Gene Expression Analysis :

Tamoxifen Resistance in Breast Cancer

B. Haibe-Kains!?  G. Bontempi?  C. Sotiriou!

1Unité Microarray, Institut Jules Bordet

2Machine Learning Group, Université Libre de Bruxelles

September 29, 2006

Benjamin Haibe-Kains (ULB) IRIDIA Microarray Meeting September 29, 2006 1/21



Biological Question and Datasets

@ Biological question : " Can we predict which patients will resist to the
Tamoxifen treatment in an adjuvant setting 7"

@ Tamoxifen treated patients coming from 3 different institutions, can
we pool the data ?

> gene-expressions : normalization
» survival data : model fitting.

@ 255 eligible patients (samples)
@ 44928 probes (variables)
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Survival Data
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In order to keep the design simple,
we fix :

@ the number of models to
aggregate (see feature selection
step)

@ the cutoff selection (see the
model fitting step).
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Normalization

@ Goal : reduce the systematic variability between samples.

@ Method : normalization.

Procedure

© Background correction, expression quantification and normalization
were performed using Robust Multichip Average
[Irizarry et al., 2003, Bolstad et al., 2003].

@ RMA performed separately per population

© Gene median centering per population.

w No artifact highlighted by unsupervised clustering.
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Data Transformation

@ Goal : reduce the dimensionality of the problem.

@ Method : cluster highly correlated variables.

Procedure

@ Use of an independent dataset of untreated patients (137 patients,
44929 probes)

@ Filtering of the less variant probes.

© Hierarchical clustering (average linkage, uncentered Pearson
correlation).

@ Cut the tree at height 0.5.
© Keep only clusters with at least 5 known UniGenes.

w 110 clusters where half are significantly associated with survival (on the
Tamoxifen dataset).
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Data Transformation

Feature Pairwise Correlation

Histogram of pairwize correlations
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Feature Selection

@ Goal : fast selection of the relevant features.

@ Method : ranking based on univariate model significance.

Procedure

© For each feature, compute the likelihood ratio test of the univariate
Cox model.

@ Perform the ranking based on the p-value.
© Select the top n features (n is fixed).

w ) features are selected.
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Model Fitting

o Goal : fit a simple model with low variance.

@ Method : aggregation of n univariate classifiers.

Procedure

© The univariate models for the n top features were computed during
the previous step.

@ Compute a linear combination of these classifiers with weight of 1.

w Continuous score representing the risk of a patient.
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Performance Assessment

@ We do binary classification from survival data.

@ We can not use traditional statistics (sensitivity, specificity, x? test,

)

= Adaptation of such estimators to deal with censoring.
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Survival Statistics for 2 Groups

There exist several ways to assess difference in survival between 2 groups

o Kaplan-Meier estimator and Logrank test :

» KM method estimates survivor function such that
# death at time t;

o
st =J] - n—{].
Jyst —

# at risk at time t;
> logrank method tests Hy : Si(t) = S»(t) Vt > 0.

e Hazard ratio (HR) : relative hazard between 2 groups using Cox
model with one dummy variable (G = 0/1 for low and high-risk
groups).

@ Time-dependent ROC Curves and area under ROC curves :
extension of traditional ROC curves dealing with censoring data.
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Performance in LOO

Logrank and Time-Dependent ROC Curve

Survival curves Tamoxifen treated patients
COXSM13 (LOO classification) time-dependent ROC curves (5 yrs)
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Performance

Hazard Ratio and Logrank

Training set Test set Hazard ratio Log-rank p
OXFT (99/19) KIT/GUYT (156/48) 2.17 [1.2,3.91] 8.46e-3
KIT (69/20) OXFT/GUYT (186/47) | 4.07 [2.23,7.41] 7.98e-7
GUYT (87/28) OXFT/KIT (168/39) 5.93 [3,11.75] 1.24e-9
KIT/GUYT (156/48) OXFT (99/19) 14.59 [5.38,39.52] | 1.74e-11
OXFT/GUYT (186/47) | KIT (69/20) 3.44 [1.36,8.67] 5.27e-3
OXFT/KIT (168/39) GUYT (87/28) 2.23 [1.05,4.71] 3.11e-2
Leave-one-out c.v. 3.85 [2.32;6.41] 1.04e-7
Multiple 10-fold c.v. 3.28 [2.66,3.84] 9.04e-7
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Performance wrt Signature Size

Hazard ratio (CI) wrt signature size Logrank p-value wrt signature size
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Performance vs Random

@ At level of performance estimation :

» 1000 random permutations of the labels and perform the whole
procedure
= only 1% of such classifications gives better discrimnation.

@ At level of feature selection :
» random selection of n features
= most of the feature selection result in good classifiers because of the
high proportion of relevant features.

» use of the "anti"-ranking
= very poor performance.
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Feature Selection Stability

Signature stabilit
COXSM13 (10FOLDCV)
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Feature Selection Stability

Signature stabilit
COXSM?13 (10FOLDCV)
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Stability wrt Signature Size

Partial ranking stability wrt signature size

10FOLD CV
gga @ n=13 seems to be a
£ good trade-off between
a
I the number of selected
3 features (signature) and
= its stability.
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Final Model

@ Use the same method with all the samples.
@ The result is a model with a set of features.

@ The model and the features are expected from previous results.
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@ Study the stability of the initial clustering (data transformation step).

@ Use of Gene Ontology to study the signature in a biological point of
view.

@ Objective comparison with the traditional clinical variables.
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Current Research Interests

@ Meta-analysis.

@ Ranking statistics.

Input space transformation (using biological knowledge, such that
gene list enrichment or GO).

Optimization framework for binary classification of survival data.
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Thank you for your attention.
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