Breast Cancer Diagnosis Using Microarray

Training Master: M. Christos Sotiriou

Training Supervisor: M. Gianluca Bontempi

Benjamin Haibe-Kains
Table of Contents

- **Introduction**
 - TransBIG Project
- **Materials**
 - Populations
 - Microarray Platform
- **Methods and Results**
 - Development Tools
 - Quality Assessment
 - Supervised Classification
 - Gene Ontology
- **Discussion**
- **Future Works**
Introduction
Breast Cancer Diagnosis

- Several histological criteria characterize breast tumor
 - Invasive/non-invasive tumor
 - Number of involved lymph nodes
 - Size
 - Tumor grade
 - Estrogen receptor status
 - Oncogene over-expression
 - Margins of resection
Introduction
Breast Cancer Diagnosis (2)

Appearance of distant metastases in the first 5 years of follow-up

Binary classification (relapse/non-relapse)

Goals

Reduce significantly the patients who receive unnecessary treatments

- Adverse side effects
- Treatment costs

Isolate involved genes
Introduction
Breast Cancer Diagnosis (3)
- Histological criteria fail to classify the tumors
- Development of new predictors based on gene expression profile
Introduction
TransBIG Project

- TransBIG project
 - Validation of van't Veer signature
 - Agilent microarray technology
 - 70 maker genes (van't Veer et al. 2002)
 - Development of a new signature
 - Affymetrix microarray technology
 - Supervised by Christos Sotiriou at the IJB (Microarray Unity)
 - Collaboration with the SIB
Gene expression profiling predicts clinical outcome of breast cancer

Laura J. van 't Veer†, Hongyue Dai‡, Marc J. van de Vijver‡, Yudong D. He‡, Augustinus A. M. Hart*, Mao Mao‡, Hans L. Peterse‡, Karin van der Kooy*, Matthew J. Marton‡, Anke T. Witteveen*, George J. Schreiber‡, Ron M. Kerkhoven*, Chris Roberts‡, Peter S. Linsley‡, René Bernards* & Stephen H. Friend‡

* Divisions of Diagnostic Oncology, Radiotherapy and Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, 121 Plesmanlaan, 1066 CX Amsterdam, The Netherlands
‡ Rosetta Inpharmatics, 12040 115th Avenue NE, Kirkland, Washington 98034, USA
† These authors contributed equally to this work

Breast cancer patients with the same stage of disease can have markedly different treatment responses and overall outcome. The strongest predictors for metastases (for example, lymph node status and histological grade) fail to classify accurately breast tumours according to their clinical behaviour1-3. Chemotherapy or hormonal therapy reduces the risk of distant metastases by approximately one-third; however, 70–80% of patients receiving this treatment would have survived without it4-8. None of the signatures of breast cancer gene expression reported to date9-12 allow for patient-tailored therapy strategies. Here we used DNA microarray analysis on primary breast tumours of 117 young patients, and applied supervised classification to identify a gene expression signature strongly predictive of a short interval to distant metastases ('poor prognosis' signature) in patients without tumour cells in lymph nodes at diagnosis (lymph node negative). In addition, we established a signature that identifies tumours of BRCA1 carriers. The poor prognosis signature consists of genes regulating cell cycle, invasion, metastasis and
Table of Contents

Introduction

TransBIG Project

Materials

Populations

Microarray Platform

Methods and Results

Development Tools

Quality Assessment

Supervised Classification

Gene Ontology

Discussion

Future Works
Materials
Populations

- John Radcliffe Hospital (JRH, Oxford)
 - 77 samples hybridized at IJB

- Gustave Roussy Hospital (IGR, Paris)
 - 65 samples hybridized at IJB

- Karolinska Institute and Hospital (Karolinska, Stockholm)
 - 19 samples hybridized at IJB
 - 68 samples hybridized at Karolinska
Materials
Populations (2)

Highly **unbalanced** class distribution

- $\frac{1}{4}$ of relapses (class 1)
- $\frac{3}{4}$ of non-relapses (class 0)
Table of Contents

- Introduction
 - TransBIG Project
- Materials
 - Populations
 - Microarray Platform
- Methods and Results
 - Development Tools
 - Quality Assessment
 - Supervised Classification
 - Gene Ontology
- Discussion
- Future Works
Materials
Microarray Platform

cRNA microarrays is a recent technique used to determine genomewide gene expression levels.

Measurement of the quantity of cRNA, prepared from mRNA, hybridized on the chip.
Materials
Microarray Platform (2)

- **Affymetrix**: short oligonucleotide technology
- **Chip hgu133a** (22283 probe sets)
- **Chip hgu133b** (22645 probe sets)
- **CEL files**
Methods and Results

Development Tools

- R and Bioconductor
 - Manifold and reliability
 - Completeness
- Open-source
- Application server installation to carry out large bioinformatics analyzes
Table of Contents

- Introduction
 - TransBIG Project
- Materials
 - Populations
 - Microarray Platform
- Methods and Results
 - Development Tools
 - Quality Assessment
 - Supervised Classification
 - Gene Ontology
- Discussion
- Future Works
Methods and Results
Quality Assessment

Important step in the analysis design

- During hybridization: tests carried out in laboratory (e.g. tissue purity)

- After hybridization: quality controls based on Affymetrix CEL files
 - Probe array image
 - Average background
 - Spike controls and RNA degradation
 - Detection calls
 - Scaling factor
 - Box plots for PM intensities
Methods and Results
Quality Assessment (2)

- No standard for quality control
- Affymetrix and Bioconductor guidelines

- Probe array image
 - Gray scale images of the chips
 - Gray intensities computed from CEL file intensities
 - Visual inspection to detect artifacts
Methods and Results
Quality Assessment (3)

- Good chip
- Bad chip
Methods and Results
Quality Assessment (4)

- **Average background**
 - Assessment of the background intensities in the chip
 - Computed by MAS 5.0 algorithm
 - Affymetrix guideline: values should be similar and < 100
 - Permutation tests to assess difference between populations
Methods and Results
Quality Assessment (5)

Populations – Relapse
(on chip hgu133a)

- **Average background**
 - mean: 85.719
 - median: 82.572
 - std: 19.967
 - range: [50.194, 149.92]

<table>
<thead>
<tr>
<th>Chip hgu133a</th>
<th>Populations</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>JRH <-> IGR</td>
<td>1.903e-9</td>
<td></td>
</tr>
<tr>
<td>JRH <-> Karolinska19</td>
<td>1.08e-10</td>
<td></td>
</tr>
<tr>
<td>IGR <-> Karolinska19</td>
<td>0.06725</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chip hgu133b</th>
<th>Populations</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>JRH <-> IGR</td>
<td>2.661e-4</td>
<td></td>
</tr>
<tr>
<td>JRH <-> Karolinska19</td>
<td>0.03496</td>
<td></td>
</tr>
<tr>
<td>IGR <-> Karolinska19</td>
<td>0.6224</td>
<td></td>
</tr>
</tbody>
</table>
Methods and Results

Quality Assessment (6)

- RNA degradation
 - Typically starts from the 5' end to the 3' end of the molecule (control with GAPDH and beta actin genes)
 - Affymetrix guideline: ratio 3'/5' < 3

- RNA quality assessment

- Spike controls
 - Probes spiked during the sample preparation process (BioB, BioC, BioD, CreX should be detected as present)

- Hybridization efficiency assessment
Methods and Results
Quality Assessment (7)

Good quality for all the populations
Methods and Results
Quality Assessment (8)

Detection calls
- Use of the intensities of the PM and MM probes to test statistically the presence or the absence of a specific gene
- Computed by MAS 5.0 algorithm
- Affymetrix guideline: extremely low percentage of present calls may indicate poor quality
- Good quality for all the populations
Methods and Results
Quality Assessment (9)

Scaling factor

- Assessment of the difference in mean intensity between chips
- Computed by MAS 5.0 algorithm
- Affymetrix guideline: recommended value of maximum three-fold scaling factor
- Permutation tests to assess difference between populations
Methods and Results
Quality Assessment (10)

Chip hgu133a

<table>
<thead>
<tr>
<th>Populations</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>JRH <-> IGR</td>
<td>1.166e-6</td>
</tr>
<tr>
<td>JRH <-> Karolinska19</td>
<td>0.1066</td>
</tr>
<tr>
<td>IGR <-> Karolinska19</td>
<td>5.118e-7</td>
</tr>
</tbody>
</table>

Chip hgu133b

<table>
<thead>
<tr>
<th>Populations</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>JRH <-> IGR</td>
<td>3.74e-7</td>
</tr>
<tr>
<td>JRH <-> Karolinska19</td>
<td>0.4476</td>
</tr>
<tr>
<td>IGR <-> Karolinska19</td>
<td>0.002979</td>
</tr>
</tbody>
</table>
Methods and Results
Quality Assessment (11)

- Box plots for PM intensities
 - Useful to detect outlier and to assess the quality of the normalization
 - Computation of the median and the interquartile range of PM intensities for each chip
Methods and Results
Quality Assessment (12)
Methods and Results
Quality Assessment (13)
Methods and Results
Quality Assessment (14)

- Preliminary conclusion
 - Statistically significant difference between populations
 - Populations are not necessary comparable
 - Population preprocessing before analysis (not yet investigated)
Table of Contents

- Introduction
 - TransBIG Project
- Materials
 - Populations
 - Microarray Platform
- Methods and Results
 - Development Tools
 - Quality Assessment
 - Supervised Classification
 - Gene Ontology
- Discussion
- Future Works
Methods and Results

Supervised Classification

“Traditional” design of supervised classification in microarray data analysis
Methods and Results
Supervised Classification (2)

- Preprocessing
- Affymetrix data
- Normalized gene expressions
- Histological data

NB: only 99 patients have been considered in the classification procedure (52 from JRH and 47 from IGR)
Methods and Results
Supervised Classification (3)

- Structural identification
 - Gene ranking by *Pearson* correlation coefficient
 - First 100 ranked genes (arbitrary criteria)
 - Classifier (KNN)
 - Parameter k
Methods and Results
Supervised Classification (4)

- Classification evaluation
- **Feature selection** by variable ordering
- At each L-O-O, a best set of marker genes is selected
Methods and Results

Supervised Classification (5)

- After classification procedure evaluation
- Marker gene selection with all the patients (using the same procedure)
- Assumption: the signature quality increases with the number of patients
Methods and Results
Supervised Classification (6)

Misclassification type

<table>
<thead>
<tr>
<th>Prediction</th>
<th>Reality</th>
</tr>
</thead>
<tbody>
<tr>
<td>relapse (+)</td>
<td>TP</td>
</tr>
<tr>
<td>non-relapse (-)</td>
<td>FP</td>
</tr>
</tbody>
</table>

Class weights (classifier)

- $c/lw_0 = 1$ for non-relapse class
- $c/lw_1 = 10$ for relapse class

Quality estimator (feature selection)

- $q = c/lw_0 \times FP + c/lw_1 \times FN$
Methods and Results

Supervised Classification (7)

Robustness of marker genes selected by the feature selections: frequency of appearance of each marker gene
Methods and Results

Supervised Classification (8)

- Signature is very dependent to the training set
- Expected result because of the very small size of signatures (relative to the number of genes)
- 10 (mean) for the KNN
- Indication of poor biological information
Methods and Results
Supervised Classification (9)

Global misclassification rate (KNN)
- FN: 21/24
- FP: 4/75

Marker gene signature: 2 genes
- 224529_s_at (C6ORF69)
- 223176_at (NT5C1A)
Methods and Results
Supervised Classification (10)

- Preliminary conclusion
 - Avoid overfitting as much as possible according to computer resources
 - Tune the classifier to avoid a high false negative rate

- Poor performance:
 - Arbitrary number of marker genes in the structural identification
 - KNN is sensible to unbalanced data set
 - High variance of the procedure (multiple L-O-O and feature selection)
Table of Contents

- Introduction
 - TransBIG Project
- Materials
 - Populations
 - Microarray Platform
- **Methods and Results**
 - Development Tools
 - Quality Assessment
 - Supervised Classification
 - Gene Ontology
- Discussion
- Future Works
Methods and Results

Gene Ontology

GO consortium is setting a *dynamic controlled vocabulary that can be applied to all organisms even as knowledge of gene and protein roles in cells is accumulating and changing*.

Automatic annotation of marker genes in terms of
- Molecular function
- Biological process
- Cellular component
Methods and Results
Gene Ontology (2)

- Onto-Express (Ostermeier et al. 2003)
- Statistical framework to assess the significance of gene clusters in each GO functional category
 - Take into account the tested genes (here the whole genome)
 - Take into account the set of marker genes
- Valuable if the number of marker genes in the signature is large (tens or hundreds)
Methods and Results

Gene Ontology (3)

- Not the case here: 2 marker genes
- Only one gene exists in the GO (224529_s_at)

<table>
<thead>
<tr>
<th>Biological process</th>
<th>GO ID</th>
<th>Function Name</th>
<th>Probe</th>
<th>Gene Symbol</th>
<th>Unigene Cluster</th>
<th>LocusLink ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GO:0009116</td>
<td>nucleoside metabolism</td>
<td>224529_s_at</td>
<td>NT5C1A</td>
<td>307006</td>
<td>84618</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cellular component</th>
<th>GO ID</th>
<th>Function Name</th>
<th>Probe</th>
<th>Gene Symbol</th>
<th>Unigene Cluster</th>
<th>LocusLink ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GO:0005829</td>
<td>cytosol</td>
<td>224529_s_at</td>
<td>NT5C1A</td>
<td>307006</td>
<td>84618</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Molecular function</th>
<th>GO ID</th>
<th>Function Name</th>
<th>Probe</th>
<th>Gene Symbol</th>
<th>Unigene Cluster</th>
<th>LocusLink ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GO:0008253</td>
<td>5′-nucleotidase activity</td>
<td>224529_s_at</td>
<td>NT5C1A</td>
<td>307006</td>
<td>84618</td>
</tr>
</tbody>
</table>

- The two genes are not known in breast cancer literature
Methods and Results

Gene Ontology (4)

Table of Contents

- Introduction
 - TransBIG Project
- Materials
 - Populations
 - Microarray Platform
- Methods and Results
 - Development Tools
 - Quality Assessment
 - Supervised Classification
 - Gene Ontology
- Discussion
- Future Works
Discussion

- Microarrays have already provided valuable information about breast cancer
- Promising results in breast cancer diagnosis
- Issues need to be addressed before clinical use
 - Quality standards
 - Multi-populations, multi-platforms and multi-laboratories validation
 - Validation of marker gene expression by an alternative RNA quantitative method (e.g. RT-PCR)
Table of Contents

- Introduction
 - TransBIG Project
- Materials
 - Populations
 - Microarray Platform
- Methods and Results
 - Development Tools
 - Quality Assessment
 - Supervised Classification
 - Gene Ontology
- Discussion
- Future Works
Discussion
Future Works

- Step by step complexity of analysis design
- Statistical framework for quality assessment
- Parallelism

- Preprocessing data
- Criterion for misclassification rate
- Marker gene stability
- Feature selection
- Independent validation set
- Signature validation and refinement
Applications to Genomic and Proteomic Data

Thanks for your attention

Benjamin Haibe-Kains
Materials
Populations

- Lymph node negative
- Not treated by adjuvant treatment
Materials

Microarray Platform
Methods and Results
Structural Identification

First 100 ranked genes with all patients

KNN

SVM
Methods and Results
Structural Identification

- Use of *tune.foo* R function
 - Low execution time (relative to the complexity)
 - Only global misclassification rate
 - No class weights
 - Leave-one-out cross-validation
 - Approximatively 25% of misclassification

→ No indication about FN and FP
Methods and Results
Feature Selection

Misclassification rate: **opposite trend**
between KNN and SVM classifiers

- **KNN**
- **SVM**
Methods and Results
Feature Selection (2)

Due to
- No class weight for the KNN
- KNN is more sensible to unbalanced data set

Robustness of marker genes selected by the feature selections: frequency of appearance of each marker gene
Methods and Results
Feature Selection (3)

- Common marker genes during global leave-one-out
 - KNN
 - SVM
Methods and Results
Feature Selection (4)

Similar observations for the KNN and the SVM classifiers

- Signature is very dependent to the training set

- Expected result because of the very small size of signatures
 - 10 (mean) for the KNN
 - 2 (mean) in the SVM

- Indication of poor biological information
Methods and Results
Missclassification Rate

- KNN: missclassification during feature selections (global $\rightarrow 21/24$ and $4/75$)
- False negatives
- False positives

![Misclassification Rate During Leave-One-Out](image1)

![Misclassification Rate During Leave-One-Out](image2)
Methods and Results

Misclassification Rate (2)

- SVM: misclassification during feature selections (global \rightarrow 2/24 and 65/75)
- False negatives
- False positives
Methods and Results
Gene Ontology

- Probe set id: **223176_at**
- Accession number: BC003697
- Gene name: chromosome 6 open reading frame 69
- Symbol: C6ORF69
- Unigene: Hs.188757
Methods and Results
Gene Ontology

- Probe set id: 224529_s_at
- Accession number: AY028778
- Gene name: 5'-nucleotidase, cytosolic IA
- Symbol: NT5C1A
- Unigene: Hs.307006
Methods and Results
Gene Ontology (3)

- Only one gene exists in GO (224529_s_at)

<table>
<thead>
<tr>
<th>Biological process</th>
<th>GO ID</th>
<th>Function Name</th>
<th>Probe</th>
<th>Gene Symbol</th>
<th>Unigene Cluster</th>
<th>LocusLink ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GO:0009116</td>
<td>nucleoside metabolism</td>
<td>224529_s_at</td>
<td>NT5C1A</td>
<td>307006</td>
<td>84618</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cellular component</th>
<th>GO ID</th>
<th>Function Name</th>
<th>Probe</th>
<th>Gene Symbol</th>
<th>Unigene Cluster</th>
<th>LocusLink ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GO:0005829</td>
<td>cytosol</td>
<td>224529_s_at</td>
<td>NT5C1A</td>
<td>307006</td>
<td>84618</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Molecular function</th>
<th>GO ID</th>
<th>Function Name</th>
<th>Probe</th>
<th>Gene Symbol</th>
<th>Unigene Cluster</th>
<th>LocusLink ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GO:0008253</td>
<td>5'-nucleotidase activity</td>
<td>224529_s_at</td>
<td>NT5C1A</td>
<td>307006</td>
<td>84618</td>
</tr>
</tbody>
</table>

- Nucleoside: combination of a base and a sugar without phosphate
- Nucleotide: nucleoside with 1, 2, or 3 phosphate groups
- Nucleotidase: enzyme hydrolizing nucleosides to nucleotides; the proportioning of the serum 5'-nucléotidase is used in digestive pathology
EORTC-BIG NODE NEGATIVE BREAST CANCER TRIAL

ADEQUATELY PROCESSED CORE BIOPSY

RISK EVALUATION

RANDOMIZE

N=2500

CLINICAL/PATHOLOGICAL ARM

20% 80%

LOW RISK AVERAGE HIGH RISK

N=2000 N=1375

ENDOCRINE THERAPY CHEMOTHERAPY

LOW RISK

N=2000 N=1375

NO INFERIORITY HYPOTHESIS (HR = 1.25)

N=4882 patients (500 events) with a 5y DFS ≥ 86%

LOW RISK ENDOCRINE THERAPY OR NIL

LOW RISK ENDOCRINE THERAPY OR NIL

LOOK AT EVENT-RATE AT 1 AND 3 YEARS BY IDMC

LOOK AT EVENT-RATE AT 1 AND 3 YEARS BY IDMC