent population of untreated
breast cancer patients, where classification was computed using the original algorithms and microar-
ray platforms.

2. Materials and Methods

WE compared three gene expression signatures, the GENE70 [11], the GENE76 [12] and the GGI
[9] signatures, in terms of predicting time to distant metastasis (TDM), distant metastasis free

survival (DMFS), and overall survival (OS) for the individual patient. To this end, we used the previ-
ously published TRANSBIG independent validation series of node-negative untreated primary breast
cancer patients [1, 3].
We used Cramer’s V statistic [2] to quantify the strength of the association between two gene sig-
nature classifications, i.e. the low- and high-risk groups of patients. We estimated hazard ratios
between the low- and high-risk groups using the Cox’s proportional hazards model. We used the
concordance index [5] to quantify the predictive ability of a survival model. Standard errors, confi-
dence intervals and p-values for the concordance index were computed making an assumption of
asymptotic normality [7].
The statistical performance comparison between the different gene signatures in terms of hazard
ratios and concordance indices were performed using a Student t test for two dependent.

3. Results

THE classification of the tumor samples according to the prognostic signatures is illustrated in Fig-
ure 1. We observed agreement in prediction in 137/198 patients (69%) when considering the

three signatures. When comparing the signatures two by two, agreement in prediction was higher
with the GENE70 and the GGI signatures, i.e. 89% (Cramer’s V of 0.75), compared to 71% (Cramer’s
V of 0.33) and 78% (Cramer’s V of 0.49) for the GENE76 and the GENE70 signatures, and the
GENE76 and the GGI signatures, respectively.
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Figure 1: Venn diagram illustrating the classification of the tumor sample according to the prognostic
signatures. The high-risk patients are in red and the low-riks patients are in blue.

The three signatures had similar capabilities of predicting TDM, DMFS, and OS in adding significant
prognostic information to that provided by the classical parameters. Figure 2 shows the concordance
indices and the hazard ratios for the three gene signatures and AOL that is based on the classical
parameters. The three gene signatures exhibited similar performances for survival prediction. Indeed
the statistical performance comparison allowed us to show that none of the gene signatures were
significantly better than another, although GENE76 tended to be worst. On the contrary, GENE70
and GGI were significantly better than AOL and the same trend was observed for GENE76.
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Figure 2: Forest plots (and 95% CI) for the three gene signatures and the Adjuvant! Online classifi-
cation showing the concordance indices at left, and the log2 hazard ratios at right.

Figure 3 shows the Kaplan-Meier survival curves for DMFS for the concordant and discordant cases
of all the gene signature pairwise comparisons. We can see that most of the discordant cases were
patients with intermediate survival, i.e. who developed a distant metastasis after 5 years. Moreover,
we observed again the high concordance between the three gene signature classifications, especially
for GENE70 an GGI.

The analyses were performed for TDM and OS as well with similar results leading to the same obser-
vations (data not shown).

4. Conclusions

DESPITE the difference in development of these signatures and the small overlap in gene identity,
they showed similar prognostic performance, confirming that these prognostic signatures are of

wide clinical relevance. Moreover, the nature of the GGI, i.e. a signed average of expressions of pro-
liferation genes, suggested that proliferation might be the common driving force of several prognostic
signatures.

Until now, the generation of the prognostic signatures has been done on global sets of breast cancer
patients. However, since it is clear that breast cancer is a molecular heterogeneous disease, with
subgroups defined primarily by the estrogen (ER) and HER2 receptors, prognosis could be refined to
these molecularly homogeneous subgroups of patients. We showed for example in our meta-analysis
that proliferation is the strongest parameter predicting clinical outcome in the ER+/HER2- subgroup
of patients only, whereas immune response and tumor invasion appear to be the main biological pro-
cesses associated with prognosis in the ER-/HER2- and HER2+ subgroups respectively [8]. A new
gene classifier taking into account these different subgroups of breast cancer will be the subject of
our future research.
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GENE70 vs GENE76
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High/High

0 2 4 6 8 10

Time (years)

No. At Risk

Low/Low 32 32 31 31 30 25

Low/High 34 34 34 32 32 30

High/Low 23 23 23 22 17 13

High/High 109 97 82 70 61 55
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GENE70 vs GGI

Low/Low
Low/High
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High/High

0 2 4 6 8 10

Time (years)

No. At Risk

Low/Low 55 55 53 52 51 45

Low/High 11 11 11 11 11 10

High/Low 11 11 11 11 10 8

High/High 121 108 93 81 68 60
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GENE76 vs GGI

Low/Low
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High/High

0 2 4 6 8 10

Time (years)

No. At Risk

Low/Low 39 39 38 37 35 29

Low/High 16 16 16 16 12 9

High/Low 27 27 27 26 26 24

High/High 116 104 89 76 67 61

Figure 3: Kaplan-Meier survival curves for distant metastasis free survival for: GENE70 vs GENE76 at left, GENE70 vs GGI at the middle, and GENE76 vs GGI at right.

References

[1] M. Buyse, S. Loi, L. van’t Veer, et al. Validation and clinical utility of a 70-gene prognostic signature for patients with
node-negative breast cancer. Journal of National Cancer Institute, 98:1183–1192, 2006.

[2] H. Cramer. Mathematical Methods of Statistics. Princeton University Press, 1999.

[3] C. Desmedt, F. Piette, S. Loi, et al. Strong time-dependency of the 76-gene prognostic signature for node-
negative breast cancer patients in the transbig multi-centre independent validation series. Clinical Cancer Research,
13(11):3207–3214, 2007.

[4] C. Fan, D. S. Oh, L. Wessels, et al. Concordance among gene-expression–based predictors for breast cancer. New
England Journal of Medicine, 355:560–569, 2006.

[5] F. E. Harrell Jr, K. L. Lee, and D. B. Mark. Tutorial in biostatistics: multivariable prognostic models: issues in de-
veloping models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine,
15:361–387, 1996.

[6] I. A. Olivotto, C. D. Bajdik, P. M. Ravdin, et al. Population-based validation of the prognostic model adjuvant! for early
breast cancer. Journal of Clinical Oncology, 23(12):2716–2725, 2005.

[7] M. J. Pencina and R. B. D’Agostinno. Overall C as a measure of discrimination in survival analysis: model specic
population value and condence interval estimation. Statistics in Medicine, 23:2109–2123, 2004.

[8] C. Sotiriou, C. Desmedt, B. Haibe-Kains, et al. Biological mechanisms that trigger breast cancer (bc) tumor progre-
sion are molecular subtype dependent. In American Society of Clinical Oncology, 10581. 2007.

[9] C. Sotiriou, P. Wirapati, S. M. Loi, et al. Gene expression profiling in breast cancer: Understanding the molecular
basis of histologic grade to improve prognosis. Journal of National Cancer Institute, 98:262–272, 2006.

[10] M. Thomassen, Q. Tan, F. Eiriksdottir, et al. Comparison of gene sets for expression profiling: Prediction of metastasis
from low-malignant breast cancer. Clinical Cancer Research, 13(18):5355–5360, 2007.

[11] L. J. van’t Veer, H. Dai, M. J. van de Vijver, et al. Gene expression profiling predicts clinical outcome of breast cancer.
Nature, 415:530–536, 2002.

[12] Y. Wang, J. G. Klijn, Y. Zhang, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative
primary breast cancer. Lancet, 365:671–679, 2005.
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