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1. Introduction

MAJORITY of early-stage breast cancers express estrogen receptors (ER) and receive tamoxifen
in the adjuvant setting. Yet up to 40% of these patients will relapse on tamoxifen and develop

incurable metastatic disease. Recent evidence from large randomised controlled trials exploring the
role of aromatase inhibitors (AI) in the adjuvant setting shows a benefit from the novel strategy, how-
ever, the optimal sequence and duration of AI/Tamoxifen treatment is unknown. Therefore, it is vital
that we learn to identify those women at higher risk of tamoxifen resistance. Our aim is to identify
genes that could predict for this subset of women.

2. Materials

GENE expression profiles are determined from 255 tamoxifen-only treated ER positive early stage
breast cancer using Affymetrix U133 A, B and Plus2 chips (44928 probes in common). The pa-

tients come from 3 different institutions (called OXFT, KIT and GUYT). 27% of them developed distant
recurrence within 13 years.

3. Methods

WE introduce a complete gene expression analysis design including
data transformation, feature selection, model fitting and validation

steps.

3.1 Data Transformation
After the RMA normalization procedure [5] of the raw gene expressions,
a data transformation is performed in order to reduce the dimensionality
of the problem and to cluster highly correlated variables. This transforma-
tion consists in a hierarchical clustering [3, 2] based on an independent
dataset (137 untreated breast cancer patients, 44928 probes). Each clus-
ter of probes is summarized in a new variable called metagene.
The computed metagenes (110) are well conserved across datasets (see
Figure 1) and are poorly correlated (see Figure 2).
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Figure 1: Heatmap of probes composing
some key metagenes in the two datasets.
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Figure 2: Pairwise correlation between
metagenes in the tamoxifen treated dataset.

3.2 Feature Selection
The goal of feature selection is the fast selection of the relevant features. The method consists in
a partial ranking based on univariate Cox model [1] assessing the power of survival prediction of a
metagene. Only the top n metagenes are used to fit a model (n is called the signature size).

3.3 Model Fitting
The model is the average of the univariate Cox models computed in the feature selection step. Such
a model is simple to interpret and its variance is low [6]. Finally, the continuous score generated by
the model represents the risk of a patient to develop a distant metastasis.

4. Results

WE assess the performance of the method on the basis of cross-validation and its stability in
selection of the relevant metagenes used to fit a classification model.

4.1 Validation
The method performance (called COXSM13) is estimated using a cross-validation scheme [7]. A
leave-one-out strategy is adopted for assessing the classification accuracy and a multiple 10-fold
cross-validation is adopted to study the stability of the feature selection.

4.2 Classification
We use several performance estimators :

• Time-dependent ROC curves [4] : extension of traditional ROC curves dealing with survival data
(see Figure 3).

• Kaplan-Meier estimator and logrank test to assess the difference in survival between low and high-
risk group of patients (see Figure 4).

• Hazard ratio : relative hazard between two groups using Cox model with one dummy variable (see
Table 1).
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Figure 3: Time-dependent ROC curve of the
classification (using leave-one-out).
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Figure 4: Survival curves of the low and
high-risk groups of patients.

Training set Test set Hazard ratio Logrank p-value
OXFT (99/19) KIT/GUYT (156/48) 2.17 [1.2,3.91] 8.46e-3
KIT (69/20) OXFT/GUYT (186/47) 4.07 [2.23,7.41] 7.98e-7
GUYT (87/28) OXFT/KIT (168/39) 5.93 [3,11.75] 1.24e-9
KIT/GUYT (156/48) OXFT (99/19) 14.59 [5.38,39.52] 1.74e-11
OXFT/GUYT (186/47) KIT (69/20) 3.44 [1.36,8.67] 5.27e-3
OXFT/KIT (168/39) GUYT (87/28) 2.23 [1.05,4.71] 3.11e-2

Leave-one-out c.v. 3.85 [2.32;6.41] 1.04e-7
Multiple 10-fold c.v. 3.28 [2.66,3.84] 9.04e-7

Table 1: Hazard ratio and logrank p-values for different validation schemes.

4.3 Further Analyses
The impact of the signature size on stability of the feature selection method is studied empirically
(see Figure 5 and 6). A new statistic, called area under partial ranking, allows to measure the stability
ranging from 0 (a set of features is never selected) to 1 (the same set of features is selected every
time).
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Figure 5: Example of area under partial
ranking. The bars represent the selection
frequency for a metagene.
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Figure 6: Evolution of the feature selec-
tion stability wrt the signature size.

5. Conclusion

THESE RESULTS suggest that a group of genes can identify breast cancer patients at risk of early
distant relapse on Tamoxifen. These patients could be the ideal candidates for upfront AIs, while

the others would be considered for sequential Tamoxifen/AI. This hypothesis will be tested in an up-
coming prospective clinical trial MINDACT.

This work was presented in [8].
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