

Use of Machine Learning in Bioinformatics to Identify Prognostic and Predictive Molecular Signatures in Human Breast Cancer

Benjamin Haibe-Kains

bhaibeka@ulb.ac.be

Université Libre de Bruxelles

Institut Jules Bordet

Table of Contents

- Thesis and Contributions
- Machine Learning in Bioinformatics
- Breast Cancer
 - TAMOXIFEN[©] Resistance
- Methods and Results
 - Methodology
 - Feature Selection
 - Cutoff Selection
 - Validation on Test Set
 - Gene Ontology
- Conclusion
 - Future Works

Thesis and Contributions

Thesis and Contributions

- Thesis concerns cancer classification using machine learning methods and survival analysis based on gene expression data.
- My contributions :
 - Methodology (Chapter 4)
 - Preprocessing methods (Sections 4.2.2 and 4.2.3)
 - Feature selection (Section 4.3)
 - Classifier validation on different microarray platforms (Section 4.3.2.1)
 - Time-dependent ROC curve (Section 4.5.4)
 - Cutoff selection (Section 4.4.2)

Machine Learning in Bioinformatics

Machine Learning in Bioinformatics

- Machine Learning is a field of artificial intelligence related to data mining and statistics, involving learning from data.
- Bioinformatics is the use of techniques from applied mathematics, informatics, statistics, and computer science to solve biological problems.
- Increasing use of Machine Learning (ML) methods in Bioinformatics over time. This includes cancer classification, gene regulation networks, protein structure, etc.

Example of ML in Bioinformatics

Breast Cancer

Breast Cancer

- The cancer is a genetic disease at the level of the cell and affect different types of organs as breast.
- Current classifications have serious limitations.
 Tumors with similar histological criteria
 - can follow significantly different clinical courses (prognosis)
 - can show different responses to therapy (prediction).
- Importance of studying multiple genetic alterations in cancer ⇒ use of microarray technology.

Breast Cancer and Microarray

- The microarray technology provides the opportunity of correlating genome-wide expressions with the cancer evolution with/without therapies.
- It is expected that variations in gene expression patterns in different tumors could provide a molecular signature of each tumor, and that the tumors could be classified into subtypes based solely on the difference of expression patterns.

TAMOXIFEN[©] Resistance

- Joint project with Microarray Unit headed by Dr. Sotiriou.
- Motivations :
 - 40% of patients receiving TAMOXIFEN[©] will relapse and develop incurable metastatic disease
 - the goal of the data mining analysis is to identify those patients at higher risk of TAMOXIFEN[©] resistance on the basis of their genetic profile.

Loi, S., Piccart, M., Haibe-Kains, B., Desmedt, C., A.Harris, Bergh, J., Ellis, P., Miller, L., Liu, E., and Sotiriou, C. (2005). *Prediction of early distant relapses on tamoxifen in early-stage breast cancer : a potential tool for adjuvant aromatase inhibitor tailoring*. In Proceedings of ASCO Meeting, abstract 509.

Methods and Results

Methodology

Modeling Survival Data

- We use the semiparametric regression model proposed in [Cox, 1972] to estimate hazard functions given a dataset.
 - no assumption about the probability distribution of survival times (proportional hazards model)
 - efficient estimation method (maximum partial likelihood).
- Hazard function :

$$h_i(t) = \underbrace{\lambda_0(t)}_{\text{baseline hazard function}} \exp \underbrace{\left(\beta_1 x_{1i} + \dots + \beta_n x_{ni}\right)}_{\text{risk score}}$$

where β_j are the coefficients to estimate and x_{ji} are the gene expressions

Maximum Partial Likelihood

• Basic model : $h_i(t) = \lambda_0(t) \exp(\beta_1 x_{1i} + \dots + \beta_n x_{ni})$

Proportional hazards model :

$$\frac{h_i(t)}{h_j(t)} = \exp\{\beta_1(x_{1i} - x_{1j}) + \dots + \beta_n(x_{ni} - x_{nj})\}$$

N

i=1

 \blacktriangleright $\lambda_0(t)$ cancels out.

• Partial likelihood function : $PL = \prod L_i$

where
$$L_i = \frac{h_i(t_j)}{\sum_{k \in at \ risk} h_k(t_j)}$$
.

Feature Selection

- Microarray data characteristics
 - high feature/sample ratio : thousands of probesets (up to 50,000) and hundreds of patients
 - highly correlated features : co-regulation of many genes.
- Potential benefits of feature selection [Guyon and Elisseeff, 2003]
 - facilitating data visualization and understanding
 - reducing measurement and storage requirements
 - reducing training and computation time
 - defying the curse of dimensionality to improve prediction performance.

Variable Ranking

Variable ranking based on univariate Cox model.

Feature Construction

- Hierarchical clustering to compute cluster centroids of highly correlated probesets previously selected by variable ranking.
- Test different number of clusters.
- For each number of clusters
 - compute cluster centroids
 - estimation of performance by 10-fold cross-validation using multivariate Cox model.

Hierarchical Clustering

- Common clustering method [Hartigan, 1975;
 Eisen et al., 1998].
- Organizing probesets in a hierarchical binary tree (dendrogram) based on their degree of similarity.

- Metric of similarity : uncentered Pearson correlation.
- Linkage : complete linkage.

Number of Clusters

Performance Estimate

- -(normalized)
 logLikelihood is the error measure.
- dashed line is the training error.
- solid line is the test error.
- vertical dashed line is the best number of clusters (2).

Final Model

- Fitting a multivariate Cox model using all the training set (OXFT).
- Risk score computation :

$$rs_i = \sum_{j=1}^C \hat{\beta}_j c_{ji}$$

where rs_i is the risk score of patient i, $\hat{\beta}_j$ are the estimated coefficients, C is the number of clusters and c_{ji} are the cluster centroids.

Survival Statistics for 2 groups

There exist several ways to assess difference in survival between 2 groups

- Kaplan-Meier estimator and Logrank test :
 - KM method estimates survivor function such that

death at time t.

$$\widehat{S}(t) = \prod_{j:t_j \le t} \left[1 - \frac{d_j}{\underbrace{n_j}}\right].$$
at risk at time t_j

• logrank method tests H_0 : $S_1(t) = S_2(t) \ \forall t \ge 0$.

• Hazard ratio (HR) : relative hazard^a between 2 groups using Cox model with one dummy variable (G = 0/1 for low and high-risk groups).

 a HR = 1 means no difference in survival between 2 groups.

Cutoff Selection

Algorithm :

- 1. Consider only the training set.
- 2. Keep only cutoffs which leave at least 25% of patients in one group.
- 3. Keep only cutoffs which have not 1 in 95% CI for HR.
- 4. Select the cutoff with the lowest proportion of DMFS^a at 3 years in the low-risk group and the highest HR.

Results : cutoff = 0.93 with hazard ratio = 60.42 (95% CI [7.99, 456,59]), proportion of DMFS = 0% and 67.6% (67/99) of patients in low-risk group.

^aDistant Metastasis Free Survival.

KM Survival Curves

Benjamin Haibe-Kains

Thesis Presentation - p.24/33

Validation on Test Set

 Using the same formula to compute the risk score and the same cutoff in the independent test set (KIT and GUYT), we have

hazard ratio = 2.44 (95% CI [1.38, 4.31])

- proportion of DMFS = 8% in the low-risk group
- ▲ 64.7% (101/156) of patients in low-risk group.

➡ significant difference in survival between low and high-risk groups in the test set.

KM Survival Curves

Time

Gene Ontology

Lacroix, M., Haibe-Kains, B., Laes, J. F., Hennuy, B., Lallemand, F., Gonze, I., Cardoso, F., Piccart, M., Leclercq, G., and Sotiriou, C. (2004). *Gene regulation by phorbol 12-myristate 13-acetate (PMA) in two highly different breast cancer cell lines*. Oncology Report, 12(4):701-707.

Conclusion

Conclusion

- New methodology covering the whole range of microarray analysis
 - machine learning methods (e.g. feature selection, cross-validation)
 - well-established survival methods (e.g. Cox model, survival statistics).
- Final classifier remaining biologically interpretable.
- Potential robustness for validation on different microarray platforms.
- Successful test on real data dealing with the TAMOXIFEN[©] resistance of breast cancer patients.

Future Works

- Impact and implementation of preprocessing methods on specific computer architectures (e.g. computers cluster).
- Study of variance of variable ranking.
- Study of penalized Cox model [Tibshirani, 1997; Gui and Li, 2004]
- Alternative methods for feature construction.
- Study of the classifier robustness with the loss of one or more probesets (validation on different microarray platforms).

Future Works(2)

- Multiple random validation strategy [Michiels et al., 2005].
- Comparison with binary classification techniques
 [Dudoit et al., 2002; Haibe-Kains, 2004].
- Use of Gene Ontology to infer biological knowledge.
- Comparison with traditional histological criteria.
- Comparison with other molecular signatures [Paik et al., 2004; Ma et al., 2004].

Links

Personal homepage :

http://www.ulb.ac.be/di/map/bhaibeka/.

Microarray Unit :

http://www.bordet.be/servmed/array/.

Machine Learning Group :

http://www.ulb.ac.be/di/mlg.

DEA/DES in Bioinformatics :

http://www.bioinfomaster.ulb.ac.be/.

Thanks for your attention

Benjamin Haibe-Kains

References

- Bolstad, B. M., Irizarry, R. A., Astrand, M., and TP, T. S. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. *Bioinformatics*, 19(2):185–193.
- Collett, D. (2003). *Modelling Survival Data in Medical Research*. Chapman and Hall, second edition edition.
- Cox, D. R. (1972). Regression models and life tables. *Journal* of the Royal Statistical Society Series B, 34:187–220.
- Dudoit, S., Fridlyand, J., and Speed, T. P. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. *Journal of the American Statistical Association*, 97(457):77–87.
- Eisen, M., Spellman, P., Brown, P., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. *PNAS*, 95:14863–14868.
- Gui, J. and Li, H. (2004). Penalized cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. *Center for Bioinformatics and Molecular Biostatistic, paper L1Cox.* http://repositories.cdlib.org/cbmb/L1Cox.

- Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. *Journal of Machine Learning Research*, 3:1157–1182.
- Haibe-Kains, B. (2004). Breast cancer diagnosis using microarray. Master's thesis, ULB.

Hartigan, J. A. (1975). *Clustering Algorithms*. Wiley.

- Ma, X. J., Wang, Z., Ryan, P. D., Isakoff, S. J., Barmettler, A., Fuller, A., Muir, B., Mohapatra, G., Salunga, R., Tuggle, J. T., Tran, Y., Tran, D., Tassin, A., Amon, P., Wang, W., Wang, W., Enright, E., Stecker, K., Estepa-Sabal, E., Smith, B., Younger, J., Balis, U., Michaelson, J., Bhan, A., Habion, K., Baer, T. M., Brugge, J., Haber, D. A., Erlander, M. G., and Sgroi, D. S. (2004). A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. *Cancer Cell*, 5:607–616.
- Michiels, S., Koscielny, S., and Hill, C. (2005). Prediction of cancer outcome with microarrays: a multiple radom validation strategy. *Lancet*, 365:488–492.
- Paik, S., Shak, S., Tang, G., Kim, C., Bakker, J., Cronin, M., Baehner, F. L., Walker, M. G., Watson, D., Park, T., Hiller, W., Fisher, E. R., Wickerham, D. L., Bryant, J., and Wolmark, N. (2004). A multigene assay to predict recurrence

of tamoxifen-treated, node-negative breast cancer. *New England Journal of Medecine*, (351):2817–2826.

Tibshirani, R. (1997). The lasso method for variable selection in the cox model. *Statistics in Medecine*, 16:385–395.

Appendix

Microarray Unit

- Laboratory of the Institut Jules Bordet (IJB).
- 6 researchers (funds coming from IJB, Télévie, FNRS, etc.).
- Numerous running projects concerning the breast cancer :
 - Appearance of distant metastases
 - Response to therapies
 - Refinement of histological criteria by microarray, etc.
- Scientific collaborations :
 - Singapore Lab (Lence Miller and Edison)
 - Swiss Institute of Bioinformatics, etc.

Microarray Unit(2)

Biological and medical facilities :

- AFFYMETRIX[©] and cDNA microarray platforms
- all the kits necessary to check the quality of the biological samples (AGILENT[©]) and to perform microarray experiments
- access to the tumor bank of IJB.
- Computing facilities :
 - 2 workstations (P4 3.6 GHz, 4 Go RAM)
 - access to LIT5 cluster.

• Website: http://www.bordet.be/servmed/array/.

Members of Microarray Unit

Machine Learning Group

- Research group of the Université Libre de Bruxelles (ULB).
- 7 researchers (funds coming from ULB, ARC, European Community, etc.).
- Research topics :
 - Local learning, Classification, Computational statistics, Data mining, Regression, Time series prediction, Sensor networks, Bioinformatics.
- Scientific collaborations in ULB :
 - IRIDIA (Sciences Appliquées), Physiologie Moléculaire de la Cellule (IBMM), Microarray Unit (IJB), Service d'Anesthésie (ERASME), etc.

Machine Learning Group(2)

- Scientific collaborations outside ULB :
 - UCL Machine Learning Group (B), Politecnico di Milano (I), Università del Sannio (I), George Mason University (US), etc.
- Computing facilities :
 - LIT5 cluster (16 x P4 3.4 GHz, 16 x 2 Go RAM)
 - LEGO Robotics Lab.
- Website: http://www.ulb.ac.be/di/mlg.

Members of MLG

Breast Cancer Practice

Benjamin Haibe-Kains

hormonotherapy

Thesis Presentation

Breast Cancer Therapy

- Chemotherapy or hormonotherapy reduces the risk of distant metastasis by 2-12%
- However
 - $\sim ~ 70\%$ of patients receiving this treatment would have survived without it
 - these therapies frequently have toxic side effects.
- Classification of cancers must be accurate in order to give the correct treatment and so increase the chance of survival for the patient.

TransBIG Consortium

- Joint project with Microarray Unit headed by Dr. Sotiriou.
- Motivations :
 - current risk evaluation of early breast tumors (see St Galln, NIH and NPI) fails to classify correctly the tumors. It results :
 - unnecessary therapies
 - toxic side effects
 - waste of money
 - the goal of the data mining analysis is to identify those patients at higher risk of distant metastases appearance on the basis of their genetic profile.

Genetics : basics

Cell to DNA :

Genetics : basics(2)

DNA to protein :

Microarray Technology

- As we will see, the microarray technology allows us to study the genetic profile of breast tumors.
- Microarray works at the mRNA level :

Microarray Technology Description

A microarray is composed of

- DNA fragments fixed on a solid support
- ordered position of probes
- principle of hybridization to a specific probe of complementary sequence
- radioactive labeling

simultaneous detection of thousands of sequences in parallel

AFFYMETRIX[©] Design

AFFYMETRIX[©] GeneChip Structure

AFFYMETRIX[©] Hybridization

RNA fragments with fluorescent tags from sample to be tested

AFFYMETRIX[©] Cross-Hybridization

- The process of 2
 complementary DNA strands
 binding is called *hybridization*.
- Ideally, an oligonucleotide probe will only bind to the DNA sequence for which it was designed and to which it is complementary.
- However, many DNA sequences are similar to one another and can bind to other probes on the array.
- This phenomenon is called *cross-hybridization*.

AFFYMETRIX[©] Detection

Shining a laser light at GeneChip causes tagged DNA fragments that hybridized to glow

Microarray Comparison

AFFYMETRIX[©] +

AFFYMETRIX[©] advantages :

- commercially available for several years (strong manufacturing)
- large number of published studies (generally accepted method)
- no reference sample \rightarrow possible comparison between studies

AFFYMETRIX[©] -

AFFYMETRIX[©] disadvantages :

- cost of the devices and the chips (but easy use)
- changes in probe design is hard (but new program permits to create his own design)
- short oligos → several oligos per gene, specificity/sensitivity trade-off (complex methods to get gene expression)

Data Preprocessing

- Use of RMA separately for each population
 - problem of computer resources
 - data management
- Population correction
 - remove source of variability related to the origin of samples

44,928 corrected probesets

Prefiltering based on detection calls (use of MM) information)

Expression Quantification

For each probe set, **summarization** of the probe level data (11-20 PM and MM pairs) into a single expression measure

RMA procedure

- use only PM and ignore MM
- adjust for background on the raw intensity scale
- carry out quantile normalization [Bolstad et al., 2003] of $PM \hat{BG}$ and call the result $n(PM \hat{BG})$
- take log2 of normalized background adjusted PM
- carry out a median polish of the quantities $log_2 n(PM \hat{BG})$.

Maximum Partial Likelihood

Logarithm of the partial likelihood :

$$\ln PL = \sum_{i=1}^{N} \delta_i \left[\boldsymbol{\beta} \mathbf{x}_i - \ln \left(\sum_{j=1}^{N} y_{ij} e^{\boldsymbol{\beta} \mathbf{x}_j} \right) \right]$$

where $y_{ij} = 1$ if $t_j \ge t_i$ and $y_{ij} = 0$ if $t_j < t_i$.

Maximization w.r.t.
 β using Newton-Raphson algorithm [Collett, 2003].

Performance Estimate

Gene Expression Visualization

patients

probesets

Thesis Presentation

TD ROC Curve on Test Set

Bioinformatics Software

- R is a widely used open source language and environment for statistical computing and graphics
 - Software and documentation are available from http://www.r-project.org
- Bioconductor is an open source and open development software project for the analysis and comprehension of genomic data
 - Software and documentation are available from http://www.bioconductor.org