Gene Expression Analysis:
Tamoxifen Resistance in Breast Cancer

B. Haibe-Kains1,2 G. Bontempi2 C. Sotiriou1

1Unité Microarray, Institut Jules Bordet
2Machine Learning Group, Université Libre de Bruxelles

September 29, 2006
Biological question: "Can we predict which patients will resist to the Tamoxifen treatment in an adjuvant setting?"

Tamoxifen treated patients coming from 3 different institutions, can we pool the data?
- gene-expressions: normalization
- survival data: model fitting.

255 eligible patients (samples)
44928 probes (variables)
Survival Data

Tamoxifen treated patients survival curves

Tamoxifen treated patients hazard functions

Benjamin Haibe-Kains (ULB) IRIDIA Microarray Meeting September 29, 2006 3 / 21
In order to keep the design simple, we fix:

- the number of models to aggregate (see feature selection step)
- the cutoff selection (see the model fitting step).
Goal: reduce the systematic variability between samples.
Method: normalization.

Procedure
1. Background correction, expression quantification and normalization were performed using Robust Multichip Average [Irizarry et al., 2003, Bolstad et al., 2003].
2. RMA performed separately per population
3. Gene median centering per population.

⇒ No artifact highlighted by unsupervised clustering.
Goal: reduce the dimensionality of the problem.
Method: cluster highly correlated variables.

Procedure

1. Use of an independent dataset of untreated patients (137 patients, 44929 probes)
2. Filtering of the less variant probes.
3. Hierarchical clustering (average linkage, uncentered Pearson correlation).
4. Cut the tree at height 0.5.
5. Keep only clusters with at least 5 known UniGenes.

110 clusters where half are significantly associated with survival (on the Tamoxifen dataset).
Data Transformation

Feature Pairwise Correlation

Histogram of pairwise correlations

- Mean: 0.097
- Median: 0.0342
- Standard deviation: 0.328
- Range: [-0.651, 1]

Benjamin Haibe-Kains (ULB)
IRIDIA Microarray Meeting
September 29, 2006
Feature Selection

- Goal: fast selection of the relevant features.
- Method: ranking based on univariate model significance.

Procedure

1. For each feature, compute the likelihood ratio test of the univariate Cox model.
2. Perform the ranking based on the p-value.
3. Select the top n features (n is fixed).

n features are selected.
Goal: fit a simple model with low variance.

Method: aggregation of n univariate classifiers.

Procedure

1. The univariate models for the n top features were computed during the previous step.

2. Compute a linear combination of these classifiers with weight of 1.

Continuous score representing the risk of a patient.
We do binary classification from survival data.

We can not use traditional statistics (sensitivity, specificity, χ^2 test, ...)

Adaptation of such estimators to deal with censoring.
There exist several ways to assess difference in survival between 2 groups

- **Kaplan-Meier estimator** and **Logrank test**:
 - KM method estimates survivor function such that
 \[
 \hat{S}(t) = \prod_{j: t_j \leq t} \left[1 - \frac{d_j}{n_j} \right].
 \]
 # death at time \(t_j \)
 # at risk at time \(t_j \)
 - logrank method tests \(H_0 : S_1(t) = S_2(t) \ \forall t \geq 0. \)

- **Hazard ratio** (HR): relative hazard between 2 groups using Cox model with one dummy variable (\(G = 0/1 \) for low and high-risk groups).

- **Time-dependent ROC Curves** and area under ROC curves: extension of traditional ROC curves dealing with censoring data.
Performance in LOO
Logrank and Time-Dependent ROC Curve

Survival curves
COXSM13 (LOO classification)

Tamoxifen treated patients
time-dependent ROC curves (5 yrs)

logrank = 1.041e−07
loglik = 1.0662e−06

low-risk 179(33)
high-risk 76(34)

COXSM13 (AUC=0.767)
Performance

Hazard Ratio and Logrank

<table>
<thead>
<tr>
<th>Training set</th>
<th>Test set</th>
<th>Hazard ratio</th>
<th>Log-rank p</th>
</tr>
</thead>
<tbody>
<tr>
<td>OXFT (99/19)</td>
<td>KIT/GUYT (156/48)</td>
<td>2.17 [1.2,3.91]</td>
<td>8.46e-3</td>
</tr>
<tr>
<td>KIT (69/20)</td>
<td>OXFT/GUYT (186/47)</td>
<td>4.07 [2.23,7.41]</td>
<td>7.98e-7</td>
</tr>
<tr>
<td>GUYT (87/28)</td>
<td>OXFT/KIT (168/39)</td>
<td>5.93 [3,11.75]</td>
<td>1.24e-9</td>
</tr>
<tr>
<td>KIT/GUYT (156/48)</td>
<td>OXFT (99/19)</td>
<td>14.59 [5.38,39.52]</td>
<td>1.74e-11</td>
</tr>
<tr>
<td>OXFT/GUYT (186/47)</td>
<td>KIT (69/20)</td>
<td>3.44 [1.36,8.67]</td>
<td>5.27e-3</td>
</tr>
<tr>
<td>OXFT/KIT (168/39)</td>
<td>GUYT (87/28)</td>
<td>2.23 [1.05,4.71]</td>
<td>3.11e-2</td>
</tr>
</tbody>
</table>

Leave-one-out c.v.

- Hazard ratio: 3.85 [2.32;6.41]
 - Log-rank p: 1.04e-7

Multiple 10-fold c.v.

- Hazard ratio: 3.28 [2.66,3.84]
 - Log-rank p: 9.04e-7
Performance wrt Signature Size

Hazard ratio (CI) wrt signature size
10FOLD CV

Logrank p-value wrt signature size
10FOLD CV
Performance vs Random

- At level of performance estimation:
 - 1000 random permutations of the labels and perform the whole procedure
 - only 1% of such classifications gives better discrimination.

- At level of feature selection:
 - random selection of n features
 - most of the feature selection result in good classifiers because of the high proportion of relevant features.
 - use of the "anti"-ranking
 - very poor performance.
Over the multiple 10-fold cross-validations, several top n features are selected. If the same set of features are selected every time, we see high relative frequency for these features.
Over the multiple 10-fold cross-validations, several top n features are selected.

If the same set of features are selected every time, we see high relative frequency for these features.

We can compute the area under partial ranking w.r.t. the number of selected features.
$n = 13$ seems to be a good trade-off between the number of selected features (signature) and its stability.
Final Model

- Use the same method with all the samples.
- The result is a model with a set of features.
- The model and the features are expected from previous results.
Future Works

- Study the stability of the initial clustering (data transformation step).

- Use of Gene Ontology to study the signature in a biological point of view.

- Objective comparison with the traditional clinical variables.
Current Research Interests

- Meta-analysis.
- Ranking statistics.
- Input space transformation (using biological knowledge, such that gene list enrichment or GO).
- Optimization framework for binary classification of survival data.
Thank you for your attention.