
Université Libre de Bruxelles
Computer Science Department

Machine Learning Group

Adaptive Machine Learning for
Credit Card Fraud Detection

A thesis submitted in fulfillment of the requirements
for the Ph.D. degree in Computer Science

Author:
Andrea Dal Pozzolo

Supervisor:
Prof. Gianluca Bontempi

December 2015

Declaration of Authorship

I, Andrea Dal Pozzolo, declare that this thesis titled “Adaptive Machine Learning for

Credit Card Fraud Detection” has been composed by myself and contains original work

of my own execution. Some of the reported work has been done in collaboration with a

number of co-authors whose contributions are acknowledged in the relevant sections.

This thesis has been written under the supervision of Prof. Gianluca Bontempi.

The members of the jury are:

• Prof. Bart Baesens (Katholieke Universiteit Leuven, Belgium)

• Prof. Cesare Alippi (Politecnico di Milano, Italy)

• Prof. Gianluca Bontempi (Université Libre de Bruxelles, Belgium)

• Prof. Tom Lenaerts (Université Libre de Bruxelles, Belgium)

• Prof. Yves De Smet (Université Libre de Bruxelles, Belgium)

• Dr. Olivier Caelen (Worldline S.A., Belgium)

ii

“The cure for boredom is curiosity. There is no cure for curiosity.”

Dorothy Parker

UNIVERSITÉ LIBRE DE BRUXELLES

Computer Science Department

Machine Learning Group

Abstract
Adaptive Machine Learning for

Credit Card Fraud Detection

by Andrea Dal Pozzolo

Billions of dollars of loss are caused every year by fraudulent credit card transactions.

The design of efficient fraud detection algorithms is key for reducing these losses, and

more and more algorithms rely on advanced machine learning techniques to assist fraud

investigators. The design of fraud detection algorithms is however particularly challeng-

ing due to the non-stationary distribution of the data, the highly unbalanced classes

distributions and the availability of few transactions labeled by fraud investigators. At

the same time public data are scarcely available for confidentiality issues, leaving unan-

swered many questions about what is the best strategy. In this thesis we aim to provide

some answers by focusing on crucial issues such as: i) why and how undersampling is

useful in the presence of class imbalance (i.e. frauds are a small percentage of the trans-

actions), ii) how to deal with unbalanced and evolving data streams (non-stationarity

due to fraud evolution and change of spending behavior), iii) how to assess performances

in a way which is relevant for detection and iv) how to use feedbacks provided by in-

vestigators on the fraud alerts generated. Finally, we design and assess a prototype of a

Fraud Detection System able to meet real-world working conditions and that is able to

integrate investigators’ feedback to generate accurate alerts.

UNIVERSITÉ LIBRE DE BRUXELLES

Département d’Informatique

Machine Learning Group

Résumé
Adaptive Machine Learning for

Credit Card Fraud Detection

par Andrea Dal Pozzolo

Des milliards de dollars de pertes sont réalisés chaque année en raison de transactions

frauduleuses sur les cartes de crédit. La clé pour réduire ces pertes est le développe-

ment d’algorithmes de détection de fraude efficaces. De plus en plus d’algorithmes se

basent sur des techniques de machine learning avancées pour assister les détecteurs de

fraude. La conception d’algorithmes de détection de la fraude est toutefois particulière-

ment difficile en raison de la distribution non-stationnaire des données, de la distribution

trés déséquilibrée des classes et la disponibilité de seulement quelques transactions cata-

loguées par les détecteurs de fraude. Dans le même temps, des données publiques ne sont

guère disponibles pour des raisons de confidentialité, laissant de nombreuses questions

sans réponse à propos de ce qui est la meilleure stratégie pour traiter avec eux. Dans

cette thèse, nous proposons quelques réponses en se concentrant sur des questions cru-

ciales telles que: i) pourquoi et comment undersampling est utile en présence de classes

déséquilibrées (c-à-d les fraudes sont un petit pourcentage des transactions), ii) com-

ment traiter l’évolution du flux de données non-balancées (non-stationnaire en raison de

l’évolution et le changement de comportement de dépense fraude), iii) les évaluations de

la performance qui sont pertinentes pour la détection et iv) l’utilisation des évaluations

fournies par les détecteurs sur les alertes de fraude générées. Enfin, nous concevons un

système de détection de la fraude en mesure de satisfaire les conditions de travail dans

le monde réel et qui est capable d’intégrer les détecteurs avec rétroaction pour générer

des alertes de fraude précises.

Acknowledgements

Foremost, I would like to express my deep and sincere gratitude to my supervisor Prof.

Gianluca Bontempi for his inspiration, patience and encouragement. He introduced me

to the field of Machine Learning and provided lots of good ideas and advice. I would

have never completed this thesis without his help. Besides Gianluca, I am deeply grateful

to Dr. Olivier Caelen for his suggestions and guidance throughout my PhD study. His

great ideas and unfailing support were essential to finish this thesis.

I would like to thank also Prof. Giacomo Boracchi and Prof. Cesare Alippi for their

supervision and fruitful discussions on the problem of learning in non-stationary envi-

ronments during my research visits at Politecnico di Milano. A great thanks also to

Prof. Nitesh V. Chawla and Dr. Reid A. Johnson for sharing their precious knowledge

and expertise on the topic of unbalanced classification during my research visits at Notre

Dame University. My sincere thanks also go to the PhD committee members and the

examiners of this thesis for the insightful comments and hard questions throughout my

PhD study.

A well-known quote says that behind every great man there’s a great woman. While

I’m not a great man, there’s a great woman behind me and her name is Katia. All my

achievements also depends on her, so thank you my love for having always supported me

during these four years.

If I was able to arrive to the PhD studies it is because I had two great parents, Francesco

and Francesca, that always believed in what I was doing. I wish to convey special thanks

to my family for their endless support and understanding.

Last but not least, I would like to thank my friends (from Italy and Belgium) and

colleagues both from the Computer Science Department of ULB and Worldline S.A.

(former and current) for their continuous encouragement in these 4 years. A big thanks

also to Serge Waterschoot (Fraud Risk Manager at Worldline S.A.) that made possible

this PhD and Innoviris1 (Brussels Region) that funded the Doctiris project.

1Innoviris is the Brussels institute for the encouragement of scientific research and innovation.

vi

Contents

Declaration of Authorship ii

Abstract iv

Résumé v

Acknowledgements vi

List of Figures xi

List of Tables xiii

List of Acronyms xv

I Overview 1

1 Introduction 3
1.1 The problem of Fraud Detection . 3
1.2 The impact of frauds . 6
1.3 Credit Card Fraud Detection . 7
1.4 Challenges in Data Driven Fraud Detection Systems 8
1.5 Contributions . 9

1.5.1 Understanding sampling methods 10
1.5.2 Learning from evolving and unbalanced data streams 11
1.5.3 Formalization of a real-world Fraud Detection System 11
1.5.4 Software and Credit Card Fraud Detection Dataset 12

1.6 Publications and research activities . 12
1.7 Financial support and project objective 14
1.8 Outline . 14
1.9 Notation . 15

2 Preliminaries 17
2.1 Machine Learning . 17

2.1.1 Formalization of supervised learning 18
2.1.2 The problem of classification . 21
2.1.3 Bias-variance decomposition . 23

vii

Contents viii

2.1.4 Evaluation of a classification problem 24
2.2 Credit Card Fraud Detection . 27

2.2.1 Fraud Detection System working conditions 27
2.2.1.1 FDS Layers: . 28
2.2.1.2 Supervised Information 29
2.2.1.3 System Update . 29

2.2.2 Features augmentation . 30
2.2.3 Accuracy measure of a Fraud Detection System 31

3 State-of-the-art 35
3.1 Techniques for unbalanced classification tasks 35

3.1.1 Data level methods . 36
3.1.2 Algorithm level methods . 39

3.2 Learning with non-stationarity . 41
3.2.1 Sample Selection Bias . 42
3.2.2 Time evolving data . 44

3.3 Learning with evolving and unbalanced data streams 46
3.4 Algorithmic solutions for Fraud Detection 47

3.4.1 Supervised Approaches . 48
3.4.2 Unsupervised Approaches . 51

II Contribution 55

4 Techniques for unbalanced classification tasks 57
4.1 When is undersampling effective in unbalanced classification tasks? 58

4.1.1 The warping effect of undersampling on the posterior probability . 59
4.1.2 Warping and class separability . 62
4.1.3 The interaction between warping and variance of the estimator . . 63
4.1.4 Experimental validation . 67
4.1.5 Discussion . 72

4.2 Using calibrated probability with undersampling 73
4.2.1 Adjusting posterior probabilities to new priors 73
4.2.2 Warping correction and classification threshold adjustment 76
4.2.3 Experimental results . 77
4.2.4 Discussion . 80

4.3 Racing for sampling methods selection . 81
4.3.1 Racing for strategy selection . 82
4.3.2 Experimental results . 83
4.3.3 Discussion . 85

4.4 Conclusion . 87

5 Learning from evolving data streams with skewed distributions 89
5.1 Learning strategies in credit card fraud detection 91

5.1.1 Formalization of the learning problem 91
5.1.2 Strategies for learning with unbalanced and evolving data streams 91
5.1.3 Experimental assessment . 95
5.1.4 Discussion . 105

Contents ix

5.2 Using HDDT to avoid instances propagation 107
5.2.1 Hellinger Distance Decision Trees 108
5.2.2 Hellinger Distance as weighting ensemble strategy 109
5.2.3 Experimental assessment . 110
5.2.4 Discussion . 114

5.3 Conclusion . 115

6 A real-world Fraud Detection Systems: Concept Drift Adaptation with
Alert-Feedback Interaction 117
6.1 Realistic working conditions . 118
6.2 Fraud Detection with Alert-Feedback Interaction 119
6.3 Learning strategy . 120

6.3.1 Conventional Classification Approaches in FDS 121
6.3.2 Separating delayed Supervised Samples from Feedbacks 121
6.3.3 Two Specific FDSs based on Random Forest 123

6.4 Selection bias and Alert-Feedback Interaction 124
6.5 Experiments . 125

6.5.1 Separating feedbacks from delayed supervised samples 127
6.5.2 Artificial dataset with Concept Drift 128
6.5.3 Improving the performance of the feedback classifier 130
6.5.4 Standard accuracy measures and classifiers ignoring AFI 132
6.5.5 Adaptive aggregation . 133
6.5.6 Final strategy selection and classification model analysis 136

6.6 Discussion . 138
6.7 Conclusion . 141

7 Conclusions and Future Perspectives 143
7.1 Summary of contributions . 143
7.2 Learned lessons . 144
7.3 Open issues . 145
7.4 The Future: going towards Big Data solutions 146
7.5 Added value for the company . 149
7.6 Concluding remarks . 149

A The unbalanced package 151
A.1 Methods for unbalanced classification . 151
A.2 Racing for strategy selection . 154
A.3 Summary . 156

B FDS software modules 157
B.1 Model training . 157
B.2 Scoring . 158
B.3 Review . 158

C Bias and Variance of an estimator 159

Contents x

Bibliography 161

List of Figures

1.1 The Credit Card Fraud Detection process. 5
1.2 Fraudulent and genuine distribution in September 2013. 10
1.3 Partners of the Doctiris project. 14

2.1 The players of supervised learning. 19
2.2 The Receiving Operating Characteristic (ROC) curve 26
2.3 The layers of a Fraud Detection System 27

3.1 Resampling methods for unbalanced classification. 37
3.2 Different types of Concept Drift. 45

4.1 How undersampling works . 59
4.2 p and ps at different β . 61
4.3 Synthetic datasets with different class overlap. 62
4.4 ps as a function of β for two univariate binary classification tasks. 62
4.5 ps − p as a function of δ, where δ = ω+ − ω−. 63
4.6 dps

dp as a function of p and β. 66
4.7 Terms of inequality 4.20 for a classification task with non separable classes. 67
4.8 Terms of inequality 4.20 for a classification task with separable classes. . . 67
4.9 Plot of dpsdp percentiles and

√
νs
ν for the synthetic dataset 1. 68

4.10 Regions where undersampling should work in synthetic dataset 1. 69
4.11 Plot of dpsdp percentiles and

√
νs
ν for the synthetic dataset 2. 70

4.12 Difference between the Kendall rank correlation of p̂s and p̂ with p in UCI
datasets. 71

4.13 Ratio between the number of samples satisfying condition (4.20) and all
the instances available in each dataset averaged over all the βs. 72

4.14 Learning framework for comparing models with and without undersam-
pling using Cross Validation (CV). 78

4.15 Boxplot of AUC for different values of β in the Credit-card dataset. 80
4.16 Boxplot of BS for different values of β in the Credit-card dataset. 80
4.17 The racing algorithm. 83
4.18 Comparison of strategies for unbalanced data with different classifiers over

all datasets of Table 4.3 in terms of G-mean (the higher the better). . . . 84
4.19 Comparison of strategies for unbalanced data with different classifiers on

cam and ecoli datasets in terms of G-mean (the higher the better). 84

5.1 The Static approach. 92
5.2 The Updating approach. 93
5.3 The Propagate and Forget approach. 94

xi

List of Figures xii

5.4 Weight α′j for variable TERM_MCC. 97
5.5 Comparison of static strategies using sum of ranks in all batches. 99
5.6 Comparison of update strategies using sum of ranks in all batches. 101
5.7 Comparison of forgetting strategies using sum of ranks in all batches. . . . 103
5.8 Comparison of different balancing techniques and strategies using sum of

ranks in all batches. 104
5.9 Comparison of different balancing techniques and strategies in terms of

average prediction time (in seconds) over all batches. 105
5.10 Comparison of all strategies using sum of ranks in all batches. 106
5.11 Batch average results in terms of Area Under the ROC Curve (AUC)

(higher is better) using different sampling strategies and batch-ensemble
weighting methods with C4.5 and HDDT over all UCI datasets. 112

5.12 Batch average results in terms of computational time (lower is better)
using different sampling strategies and batch-ensemble weighting methods
with C4.5 and HDDT over all UCI datasets. 113

5.13 Batch average results in terms of computational AUC (higher is better)
using different sampling strategies and batch-ensemble weighting methods
with C4.5 and HDDT over all drifting MOA datasets. 113

5.14 Batch average results in terms of AUC (higher is better) using different
sampling strategies and batch-ensemble weighting methods with C4.5 and
HDDT over the Credit Card dataset. 114

5.15 Comparison of different strategies using the sum of ranks in all batches
for the Creditcard dataset in terms of AUC. 114

6.1 The supervised samples available. 120
6.2 Learning strategies for feedbacks and delayed transactions occurring in

the two days (M = 2) before the feedbacks (δ = 7). 122
6.3 Number of daily frauds for datasets in Table 6.2. 126
6.4 Average Pk per day for classifiers on dataset 2013. 128
6.5 Comparison of classification strategies using sum of ranks in all batches

and paired t-test based upon on the ranks of each batch. 129
6.6 Average Pk per day for classifiers on datasets with artificial concept drift. 130
6.7 A classifier Rt trained on all recent transactions occurred between t and

t− δ. 132
6.8 Detection accuracy measured using different performance measures on the

2013 dataset. 134
6.9 Feedbacks requested by AWt and its components Ft and WD

t 135
6.10 Posterior probabilities PFt(+|x) and PWD

t
(+|x) for different days. 137

6.11 Training set size and time to train a RF for the feedback and delayed
classifiers in the 2013 dataset . 138

6.12 Average feature importance measured by the mean decrease in accuracy
calculated with the Gini index in the BRF models of WD

t in the 2013
dataset. 139

B.1 Software modules of the FDS prototype presented in Chapter 6. 157

List of Tables

1.1 Probability Notation . 16
1.2 Learning Theory Notation . 16
1.3 Fraud Detection Notation. 16

2.1 Confusion Matrix. 24
2.2 Confusion Matrix of a classifier with TPR=99% and TNR=99%. 25

4.1 Ranking correlation between p̂ (p̂s) and p for different values of β in the
classification task of Figure 4.9. 69

4.2 Ranking correlation between p̂ (p̂s) and p for different values of β in the
classification task of Figure 4.11. 70

4.3 Selected datasets from the UCI repository [1] 71
4.4 Different levels of undersampling in a dataset with 1,000 positives in 10,000

observations. 74
4.5 Sum of ranks and p-values of the paired t-test between the ranks of p̂ and

p̂′ and between p̂ and p̂s for different metrics. 79
4.6 Comparison of CV and F-race results in terms of G-mean for Random

Forest (RF) classifier. 85
4.7 Comparison of CV and F-race results in terms of G-mean for Support

Vector Machine (SVM) classifier. 86

5.1 Strengths and weaknesses of the different learning approaches. 95
5.2 Fraudulent dataset . 95
5.3 Datasets . 112

6.1 Classifiers used in the chapter. 123
6.2 Datasets . 125
6.3 Average Pk for the sliding and ensemble strategies 127
6.4 Datasets with Artificially Introduced CD 129
6.5 Average Pk in the month before and after CD for the sliding window . . . 129
6.6 Average Pk in the month before and after CD for the ensemble 130
6.7 Average Pk for the sliding and ensemble approach when δ = 15. 131
6.8 Average Pk of Ft with methods for SSB correction. 131
6.9 Average Pk for the sliding approach with more than 100 feedbacks per day. 132
6.10 Average AP, AUC and Pk for the sliding approach 133
6.11 Average Pk of AWt with adaptive αt . 136

xiii

List of Acronyms

AFI Alert-Feedback Interaction . 29

AP Average Precision . 32

AUC Area Under the ROC Curve . xii

BER Balanced Error Rate . 25

BRF Balanced Random Forest. .123

CD Concept Drift. .44

CNN Condensed Nearest Neighbor . 38

CV Cross Validation . xi

EDR Expert Driven Rules . 27

DDM Data Driven Model .8

ENN Edited Nearest Neighbor . 39

FD Fraud Detection . 14

FDS Fraud Detection System . 3

FN False Negative . 8

FNR False Negative Rate . 25

FP False Positive . 8

FPR False Positive Rate . 25

HD Hellinger Distance . 39

HDDT Hellinger Distance Decision Tree . 11

xv

List of Tables xvi

IG Information Gain . 39

IID Independent and Identically Distributed . 18

LB Logit Boost . 77

ML Machine Learning . 4

MME Mean Misclassification Error . 24

NNET Neural Network . 83

NCL Neighborhood Cleaning Rule . 39

OSS One Sided Selection. .38

kNN k-Nearest Neighbor. .39

RF Random Forest. .xiii

ROC Receiving Operating Characteristic . xi

SSB Sample Selection Bias .41

SVM Support Vector Machine . xiii

TNR True Negative Rate . 25

TP True Positive . 119

TPR True Positive Rate . 25

To my future wife Katia

xvii

Part I

Overview

1

Chapter 1

Introduction

1.1 The problem of Fraud Detection

Fraud is as old as humanity itself and can take an unlimited variety of different forms.

Moreover, the development of new technologies provides additional ways in which crim-

inals may commit fraud [2], for instance in e-commerce the information about the card

is sufficient to perpetrate a fraud. The use of credit cards is prevalent in modern day

society and credit card fraud has kept on growing in recent years. Financial losses due

to fraud affect not only merchants and banks (e.g. reimbursements), but also individual

clients. If the bank loses money, customers eventually pay as well through higher interest

rates, higher membership fees, etc. Fraud may also affect the reputation and image of a

merchant causing non-financial losses that, though difficult to quantify in the short term,

may become visible in the long period. For example, if a cardholder is victim of fraud

with a certain company, he may no longer trust their business and choose a competitor.

The actions taken against fraud can be divided into fraud prevention, which attempts

to block fraudulent transactions at source, and fraud detection, where successful fraud

transactions are identified a posteriori. Technologies that have been used in order to

prevent fraud are Address Verification Systems (AVS), Card Verification Method (CVM)

and Personal Identification Number (PIN). AVS involves verification of the address with

zip code of the customer while CVM and PIN involve checking of the numeric code that

is keyed in by the customer. For prevention purposes, financial institutions challenge all

transactions with rule based filters and data mining methods as neural networks [3].

Fraud detection is, given a set of credit card transactions, the process of identifying if

a new authorized transaction belongs to the class of fraudulent or genuine transactions

[4]. A Fraud Detection System (FDS) should not only detect fraud cases efficiently,

3

Chapter 1. Introduction 4

but also be cost-effective in the sense that the cost invested in transaction screening

should not be higher than the loss due to frauds [5]. Bhatla [6] shows that screening

only 2% of transactions can result in reducing fraud losses accounting for 1% of the total

value of transactions. However, a review of 30% of transactions could reduce the fraud

losses drastically to 0.06%, but increase the costs exorbitantly. In order to minimize

costs of detection it is important to use expert rules and statistical based models (e.g.

Machine Learning) to make a first screen between genuine and potential fraud and ask

the investigators to review only the cases with high risk.

Typically, transactions are first filtered by checking some essential conditions (e.g. suf-

ficient balance) and then scored by a predictive model (see Figure 1.1). The predictive

model scores each transaction with high or low risk of fraud and those with high risk

generate alerts. Investigators check these alerts and provide a feedback for each alert,

i.e. true positive (fraud) or false positive (genuine). These feedbacks can then be used

to improve the model. A predictive model can be built upon experts’ rules, i.e. rules

based on knowledge from fraud experts, but these require manual tuning and human

supervision. Alternatively, with Machine Learning (ML) techniques [7] we can efficiently

discover fraudulent patterns and predict transactions that are most likely to be fraud-

ulent. ML techniques consist in inferring a prediction model on the basis of a set of

examples. The model is in most cases a parametric function, which allows predicting the

likelihood of a transaction to be fraud, given a set of features describing the transaction.

In the domain of fraud detection, the use of learning techniques is attractive for a num-

ber of reasons. First, they allow to discovery patterns in high dimensional data streams,

i.e. transactions arrive as a continuous stream and each transaction is defined by many

variables. Second, fraudulent transactions are often correlated both over time and space.

For examples, fraudsters typically try to commit frauds in the same shop with different

cards within a short time period. Third, learning techniques can be used to detect and

model existing fraudulent strategies as well as identify new strategies associated to un-

usual behavior of the cardholders. Predictive models based on ML techniques are also

able to automatically integrate investigators’ feedbacks to improve the accuracy of the

detection, while in the case of expert system, including investigators feedbacks requires

rules revision that can be tedious and time consuming.

When a fraud cannot be prevented, it is desirable to detect it as rapidly as possible. In

both cases, prevention and detection, the problem is magnified by a number of domain

constraints and characteristics. First, care must be taken not to prevent too many

legitimate transactions or incorrectly block genuine cards. Customer irritation is to be

avoided. Second, most banks process vast numbers of transactions, of which only a

small fraction is fraudulent, often less than 0.1% [3]. Third, only a limited number of

transactions can be checked by fraud investigators, i.e. we cannot ask a human person

Chapter 1. Introduction 5

Predic;ve&model&

Rejected&

Terminal&check&
Correct'Pin?''

Sufficient'Balance'?''
Blocked'Card?'

Feedback&

Inves;gators&
Fraud&score&

Figure 1.1: The Credit Card Fraud Detection process. Credit cards payments need
to pass a first terminal check and then if not rejected are scored by a predictive model
that raises alerts for the most suspicious transactions. Investigators provide feedbacks
on the alerts (transaction labeled as fraud or genuine) that can be used to improve the

accuracy of the predictive model.

to check all transactions one by one if it is fraudulent or not. In other words companies

and public institutions need automatic systems able to support fraud detection [8].

Credit card frauds may occur in various ways [9]: just to mention some, we can have

stolen card fraud, cardholder-not-present fraud and application fraud:

• Stolen card fraud is the most common type of fraud where the fraudster usually

tries to spend as much as possible and as quickly as possible. The detection of

such a fraud typically relies on the discovery of an unexpected usage pattern of

the credit card (generally unexpectedly important) with respect to the common

practice.

• Cardholder-not-present fraud is often observed in e-business. Here the fraudster

needs the information about a credit card but not the card itself. This fraud

demands a prompt detection since, unlike the previous case, the official card owner

is not aware that his own data have been stolen.

• Application fraud corresponds to the application for a credit card with false per-

sonal information. This kind of fraud occurs more rarely since it could be detected

during the application by checking the information of the applier, contrary to other

frauds that can not be anticipated.

Chapter 1. Introduction 6

The previous classification however is not exhaustive, since frauds are continuously evolv-

ing. For a more general discussion of different fraud types we refer the reader to [10].

Whenever a fraud method is detected, criminals adapt their strategies and try others.

At the same time, everyday there are new criminals taking part in the game and trying

new and old strategies. In this setting it is important to update the detection tools, but

keeping old ones as well [2]. Exchange of ideas for detection tools is difficult as fraud-

sters could benefit from it by testing their strategies. For the same reason datasets are

typically not publicly available to the research community.

1.2 The impact of frauds

With this extensive use of credit cards, fraud appears as a major issue in the credit card

business. It is hard to have some figures on the impact of fraud, since companies and

banks do not like to disclose the amount of losses due to frauds. Another problem in

credit-card fraud loss estimation is that we can measure the loss of only those frauds that

have been detected, and it is not possible to assess the size of unreported/undetected

frauds. Other frauds are reported long after the criminal has completed the crime [11].

However, the Association for Payment Clearing Services (APACS) has estimated that

total losses through credit card fraud in the United Kingdom have been growing rapidly

from £122 million in 1997 to £440.3 million in 2010 [8]. According to The Nilson Re-

port [12], Global Credit, Debit, and Prepaid Card Fraud losses reached $11.27 Billion

in 2012 - Up 14.6% Over 2011. Gross fraud losses accounted for 5.22% total volume,

up from 5.07% in 2011. In 2012, only in the USA fraud losses reached $5.33 billion.

According to the Lexis Nexis [13], in 2014 fraudulent card transactions worldwide have

reached around $11 billion a year, and the USA may account for about half of that.

The European Central Bank (ECB) reports [14] that, in 2012, e 1 in every e 2’635

spent on credit and debit cards issued within SEPA (the European Union, Iceland,

Liechtenstein, Monaco, Norway and Switzerland) was lost to fraud. The total value of

fraud was estimated reaching e 1.33 billion in 2012, registering an increase of 14.8%

compared with 2011. In particular 60% of these frauds came from card-not-present

(CNP) payments (i.e. payments via post, telephone or the internet), 23% from point-of-

sale (POS) terminals and 17% from ATMs. The introduction of EMV security standard

(chip on cards) have reduced fraud share (0.048% in 2008 and 0.038% in 2012) on the

total number of transactions.1 However, from 2011 to 2012, CNP frauds have increased

by 21%, following the growing of CNP payments, which rose by around 15% to 20% a

year between 2008 and 2012, while all the other transactions rose by 4%. The ECB report
1With EMV cards the cardholder is asked to enter a PIN.

Chapter 1. Introduction 7

shows also that credit cards are more affected by fraud than debit card, estimating that

for every e 1000 we have e 1 of loss due to fraud in credit while e 1 for every e 5’400

in debit card. Another interesting fact is that CNP fraud is usually more frequent in

mature card markets, whereas POS fraud is more common in less developed markets.

The 2015 Cybersource report [15] shows that businesses are reluctant towards the adop-

tion of 3-D Secure methods [16] (online authentications based on a three-domain model:

acquirer, issuer and interoperability), because it may cause poor customer experience

and the risk of customers abandoning their purchases.

1.3 Credit Card Fraud Detection

Credit card fraud detection relies on the analysis of recorded transactions. Transaction

data are mainly composed of a number of attributes (e.g. credit card identifier, transac-

tion date, recipient, amount of the transaction). Automatic systems are essential since

it is not always possible or easy for a human analyst to detect fraudulent patterns in

transaction datasets, often characterized by a large number of samples, many dimen-

sions and online updates. Also, the cardholder is not reliable in reporting the theft, loss

or fraudulent use of a card [17]. In the following we will now discuss advantages and

disadvantages of Expert Driven and Data Driven approaches to fraud detection.

The Expert Driven approach uses domain knowledge from fraud investigators to define

rules that are used to predict the probability of a new transaction to be fraudulent. Let us

imagine that the investigators know from experience that a transaction done on a betting

website with an amount greater than $10000 is almost certain to be fraudulent. Then

we can automatize the detection by mean of a rule as “IF transaction amount > $10000

& Betting website THEN fraud probability = 0.99”. In the same spirit we can define a

set of rules for different scenarios. Typically, expert rules can be distinguished between

scoring rules and blocking rules. The former assigns a score to a transaction based on the

risk the investigators associate to a certain pattern; the latter can block the transaction

because the risk of fraud is too high. The advantages of expert rules are: i) they are easy

to develop and to understand, ii) they explain why an alert was generated and iii) they

exploit domain expert knowledge. However, they have a number of drawbacks: i) they are

subjective (if you ask 7 experts you may get 7 different opinions), ii) they detect only easy

correlations between variables and frauds (it is hard for a human analyst to think in more

the three dimension and explore all possible pattern combinations), iii) they are able to

detect only known fraudulent strategies, iv) they require human monitoring/supervision

(update in case of performance drop) and v) they can become obsolete soon due to fraud

evolution.

Chapter 1. Introduction 8

A different way to automatize the detection is by means of Data Driven methods, i.e.

setting up a FDS based on Machine Learning able to learn from data in a supervised or

unsupervised manner which patterns are the most probably related to a fraudulent be-

havior. With Machine Learning we let the computers to discover fraudulent patterns in

the data. Data Driven approaches have also advantages and disadvantages, for instance

with Machine Learning algorithms we can: i) learn complex fraudulent configurations

(use all features available), ii) ingest large volumes of data, iii) model complex distribu-

tions, iv) predict new types of fraud (anomalies from genuine patterns) and v) adapt

to changing distribution in the case of fraud evolution. However, they have also some

drawbacks: i) they need enough samples, ii) some models are black box, i.e. they are

not easily interpretable by investigators and they do not provide an understanding of the

reason why an alert is generated.

Data Driven and Expert Driven methods usually work in parallel and their combination

is often the best solution. Typically, real-world FDSs like the one of our project partner

(Worldline S.A. from Brussels, Belgium) use Data Driven methods to obtain precise

alerts (reduce False Positive (FP)), while Expert Driven ones are mostly used to make

sure that all the frauds are detected (reduce False Negative (FN)) at the cost of having

few false alerts.2 Data Driven solutions should not be seen as a tool to replace expert-

based system, but rather as a support to obtain a more accurate detection. A detailed

description of how these two types of methods work and how they are combined will be

provided in Section 2.2.1.

This thesis will concern automatic data driven methods based on Machine Learning

techniques. The design of a FDS based on Data Driven Models (DDMs) is not an

easy task, it requires the practitioners to decide which feature to use, strategy (e.g.

supervised or unsupervised), algorithm (e.g. decision trees, neural network, support

vector machine), frequency of update of the model (once a year, monthly or every time

new data is available), etc. We hope that, by the end of the thesis, the reader will have

a better understanding of how to design and implement an effective data driven fraud

detection solution.

1.4 Challenges in Data Driven Fraud Detection Systems

The design of a FDSs employing DDMs based on Machine Learning algorithms is par-

ticularly challenging for the following reasons:
2From personal communication with the project collaborators it has emerged that Expert Driven

methods are more recall oriented, while Data Driven ones are optimized for precision, i.e. the first aim
to reduce missed frauds and the second to reduce false alerts.

Chapter 1. Introduction 9

1. Frauds represent a small fraction of all the daily transactions [18].

2. Frauds distribution evolves over time because of seasonality and new attack strate-

gies [19].

3. The true nature (class) of the majority of transactions is typically known only

several days after the transaction took place, since only few transactions are timely

checked by investigators [20].

The first challenge is also known as the unbalanced problem [21], since the distribution

of the transactions is skewed towards the genuine class. The distributions of genuine

and fraud samples are not only unbalanced, but also overlapping (see the plot over the

first two principal components in Figure 1.2). Most Machine Learning algorithms are

not designed to cope with a both unbalanced and overlapped class distributions [22].

The change in fraudulent activities and costumer behavior is the main responsible of

non-stationarity in the stream of transactions. This situation is typically referred to

as concept drift [23] and is of extreme relevance for FDSs which have to be constantly

updated either by exploiting the most recent supervised samples or by forgetting outdated

information that might be no more useful whereas not misleading. FDS strategies that

are not updated or revisited frequently are often losing their predictive accuracy in the

long term [18].

The third challenge is related to the fact that, in a real-world setting, it is impossible

to check all transactions. The cost of human labour seriously constrains the number of

alerts, returned by the FDS, which can be validated by investigators. Investigators check

FDS alerts by calling the cardholders, and then provide the FDS with feedbacks indicating

whether the alerts were related to fraudulent or genuine transactions. These feedbacks,

which refer to a tiny fraction of the daily transactions amount, are the only real-time

information that can be provided to train or update classifiers. The class (fraudulent /

non-fraudulent) of the rest of transactions is known only several days later. Classes can

be automatically assigned when a certain time period has passed, e.g. by assuming a

certain reaction time for customers to discover and then report frauds. Standard FDSs

ignoring feedbacks from investigators often provide less accurate alerts than FDSs able

to use efficiently both feedbacks and the other supervised samples available [20].

1.5 Contributions

The contributions of the thesis address the challenges discussed in the previous section.

Chapter 1. Introduction 10

(a) 08/09/2013 (b) 09/09/2013

(c) 10/09/2013 (d) 11/09/2013

(e) 12/09/2013 (f) 13/09/2013

Figure 1.2: Plot of genuine and fraudulent transactions between the 8th and 13th of
September 2013 over the first two principal components. Frauds represent a small part
of all observations available. The distributions of fraud and genuine samples are highly

overlapping and changes over the time.

1.5.1 Understanding sampling methods

The first main contribution of this thesis is the formalization of sampling methods

adopted in unbalanced classification tasks. In particular we focus on undersampling

which is a standard technique for balancing skewed distributions. Despite its popularity

in the machine learning community, there was no detailed analysis about the impact of

undersampling on the accuracy of the final classifier. Chapter 4 reveals the condition un-

der which undersampling will improve the ranking of the posterior probability returned

by a classifier. Then we propose a method to calibrate the posterior probability of a clas-

sifier applied after undersampling. However, there is no guarantee that undersampling

Chapter 1. Introduction 11

is the best method to adopt for a given classifier and dataset, so we propose to use a

racing algorithm to adaptively select the best unbalanced strategy.

1.5.2 Learning from evolving and unbalanced data streams

The second main contribution is related to the non-stationary nature of transaction

distributions in credit cards. The continuous evolution in the way fraudsters attempt

and commit illegal activities requires a continuous adaptation of the learning algorithm

used to detect frauds. At the same time the distribution is highly skewed towards the

genuine class, making standard techniques for evolving data streams not suitable. In

Chapter 5 we investigate multiple solutions for unbalanced data stream with the goal of

showing in practice which strategy is the best to adopt for fraud detection. We show

that retaining historical transactions is useful, but it is also important to forget outdated

samples for the model to be precise. Also, propagation of fraudulent instances along the

streams is another effective technique to deal with such unbalanced data streams. When

propagation of old transactions in the stream is not desired (e.g. for computational

reason), we suggest to use an ensemble of Hellinger Distance Decision Tree (HDDT) as

they showed better performances than approaches based on instance propagations.

1.5.3 Formalization of a real-world Fraud Detection System

In Chapter 6 we present a prototype of a FDS able to meet real-world working condi-

tions, which is the third main contribution of the thesis. Most FDSs monitor streams of

credit card transactions by means of classifiers returning alerts for the riskiest payments.

Fraud Detection differs from conventional classification tasks because, in a first phase,

only a small set of supervised samples is provided by human investigators. Labels of the

vast majority of transactions are made available only several days later, when customers

have possibly reported unauthorized transactions. The delay in obtaining accurate la-

bels and the interaction between alerts and supervised information has to be carefully

taken into consideration when learning in a concept-drifting environment. We show that

investigator’s feedbacks and delayed labels have to be handled separately and require

different classification strategies. Finally, based on our results, we argue that the best

detection solution consists in training two separate classifiers (on feedbacks and delayed

labels, respectively), and then aggregating the outcomes.

Chapter 1. Introduction 12

1.5.4 Software and Credit Card Fraud Detection Dataset

Besides these main contributions, during this thesis we also developed a software package

called unbalanced [24] available for the R language [25]. This package is presented in

Appendix A, it implements some of most well-known techniques for unbalanced classi-

fication and proposes a racing algorithm [26] to select adaptively the most appropriate

strategy for a given unbalanced task [27].

Another contribution of this thesis is the release to the public of a dataset containing

information about credit card transaction with examples of fraudulent samples. The

dataset was first used in the experiments of our paper [28] and then made available

at: http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata. It contains 31

numerical input variables. Feature “Time” denotes the seconds elapsed between each

transaction and the first transaction in the dataset. The feature “Amount” is the trans-

action amount, which can be used for example-dependent cost-sensitive learning. Feature

“Class” is the response variable and it takes value 1 in case of fraud and 0 otherwise.

The dataset is highly unbalanced; frauds represent 0.172% of all transactions (492 frauds

out of 284807 transactions). For confidentiality reason, the meaning of most variables is

not revealed and the features have been transformed by means of principal components.

The cardholder identifier is also not available so each transaction can be considered in-

dependent from the others. This is one of the rare datasets on fraud detection available

to the community.

1.6 Publications and research activities

The list of works published during this thesis is summarized below, by category and

chronological order.

Peer reviewed international journal articles

• Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen, Cesare Alippi, and Gi-

anluca Bontempi. Credit Card Fraud Detection with Alert-Feedback Interaction.

Submitted to IEEE Transactions on Neural Networks and Learning Systems.

• Andrea Dal Pozzolo, Olivier Caelen, Yann-Ael Le Borgne, Serge Waterschoot, and

Gianluca Bontempi. Learned lessons in credit card fraud detection from a practi-

tioner perspective. Expert Systems with Applications, 41(10):4915-4928, 2014.

http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata

Chapter 1. Introduction 13

Peer reviewed international conference papers

• Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi. When is under-

sampling effective in unbalanced classification tasks?. In European Conference on

Machine Learning. ECML-KDD, 2015.

• Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi.

Calibrating Probability with Undersampling for Unbalanced Classification. In Sym-

posium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015.

• Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen, Cesare Alippi, and Gian-

luca Bontempi. Credit Card Fraud Detection and Concept-Drift Adaptation with

Delayed Supervised Information. In Neural Networks (IJCNN), The 2015 Interna-

tional Joint Conference on. IEEE, 2015.

• Andrea Dal Pozzolo, Reid A. Johnson, Olivier Caelen, Serge Waterschoot, Nitesh

V Chawla, and Gianluca Bontempi. Using HDDT to avoid instances propagation

in unbalanced and evolving data streams. In Neural Networks (IJCNN), The 2014

International Joint Conference on. IEEE, 2014.

• Andrea Dal Pozzolo, Olivier Caelen, Serge Waterschoot, Gianluca Bontempi, Rac-

ing for unbalanced methods selection. Proceedings of the 14th International Con-

ference on Intelligent Data Engineering and Automated Learning (IDEAL), IEEE,

2013

Peer reviewed international conference poster

• Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi. Comparison of bal-

ancing techniques for unbalanced datasets. PhD Student Forum of the International

Conference on Data Mining (ICDM), IEEE, 2012.

Research visits and grants

During my PhD I’ve visited the following research groups:

• Data, Inference Analytics, and Learning (DIAL) Lab at the University of Notre

Dame, Indiana, USA in November 2013 and May 2014 (hosted by Prof. Nitesh V

Chawla)

Chapter 1. Introduction 14

• Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB) at Politecnico

di Milano, Italy in November 2014 and from April to May 2015 (hosted by Prof.

Giacomo Boracchi)

The first visit at DIAL led to the conference paper at IJCNN 2014 [19] and the visit at

DEIB to the paper at IJCNN 2015 [20]. At the beginning of the PhD studies, I took also

part to the organization of the International Conference in Data Mining (ICDM) 2012.

In the last year of the PhD I received two travel grants: i) ULB CCCI travel grant for

the second research visit at DEIB (e 1500) and ii) INNS travel grant for the IJCNN 2015

conference ($800).

1.7 Financial support and project objective

The work presented in this thesis was funded by the Doctiris project titled “Adaptive

real time machine learning for credit card fraud detection”, supported by Innoviris which

is the Brussels institute for the encouragement of scientific research and innovation. The

objective of the 4 years project was to design, assess and validate a machine learning

framework able to calibrate in an automatic, real-time and adaptive manner the fraud

detection strategy of the industrial partner. The academic partner is the Machine Learn-

ing Group, from the Computer Science Department of the Université Libre de Bruxelles.

The business partner is Worldline S.A., which is a company based in Brussels and leader

in e-payment services.

Figure 1.3: Partners of the Doctiris project “Adaptive real time machine learning for
credit card fraud detection”.

1.8 Outline

The thesis is organized as follows: Chapter 2 introduces the notions and tools that

will be considered in the thesis. The chapter is divided in two main parts, the first

(Section 2.1) provides the reader preliminary knowledge about Machine Learning and

the problem of classification. The second (Section 2.2) is devoted to the problem of

Fraud Detection (FD) and describes the main layers of a FDS.

Chapter 1. Introduction 15

Chapter 3 reviews the different approaches which have been investigated in the litera-

ture to address the challenges introduced in Section 1.4. Each section presents relevant

works that have been proposed in the literature for solving different problems typical of

Fraud Detection. Section 3.1 is dedicated to methods for unbalanced classification tasks

and Section 3.2 presents solutions to the problem of learning in non-stationary environ-

ments. Section 3.3 reviews works on unbalanced data streams and Section 3.4 introduces

algorithmic solution that have been proposed for Fraud Detection.

Chapter 4, 5 and 6 represent the main contribution of the thesis. In Chapter 4 we tackle

the problem of learning in the presence of unbalanced class distribution with a focus on

undersampling, how it works, how it can improve the performances of a classifier and

to choose the best strategy for a given dataset. Then Chapter 5 provides the reader

with an experimental comparison of several methods for unbalanced data streams. The

first part (Section 5.1) investigates which solution works best on a credit card data

stream, while the second (Section 5.2) illustrates an algorithm for avoiding propagation

of instances along the stream. Chapter 6 presents a prototype of a realistic FDS, where

the interaction between the classifier generating the alerts and investigators providing

feedbacks is modeled and exploited to improve the detection.

Finally, Chapter 7 provides a summary of the results presented in the thesis and proposes

future research directions. The remainder of the present chapter provides the notations

that will be used throughout the following chapters.

1.9 Notation

Throughout the thesis, random variables are written with boldface letters (y), their

realizations are in normal font (y) and estimations wear a hat (ŷ). P(y) denotes the

probability distribution of the random variable y. Uppercase letters (Y) are used for

sets and uppercase calligraphic font (L) for learning algorithms.

Chapter 1. Introduction 16

Table 1.1: Probability Notation

P(y) probability that the discrete random variable y takes the value y, i.e., P(y = y)
P(y) probability mass distribution of the random variable y
P(y|x) the conditional probability that y = y knowing that x = x
P(y|x) the conditional distribution function of the target y knowing that x = x
E[y] expected value of y.
V ar[y] variance of y.
H(y) entropy of y
H(y|x) conditional entropy of y given x
I(y;x) mutual information of y and x
|X| the number of elements of the set X
ŷ statistical estimation of y
P̂(y|x) estimation of P(y|x)

Table 1.2: Learning Theory Notation

L Learning algorithm
y ∈ Y unidimensional discrete random variable representing the output of L
Y ⊂ R the domain of the random variable y
y a realization of the random variable y
x ∈ X a multidimensional discrete random variable representing the inputs of L
X ⊂ Rn the domain of the random variable x
n dimension of the input space X
x a realization of x
TN the training set, composed of N realizations (xi, yi), i ∈ {1, 2, ..., N}
N number of samples in the training set
xi the ith realization of the variable x in TN
Λ ⊂ Rd Model parameter space.
θ ∈ Λ Model parameter vector.
Λθ Class of models with parameters θ.
h(x, θ) ∈ Λθ Prediction model with inputs x and parameters θ.
L(y, h(x, θ)) Loss function.
Remp(θ) Empirical risk.
GN Generalization error.

Table 1.3: Fraud Detection Notation.

k Number of alerts that investigators are able to validate everyday.
At Alerts raised at day t, where |At| = k.
Pk(t) Precision on At.
Dt−δ Delayed supervised couples available at day t and occurred at t− δ.
Ft Feedbacks at t: recent supervised couples available at day t.
Bt Batch of transactions available at day t.
δ Number of days for which feedbacks are provided.
M Number of days for which delayed samples are provided.

Chapter 2

Preliminaries

Machine Learning plays an important role in Data Driven Fraud Detection System, so

in this chapter we will first introduce the reader to the problem of learning from data

before moving to the specific application domain. In particular we will focus on the

problem of learning with supervised data, a.k.a. supervised learning, where the learning

algorithm is trained on labeled examples. Section 2.1 introduces the basics of learning

from annotated data that we will later build upon in future chapters. Section 2.2 is

devoted to the specificities of the Fraud Detection application.

2.1 Machine Learning

Machine Learning plays a key role in many scientific disciplines and its applications are

part of our daily life. It is used for example to filter spam email, for weather predic-

tion, in medical diagnosis, product recommendation, face detection, fraud detection, etc.

Machine Learning (ML) studies the problem of learning, which can be defined as the

problem of acquiring knowledge through experience. This process typically involves ob-

serving a phenomenon and constructing a hypothesis on that phenomenon that will allow

one to make predictions or, more in general, to take rational actions. For computers, the

experience or the phenomenon to learn is given by the data, hence we can define ML as

the process of extracting knowledge from data [29].

Machine learning is closely related to the fields of Statistics, Pattern Recognition and

Data Mining [7]. At the same time, it emerges as a subfield of computer science and

gives special attention to the algorithmic part of the knowledge extraction process. In

summary, the focus of ML is on algorithms that are able to learn automatically the

patterns hidden in the data.

17

Chapter 2. Preliminaries 18

This thesis is about supervised learning, where ML algorithms are trained on some

annotated data (the training set) to build predictive models, or learners, which will enable

us to predict the output of new unseen observations. It is called supervised because the

learning process is done under the supervision of an output variable, in contrast with

unsupervised learning where the response variable is not available.

Supervised learning assumes the availability of labeled samples, i.e. observations anno-

tated with their output, which can be used to train a learner. In the training set we can

distinguish between input features and an output variable that is assumed to be depen-

dent on the inputs. The output, or response variable, defines the class of observations

and the input features are the set of variables that have some influence on the output

and are used to predict the value of the response variable. Depending on the type of

output variable we can distinguish between two types of supervised task: i) classification

and ii) regression. The first assumes a categorical output, while the latter a continuous

one. Fraud detection belongs to the first type since observations are transactions that

can be either genuine or fraudulent, while in other problems such as stock price predic-

tions the response is a continuous variable. On the other hand, in both classification and

regression tasks, input features can include both quantitative and qualitative variables.

In this thesis we will also refer to qualitative variables as categorical, discrete and factor

variables.

2.1.1 Formalization of supervised learning

Let x be the realization of a input random vector x defined in the input domain X, and

y denote the output value of the response variable y, taking its values in the output

domain Y. In supervised learning we have four main players [30]:

• G, the generator of input vectors x ∈ X ⊂ Rn from an unknown probability

distribution Fx(x).

• S, the supervisor which assigns to every input x an output value y ∈ Y ⊂ R
according to the conditional probability Fy(y|x).

• T, the training samples which are Independent and Identically Distributed (IID)

samples (x, y) drawn from the joint distribution Fx,y(x, y).

• LM, the learning machine that, given some training samples T, returns a class of

parametric function (or hypothesis) h(x, θ), θ ∈ Λ, estimating S for an input x and

defining a mapping between the input and output domains, where Λ defines the

domain for the parameters θ.

Chapter 2. Preliminaries 19

Supervisor* yx

ŷ

Generator*

Training*samples*

FX (x) FY (y | x)

FXY (x, y)

h(x,θ)

Learning*Machine*

Figure 2.1: The players of supervised learning. A generator returns an input vector
x according to Fx(x) and a supervisor associates an output value y to x on the basis
of Fy(y|x). A collection of input and output values defines a training set according
to Fx,y(x, y). The learning machine produces an hypothesis h(x, θ) on the basis of a

training set and predicts the output ŷ for a new observation.

The relationship that links the inputs x to the outputs y, denoted as Fy(y|x), is defined

by S and it can be expressed as a function of the inputs, namely f(x) and known as

target operator, where y = f(x) + ε with ε being some noise. In general Fx(x), Fy(y|x)

and Fx,y(x, y) are unknown, but some training samples T are available for LM. On the

basis of T it is possible to learn a LM that approximate Fy(y|x). A model or learner L
is defined as one of the many hypotheses h(x, θ) in the parameter space Λ ⊂ Rd. It is

generated by LM, and associates to each input vector x an output value or prediction

ŷ = h(x, θ), with ŷ ∈ Y. When Y ∈ R we have a regression task, while for classification

Y is a set of classes or categories. In particular, this thesis will be concerned with binary

classification tasks in which Y ∈ {+,−}, where the positive output will be also coded

as 1 and the negative as 0. With respect to fraud detection, positive observations will

denote fraudulent transactions and negative genuine (legitimate) ones.

LM explores multiple nested classes of hypotheses Λ1 ⊂ Λ2 . . . ⊂ Λq ⊂ Λ for a given T

and generates different hypotheses by setting distinct parameters θ in h(x, θ). In order

to find the optimal hypothesis h(x, θ∗) we have first to define a loss function L(y, ŷ) that

measures the discrepancy between ŷ and y, where ŷ = h(x, θ). Given a loss function

we can then define a risk function R(θ) that measure how well a hypothesis h(x, θ)

approximates f(x) over the X×Y domain.

R(θ) =

∫
X,Y

L(y, ŷ)dFy(y|x)dFx(x) (2.1)

Chapter 2. Preliminaries 20

The optimal model h(x, θ∗) is defined as the hypothesis having the parameters θ∗ mini-

mizing R(θ):

θ∗ = arg min
θ∈Λ

R(θ) (2.2)

The mapping f∗ : X→ Y defined by h(x, θ∗) is also known as target function. A training

set TN = {(xi, yi), i = 1, . . . , N} is defined as a collection of N samples from T. For a

given training set TN we can compute only what is called the empirical risk (Remp) and

the hypothesis minimizing this quantity may be different from h(x, θ∗). In the Empirical

Risk Minimization procedure [30] the parameters θ̂ are identified by minimizing Remp(θ):

Remp(θ) =
1

N

N∑
i=1

L(yi, h(xi, θ)) (2.3)

θ̂ = arg min
θ∈Λ

Remp(θ) (2.4)

It is important to stress that the same hypothesis h(x, θ̂) achieves different Remp(θ̂) when

the training set changes (θ̂ depends on TN), and the training set itself can be seen as a

realization of a random variable TN . For this reason the accuracy of a learning algorithm

is often measured using the generalization error (GN), which is the mean of Remp(θ̂) over

all possible training sets:

GN = ETN [Remp(θ̂)] (2.5)

The choice of class of hypothesis has a great impact on the error GN that a learning

algorithm L is able to achieve. When the model is too simple h(x, θ̂) could poorly

approximate the target operator f(x) on the training set (high Remp(θ̂)), but being

general enough to fit well multiple datasets, while a too complex model could fit perfectly

the training set (low Remp(θ̂)), but having poor generalization on new datasets. This

interaction can lead to the problem of underfitting or overfitting and it is often referred

to as the Bias-Variance trade-off of a model [31].

The bias of a model is the error from erroneous assumptions in the learning algorithm, and

the variance is the error from sensitivity to small fluctuations in the training set (formal

definition of bias and variance available in Appendix C). Section 2.1.3 will illustrate how

GN has both a bias and a variance component. It is commonly said that a hypothesis

underfits the data when it has large bias but low variance, while it overfits the data

when it has low bias but large variance. In both cases, the hypothesis gives a poor

representation of the target and a reasonable trade-off needs to be found. On the basis

of the available training set, the goal of the practitioner is then to search for the optimal

trade-off between the variance and the bias terms.

Chapter 2. Preliminaries 21

Typically, the supervised learning procedure minimizes the error GN by means of a two-

step nested search process [32]. The inner process is known as parametric identification,

and the outer as structural identification. The parametric identification step considers a

single class of hypotheses Λj , with j = 1, . . . , q, and selects a hypothesis h(·, θjN) with

θjN ∈ Λj by means of a learning algorithm L. The role of the learning algorithm is to

find the model that minimizes the empirical error on a given training set. Then h(·, θjN)

is selected as the one minimizing an estimation of the generalization error ĜjN by means

of a validation technique (e.g. cross validation or bootstrap).1

θ̂jN = arg min
θ̂N∈Λj

ĜjN (2.6)

The structural identification step ranges over different classes of hypotheses Λj , 1 ≤ j ≤ q
and calls for each of them the parametric routine which returns the vector θ̂jN . The final

model to be used for prediction is selected in the set {θ̂jN , j = 1, . . . , q}, as the one having
the smallest generalization error across all the classes of hypotheses. This last process is

called model selection.

2.1.2 The problem of classification

A classification task can be explained as the problem of defining the association between a

categorical dependent variable and independent variables that can take either continuous

or discrete values. As mentioned in the previous section, the dependent variable y ∈ Y

is allowed to take values among a small set of K possible classes Y = {c1, . . . , cK} and
the input/output values of a sample (x, y) are drawn from the joint distribution Fx,y. A

classifier K is a hypothesis h(x, θ) that returns ŷ = ĉ ∈ Y.

In general we can identify three alternative approaches to solve the classification problem:

• Estimate the posterior probabilities P(y = ck|x = x), and then subsequently use

decision theory to assign a class ŷ to an input value x.

• Estimate the class-conditional probabilities P(x = x|y = ck) and prior probabilities

P(y = ck) separately and compute posterior probabilities using Bayes’ theorem:

P(y = ck|x = x) =
P(x = x|y = ck)P(y = ck)∑K
k=1 P(x = x|y = ck)P(y = ck)

Then use decision theory to assign each new x to one of the classes.
1Note that we can compute only an estimation of GN , because typically we have access only to a

sample of all possible datasets of size N .

Chapter 2. Preliminaries 22

• Find a function g(x), known as discriminant function [7], which maps each input

x directly onto a class label ŷ (no probability estimates needed).

Approaches that model the posterior probabilities directly are called discriminative mod-

els, while a generative approach models the class-conditional and prior probabilities for

each class, and then calculates posterior probabilities using Bayes’ theorem.

In the case of binary classification K = 2 and a popular loss function is the zero-one loss

L0/1 which assigns loss equal to one in case of wrong prediction and zero otherwise:

L0/1 : Y×Y → {0, 1}

y, ŷ 7→
{

0 if y 6= ŷ

1 if y = ŷ
(2.7)

However, in many applications the cost of misclassification is class dependent. For ex-

ample in cancer treatment, the cost of not predicting correctly a sick patient (a False

Negative) is much higher than making a wrong prediction when the patient is healthy

(a False Positive). Assume Y = {1, 0}, where 1 denotes positive instances and 0 nega-

tive ones. Let li,j be the loss (cost) incurred in deciding i when the true class is j and

p = P(y = 1|x = x). We can define the risk of predicting an instance as positive or

negative as follows:

r+ = (1− p)l1,0 + pl1,1

r− = (1− p)l0,0 + pl0,1

Standard decision-making process based on decision theory [7, 33, 34] defines the optimal

class of a sample as the one minimizing the risk (expected value of the loss function).

Bayes decision rule for minimizing the risk can be stated as follows: assign the positive

class to samples with r+ ≤ r−, and the negative class otherwise.

ŷ =

{
1 if r+ ≤ r−

0 if r+ > r−
(2.8)

As shown by Elkan [35], (2.8) is equivalent to predict a sample as positive when p > τ

and the threshold τ is:

τ =
l1,0 − l0,0

l1,0 − l0,0 + l0,1 − l1,1
(2.9)

Typically, the cost of a correct prediction is zero, hence l0,0 = 0 and l1,1 = 0. If we set

l1,0 = l0,1 = 1 we obtain L0/1 and τ = 0.5.

Chapter 2. Preliminaries 23

2.1.3 Bias-variance decomposition

As shown in the previous section, a binary classification problem can be solved by esti-

mating the posterior probability and then using a threshold τ to define the class. Since

the posterior probability is a continuous value, the probability estimation problem can

be treated as a regression problem. In regression, the unknown conditional distribution

Fy(y|x) is typically estimated using the conditional expectation E[y|x] [30]. In the case

of binary classification with Y = {1, 0} we can write:

E[y|x] = 1 · P(y = 1|x) + 0 · P(y = 0|x) = P(y = 1|x)

In this way, the classification problem can be seen as a regression problem where the

output takes value in {0, 1}. Let p = P(y = 1|x = x) and p̂ its approximation given

by the estimator p̂. A common choice of loss function in regression is the quadratic loss

given by L(p, p̂) = (p − p̂)2. In the case of the quadratic loss function, it can be shown

that the generalization error GN can be decomposed into a bias and a variance term [36].

GN = ETN [(p− p̂)2] = Bias[p̂]2 + V ar[p̂] (2.10)

where Bias[p̂] = ETN [p̂]− p and V ar[p̂] = ETN [(p̂−ETN [p̂])2] (derivation available in

Appendix C). The first term Bias[p̂]2 measures the “bias” of the model, it gives an idea

of how far the average of our estimator p̂ is from the true value p. The “variance” term

(V ar[p̂]) quantifies how much p̂ vary around its mean for different training set TN . It

therefore quantifies the sensitivity of the model prediction for a given training set. The

variance is independent of the true probability p, and is null for the classifier that has

the same predictions across all training datasets. Domingos [37] provides a more general

bias-variance decomposition that works also for the L0/1.

Typically, complex models have high variance and a low bias while simple models have

low variance and a high bias. This is because complex models can approximate well the

target function (low bias), but are highly affected by the variability of the training set

(leading to high variance). The opposite occurs with simple models. Simple learners can

show better performances than more complex ones (e.g., [38, 39]). This is because both

bias and variance influence the predictive error. The optimal trade-off between bias and

variance is often domain or application specific. Several works have found that ensembles

of models very often outperform a single model (e.g., [40]), because averaging multiple

models often (though not always) reduces the variance of single models.

Well-known ensemble methods are bagging [41] and boosting [42]. In bagging multiple

hypotheses are constructed by using different bootstrap samples of the original data

set. The resulting models are then combined into an ensemble to make predictions.

Chapter 2. Preliminaries 24

Breiman [41] showed that bagging allows one to transform an unbiased classifier into

a nearly optimal one by reducing the variance term of (2.10). In the case of boosting,

weak learners are combined to obtain accurate prediction [42] and the improvement in

the generalization error over a single classifier can also be related to the bias-variance

decomposition by introducing the notion of a margin [37], which measures the confidence

in the prediction of the ensemble.

A powerful ensemble algorithm based on bagging is Random Forests [43]. Random

Forest (RF) is an ensemble of decision trees, where each tree is trained on different

bootstrap sample of the original training set and uses a random subset of all the features

available. This returns a forest of decision trees that are very different from each other.

Diversity in the models generating an ensemble is a key factor for variance reduction [44].

2.1.4 Evaluation of a classification problem

In a classification problem an algorithm is assessed on its overall accuracy to predict

the correct classes of new unseen observations and usually ĜN is assessed in terms of

Mean Misclassification Error (MME). Let Y1 be the set of positive instances, Y0 the

set of negative instances, Ŷ1 the set of instances predicted as positive and Ŷ0 the ones

predicted as negative. For a binary classification problem it is conventional to define a

confusion matrix (Table 2.1).

Y1 Y0

Ŷ1 TP FP
Ŷ0 FN TN

Table 2.1: Confusion Matrix.

In the case of zero-one loss we can then define MME = |FP∧FN|
N , where operator |·| defines

the cardinality of a set and N the size of the dataset. In the following we will write FP

to denote |FP| and similarly for all the other entries of the confusion matrix. From MME

we can then define the accuracy of a model as 1 - MME. However, in some situations, the

accuracy is not a good measure of performance, especially in unbalanced classification

problem where one class is much more frequent than the other [45, 46]. For example

consider the case where we have N = 10000 transactions and only 1% are fraudulent

(100 positives). Predicting all transactions as genuine (negative) would return to an

accuracy of 0.99, but we would miss to detect all fraudulent cases.

Other classification measures based on the confusion matrix are [47, 48]:

Chapter 2. Preliminaries 25

• Precision: TP
TP+FP

• Recall: TP
TP+FN , also called True Positive Rate (TPR), Sensitivity or Hit rate

• True Negative Rate (TNR): TN
FP+TN , also called Specificity

• False Positive Rate (FPR): FP
FP+TN

• False Negative Rate (FNR): FN
TP+FN

• Balanced Error Rate (BER): 0.5(FP
TN+FP + FN

FN+TP)

• G-mean:
√
Sensitivity× Specificity

• F-measure: 2Precision×Recall
Precision+Recall , also called F-score or F1.

In an unbalanced classification problem, it is also well known that quantities like TPR

and TNR are misleading assessment measures [49]. Imagine a classifier with TPR=99%

and TNR=99% (Table 2.2), if we have 1% of positive samples, then Precision is only 0.5.

Even worse, if we have only 0.1% of positives, then Precision is 0.09.

(a) Class percentage

Y1 Y0

Ŷ1 99% 1%
Ŷ0 1% 99%

(b) Frequency

Y1 Y0

Ŷ1 99 99
Ŷ0 1 9801

100 9900

Table 2.2: Confusion Matrix of a classifier with TPR=99% and TNR=99% when we
have 100 positive instances in 10000 observations.

BER may be inappropriate too because of different costs of misclassification false nega-

tives and false positives. Precision and Recall have opposite behavior, having high Pre-

cision means bad Recall and vice versa. F-measure gives equal importance to Precision

and Recall into a metric ranging between 0 and 1 (the higher the better). F-measure and

G-mean are often considered to be relevant measures in unbalanced problem [21, 50–52].

In general these measures can be computed only once a confusion matrix is available,

which means that their values depend on the threshold used for classification defined

by (2.9). Changing the threshold corresponds to use different misclassification costs.

The Receiving Operating Characteristic (ROC) curve [53, 54] is a well-know assessment

technique that allows evaluating the performance of a classifier over a range of different

thresholds. It is obtained by plotting TPR against FPR (see Figure 2.2), where each

point of the curve corresponds to a different classification threshold. A classifier K is said

to be more accurate than a classifier W in the ROC space only if the curve of K always

dominates the curve of W. The best classifier corresponds to the point (0,1) in the ROC

Chapter 2. Preliminaries 26

FPR

T
P

R
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0.0 0.2 0.4 0.6 0.8 1.0

K
W

Figure 2.2: The Receiving Operating Characteristic (ROC) curve for two classifiers
K and W. The gray line represents the performance of a random model.

space (no false negatives and no false positives), while a classifier predicting at random

would have performances along the diagonal connecting the bottom left corner to the

top right. When there is not a clear winner (e.g. classifier K dominates W only in one

part of the ROC space), the comparison is usually done by calculating the Area Under

the ROC Curve (AUC). AUC is also a well-accepted measure for unbalanced datasets

and it has become the de facto standard in classification [19, 51, 55–57].

However, AUC is insensitive to class priors since both TPR and FPR do not change

with a different class ratio. Precision-Recall (PR) curves are instead sensitive to changes

in the class distribution, but there is there a strong connection between ROC and PR

curves. A curve dominates in ROC space if and only if it dominates in PR space, and

algorithms that optimize the area under PR curve are guaranteed to optimize the area

under ROC curve [58].

When evaluating the output of a classifier it is also important to assess the quality of the

estimated probabilities [59]. A well-known measure of quality is Brier Score (BS) [60].

BS is a measure of average squared loss between the estimated probabilities and the

actual class value. It allows evaluating how well probabilities are calibrated, the lower

the BS the more accurate are the probabilistic predictions of a model. Let P̂(yi|xi) be

the probability estimate of sample xi to have class yi ∈ {1, 0}, BS is defined as:

BS =
1

N

N∑
i=1

[yi − P̂(yi|xi)]2 (2.11)

Chapter 2. Preliminaries 27

2.2 Credit Card Fraud Detection

2.2.1 Fraud Detection System working conditions

In this section we describe the working conditions of a real-world Fraud Detection Sys-

tem (FDS). Figure 2.3 describes the hierarchy of layers in a FDS, each controlling

whether the transactions is genuine or should be rather reported as a fraud: i) Terminal,

ii) Transaction Blocking Rules, iii) Scoring Rules, iv) Data Driven Model, v) Investiga-

tors. The first four elements of the FDS are fully automatized, while the last one requires

human intervention and it is the only non-automatic and offline part of the FDS. Auto-

matic tools have to decide whether the transaction request (or the transaction attempt)

has to be approved in Real Time (i.e., decision has to be taken immediately) or in Near

Real Time (i.e. decisions can be taken in a short time). Blocking and scoring rules are

Expert Driven Rules (EDR), i.e. rules designed by investigators based upon their expe-

rience. On the contrary, the DDM uses annotated transactions as source of information

to extract knowledge about fraudulent and genuine patterns. In the following we will

explain the role played by each component of the FDS.
Transaction Request

Transaction Attem
pt

Real Time

Transaction Denied

Correct PIN?
Suf!cient Balance?

Active Account?

InvestigatorsTerminal Blocking
Rules

Data Driven
Model

Scoring
Rules

Transaction Denied

Near Real Time Of"ine

Automatic Tools

 Authorized Transaction

Alerts

Feedback

Human Supervision

FDS part we ModelExpert Driven Data Driven

Transaction

Figure 2.3: The layers of a FDS. In this thesis we focus only on the data driven part.

Chapter 2. Preliminaries 28

2.2.1.1 FDS Layers:

The Terminal represents the first layer of conventional security checks in a FDS. At this

stage security checks such as correct PIN code, number of attempts, status of the card

(active or blocked), sufficient balance and expenditure limit provide a first filter of the

transactions that can get through [61]. These conditions are evaluated in real time and

if any of them is not satisfied, the transaction is denied. All transactions passing this

first filter raise a transaction request to the second layer controlled by the blocking rules.

Transaction Blocking Rules are designed by experienced investigators and they can block

a transaction request before it is authorized. These rules operate in Real Time, and are

very precise, they deny a transaction request only if it clearly represents a fraud attempt.2

Blocking Rules are if-then (-else) rules that associate the class fraud or genuine to a

transaction when specific conditions are met. An example can be the following: “IF a

PIN-based transactions is done in Europe AND in Asia within 5 min from the same

cardholder THEN deny the transaction”, since the customer cannot physically be in

Europe and Asia over a short time interval.3 Transaction requests passing Blocking

Rules are authorized and become transactions (the payment is executed). Before each

authorized transaction is sent to the successive security layer of FDS it is enriched with

aggregated information (e.g. average expenditure, number of transactions in the same

day of the same cardholder, etc.). The resulting feature vector describing the transaction

is then analyzed by both Scoring Rules and DDMs. These controls are performed in Near

Real Time (typically less than 6s [61]) since there is no need to provide an immediate

response given that the transaction has been already authorized.

Scoring Rules are EDR defined by investigators based upon their experience that act like

a rule-based classifier. They assign a score to each authorized transaction: the larger the

score, the more likely the transaction is to be a fraud. In practice scoring rules contain

simple, human-understandable conditions (e.g. IF Internet transaction in fiscal paradise

and amount > 1000$, THEN fraud score = 0.9) and as such can be easily designed by

investigators or other experts. These rules are easy to understand and fast to deploy, but

require manual revision when their performance drops. As a consequence, these rules

can be expensive to maintain.

Data Driven Model (DDM) layer relies on a predictive model to assign a fraud score to

each transaction. Usually this phase uses ML algorithms that return for each transac-

tion an estimate of the probability to be a fraud. These algorithms can learn complex

correlations in the data using large volume of data with high dimensionality. They are
2Cards should be blocked only if there is a high risk of frauds, because it prevents the cardholder to

make any future payments.
3Note that this is just an illustrative example, blocking rules are confidential information.

Chapter 2. Preliminaries 29

usually more robust than EDR, but most of them are black box, i.e. it is not possible

to convert them into rules that are easy to interpret. DDMs are able to consider all

the information associated to a transaction, while EDR returns conditions based on few

features of the transactions.

Investigators are fraud experts that check fraud alerts, i.e. transactions that have re-

ceived a high fraud score by either EDR or DDM. These suspicious transactions are

displayed in a Case Management Tool (CMT) where investigators can see the associated

fraud score, check where they come from (EDR or DDM) and annotate them as genuine

or fraud after verification. In a realistic scenario only few alerts can be checked given

a limited number of investigators [62]. For this reason, they typically investigate only

transactions with the highest fraud score. The role of investigators is to contact the

cardholder, check if the transaction is fraudulent or not and annotate it with its correct

label. This process can be long, tedious, and at the same time the number of transactions

to check is usually very large, so it is important to minimize false alerts. The labeling

process generates annotated transactions that are used by the DDM. In the following

we use the term feedbacks to refer to these labeled transactions.

2.2.1.2 Supervised Information

Investigators’ feedbacks are the most recent supervised information available to the FDS

and they represent a tiny part of all transactions processed everyday [20]. Additional

labeled transactions are provided by cardholders reporting unauthorized transactions [20,

61]. However, the number of customers reporting frauds not detected by the FDS is

usually small and hard to model, since cardholders have different habits when it comes

to check the transcript of credit card transactions given by the bank. We do not know

the class of all the other transactions that have not been checked, they can be either

genuine or frauds missed by the FDS and ignored by the cardholders. However, after

a certain time period when no further missed frauds are reported, we can assume that

unchecked transactions are genuine. These transactions can then be used to train a new

DDM.

2.2.1.3 System Update

Expert driven systems are updated manually, while the data-driven component is up-

dated automatically. Alerts generated today define the feedbacks that will be used to

train an algorithm that detects the frauds of tomorrow. This means that Alert-Feedback

Interaction (AFI) governs the type of information available to the algorithm that regu-

lates the data driven phase.

Chapter 2. Preliminaries 30

Typically, DDMs require a large set of samples to train an accurate model, so the ML

algorithms used in the data driven layers are trained at the end of the day, when a

sufficient batch of feedbacks are available. Feedbacks of alerted transactions are given

by investigators during the day, but only at the end of the day we have all the feedbacks

for the alerts generated by the FDS. Therefore, the DDM is usually updated everyday

at midnight and the detection model is then applied to all the transactions occurring in

the next days.

The focus of the thesis is to improve the DDM part of the FDS and to model the

interaction between Data Driven Methods based on ML and investigators. In particular,

we will consider a scenario where the DDM is the only element of the FDS responsible for

the alerts given to fraud experts and the algorithms are able to learn from the feedback

provided. In the remainder of the thesis we will use the term FDS to indicate only the

FDS layers we model: DDM and investigators.

2.2.2 Features augmentation

When a transaction is authorized, it is entered in a database containing few variables

such as cardholder ID (CARD_ID), amount, datetime, merchant, etc. Starting from

these features it is possible to compute new variables that can describe the cardholder

behaviour. This process is called feature augmentation, because the ultimate goal is to

add to the original feature new informative features. Standard feature augmentation

consists into computing variables such as average expenditure of the cardholder in the

last week/month, number of transactions in the same shop, number of daily transactions,

etc. [18, 62–65]. Van Vlasselaer et al. [61] use also network features to consider the role

of the cardholder in the network of transactions.

These new features are also called aggregated features as they provide an aggregated

view of the cardholder behaviour over a certain time period. It is important to include

aggregated features for the DDM to learn the behavior of the customer over time and

detect anomalous transactions w.r.t. typical customer usage of the credit card. Trans-

action aggregation is computationally expensive; therefore aggregated features are often

computed for each cardholder offline using historical transactions (e.g. transaction of

the same cardholder in the previous month). Once aggregates variable are available they

are merged with the original feature to define a feature vector describing the transaction

that is then used to train the DDM. After transaction authorization and features aug-

mentation, each feature vector is scored by both DDMs and Scoring Rules which operate

in Near-Real Time.

Chapter 2. Preliminaries 31

In a testing environment, we should remove CARD_ID from the feature vector. A model

that receives as input the variable CARD_ID may have performances too optimistic on

future frauds from the same cardholder if not removed from the dataset. On the contrary,

in a real working environment, a card is blocked after the first fraud is found, so we cannot

see future transactions from the same card. To replicate the real setting we could remove

all the transactions of the compromised card, but this would reduce the number of frauds

available for testing our algorithm, worsening the class unbalance problem in our dataset.

Another option is to remove the CARD_ID variable from the feature vector. In this

case, each fraud can be treated independently and the FDS cannot leverage CARD_ID

for detecting frauds. Note that CARD_ID is used to compute aggregated variables, so

we can safely remove CARD_ID only once the new variables are included in the feature

vectors. These new features contain information about the cardholder, so there is not

loss of information in removing CARD_ID after features augmentation.

2.2.3 Accuracy measure of a Fraud Detection System

Choosing a good performance measure is not a trivial task in the case of fraud detection.

Among others, fraud detection must deal with the following challenges: i) unbalanced

class sizes, ii) cost structure of the problem (the cost of a fraud is not easy to define),

iii) time to detection (a card should be blocked as soon as it is found victim of fraud,

quick reaction to the appearance of the first can prevent other frauds), iv) errors in class

labels (quantify unreported frauds), v) reputation’s cost for the company, etc.

As already mentioned in Section 2.1.4, standard classification measure such as MME,

BER, TPR and TNR are misleading assessment measures in unbalanced class prob-

lem [49]. A well-accepted measure for unbalanced classification is the Area Under the

ROC Curve (AUC) [56]. This metric gives a measure of how much the ROC curve is

close to the point of perfect classification. Hand [66] considers standard calculation of

the AUC as inappropriate, since this translates into making an average of different mis-

classification costs for the two classes. An alternative way of estimating AUC is based on

the use of the Mann–Whitney statistic and consists in ranking the transactions according

to the posterior probability to be fraudulent and measuring the likelihood that a fraud

ranks higher than a genuine transaction [67]. By adopting the rank-based formulation of

AUC we can avoid the problem raised by Hand of using different probability thresholds.

In many FDS (e.g. [68–70]), cost-based measures are defined to quantify the monetary

loss due to fraud [71] by means of a cost-matrix that associates a cost to each entry of

the confusion matrix. Elkan [35] claims that it is safer to assess cost-sensitive problem

in terms of benefit (inverse of cost), since there is the risk of using different baselines

Chapter 2. Preliminaries 32

when using a cost-matrix to measure overall cost. To avoid this problem, normalized

cost or savings [70] are used to assess the performance w.r.t. the maximum loss. When

defining a cost measure, one could consider the cost of a FN fixed or dependent on the

transaction amount. In the first case each fraud is equally costly, while in the latter the

cost is example dependent. An argument for using fixed cost is to give equal importance

to small and larger frauds (fraudsters usually test a card with small amounts), while

transaction-dependent cost allows one to quantify the real loss that a company has to

face.

In the transaction-dependent case, the cost of a missed fraud (FN) is often assumed

to be equal to the transaction amount [35, 71], because it has to be reimbursed to the

customer. Cost of correct or false alerts is considered to be equivalent to the cost of a

phone call, because the investigators make a phone call to the cardholder to verify if it is

the case of a false alert or a real fraud. The cost of a phone call is negligible compared to

the loss that occurs in case of a fraud. However, when the number of false alerts is too

large or the card is blocked by error, the impossibility to make transactions can translate

into big losses for the customer.

The cost should also include the time taken by the detection system to react. The

shorter is the reaction time, the larger is the number of frauds that it is possible to

prevent. Typically, once fraudsters successfully perpetuate a fraud, then they try to

spend all the money available on the card. As a consequence, when evaluating a FDS

we should also consider the spending limit of each card: i.e. detecting a fraud on a

card having a large spending limit (e.g. corporate cards) result in higher savings than

detecting a fraud on a card having a small spending limit [72]. For all these reasons,

defining a cost measure is a challenging problem in credit card detection and there is not

agreement on which is the right way to measure the cost of frauds.

The performance of a detection task (like fraud detection) is not necessarily well de-

scribed in terms of classification [73]. In a detection problem what matters most is

whether the algorithm can rank the few useful items (e.g. frauds) ahead of the rest.

In a scenario with limited resources, fraud investigators cannot revise all transactions

marked as fraudulent from a classification algorithm. They have to put their effort into

investigating transactions with the highest risk of fraud, which means that the detection

system is asked to return the transactions ranked by their posterior fraud probability.

The goal then is not to predict accurately each class, but to return a correct rank of the

minority classes.

In this context a good detection algorithm should be able to give a high rank to relevant

items (frauds) and low score to non-relevant. A well-known detection measure is Average

Precision (AP) [73]. Let N+ be the number of positive (fraud) case in the original dataset

Chapter 2. Preliminaries 33

and TPk be the number of true positives in the first k ranked transactions (TPk ≤ k).

Let us denote Precision and Recall at k as Pk = TPk
k and Rk = TPk

N+ . We can then define

Average Precision as:

AP =
N∑
k=1

Pk(Rk − Rk−1) (2.12)

where N is the total number of observations in the dataset. The better the rank, the

greater the AP and the optimal algorithm that ranks all the frauds ahead of the legiti-

mates has AP = 1. Note that AP is also an estimate of the area under the Precision-Recall

curve [74].

As explained in Section 2.2.1, each time a fraud alert is generated by the detection system,

it has to be checked by investigators before proceeding with actions (e.g. customer

contact or card stop). Given the limited number of investigators, it is crucial to have the

best ranking within the maximum number k of alerts that they can investigate. In this

setting it is important to have the highest Precision within the first k alerts, namely Pk.

Note that, while AUC and AP give a measure of the quality of the ranking on the whole

datasets, Pk focus only on a subset of k transactions. Precision at k (Pk) is also called

alert Precision and it has emerged as a standard accuracy measure of FDSs [18, 20, 64].

Assessment of two FDSs (e.g. existing versus new version) can hide undesired bias.

When evaluating between choosing an existing FDS and a new solution, Hand [75] warns

against the bias that favors the old FDS. The data used to train a new FDS depend on

the alerts and detection given by the FDS in place at the moment of training, i.e. we can

train a new FDS only on the frauds discovered by the old FDS and the undetected ones

cannot be used for training / evaluation. Therefore, there is a selection bias in the data

collection process that is due to the performance of the previous FDS, as a result the

evaluations are biased in favor of the existing system. This issue is similar to the problem

of evaluating classifiers in the presence of Alert-Feedback Interaction (see Chapter 6),

where we know the feedbacks only of the learner requesting the labels. The performance

evaluation makes sense only conditional on the learner generating the alerts, so it is

incorrect to compare two alternative algorithms when only one of the two requests the

feedbacks.

Chapter 3

State-of-the-art

This chapter presents a review of the approaches that have been adopted for dealing

with the challenges of a Data Driven FDS presented in Section 1.4. Section 3.1 provides

an overview of state-of-the-art methods for unbalanced classification and Section 3.2

reviews the principal adaptation techniques proposed for the problem of learning in non-

stationary distribution. Then in Section 3.3 we present methods that address the problem

of class unbalance in evolving data streams. Finally, Section 3.4 presents state-of-the-art

algorithmic solutions proposed for credit card fraud detection.

3.1 Techniques for unbalanced classification tasks

Learning from unbalanced datasets is a difficult task since most learning algorithms are

not designed to cope with a large difference between the number of cases belonging to

different classes [22]. There are several methods that deal with this problem and we can

distinguish between methods that operate at the data and algorithmic levels [76]. At

the data level, the unbalanced strategies are used as a pre-processing step to rebalance

the dataset or to remove the noise between the two classes, before any algorithm is

applied. At the algorithmic level, algorithms are themselves adjusted to deal with the

minority class detection. Data level methods can be grouped into five main categories:

sampling, ensemble, cost-based, distance-based and hybrid. Within algorithmic methods

instead we can distinguish between: i) classifiers that are specifically designed to deal

with unbalanced distribution and ii) classifiers that minimize overall classification cost.

The latter are known in the literature as cost-sensitive classifiers [35]. Both data and

algorithm level methods that are cost-sensitive target the unbalanced problem by using

different misclassification costs for the minority and majority class. At the data level,

cost-based methods sample the data to reproduce the different costs associated to each

35

Chapter 3. State-of-the-art 36

class (see translation theorem [77]). Cost-sensitive classifiers instead directly minimize

the costs by using cost specific loss function. Alternatively, wrapper methods can be

used to convert a cost-insensitive (or cost-blind) classifier into a cost-sensitive ones (e.g.

Metacost [78]).

All the methods presented in the following section will discuss the unbalanced problem

as referred to between class imbalance, i.e. imbalance in class frequency. However,

class imbalance can exist also within the class [79, 80] (due to small clusters within one

class), and this problem is often linked to the presence of rare cases [81]. Within-class

imbalances and rare cases are closely related to the problem of small disjuncts, which

hinder classification performance [80, 82–84]. Small disjuncts are rules that cover a small

cluster of examples resulting from concepts that are underrepresented [46, 85, 86]. For an

in-depth analysis of other issues related to unbalanced classification we invite the reader

to have a look at [87].

3.1.1 Data level methods

Sampling methods

Typically, sampling methods are used to rebalance the datasets, because studies have

shown that standard classifiers have better performances when trained on a balanced

training set [88–90]. Sampling techniques do not take into consideration any class in-

formation in removing or adding observations, yet they are easy to implement and to

understand.

Undersampling [91] consists in downsizing the majority class by removing observations

at random. In an unbalanced problem it is realistic to assume that many observations

of the majority class are redundant and that by removing some of them at random the

resulting distribution should not change much. However, the risk of removing relevant

observations from the dataset is still present, since the removal is done in an unsupervised

manner. In practice, this technique is often adopted since it is simple and speeds up the

learning phase.

Oversampling [91] consists in up-sizing the small class at random decreasing the level

of class imbalance. By replicating the minority class until the two classes have equal

frequency, oversampling increases the risk of overfitting [91] by biasing the model towards

the minority class. Other drawbacks of this approach are that it does not add any new

informative minority examples and that it increases the training time. This can be

particularly ineffective when the original dataset is fairly large.

Chapter 3. State-of-the-art 37

SMOTE [92] oversamples the minority class by generating synthetic examples in the

neighborhood of observed ones. The idea is to form new minority examples by interpo-

lating between samples of the same class. This has the effect of creating clusters around

each minority observation. By creating synthetic observations the classifier builds larger

decision regions that contain nearby instances from the minority class. SMOTE has

shown to improve the performances of a base classifier in many applications [92], but

it has also some drawbacks. Synthetic observations are generated without considering

neighboring examples, leading to an increase of overlap between the two classes [93].

Borderline-SMOTE [94] and ADASYN [95] have been proposed to overcome this prob-

lem.

Undersampling- Oversampling- SMOTE-

Figure 3.1: Resampling methods for unbalanced classification. The negative and pos-
itive symbols denote majority and minority class instances. In red the new observations

created with oversampling methods.

Cost-based methods

Cost proportional sampling [35] consists into sampling training instances from the ma-

jority and minority classes by taking into consideration the ratio of the misclassification

costs. Let li,j denote the misclassification cost of class j predicted as i, so that the cost of

a FP and a FN is written as l1,0 and l0,1. When we want to keep all minority examples,

then the number of majority instances should be multiplied by l1,0
l0,1

. If we assume that

the cost of a FP is lower, i.e. l1,0 < l0,1, this boils down to undersampling the majority

Chapter 3. State-of-the-art 38

class. Alternatively, cost proportional sampling can be achieve by replicating observa-

tions from the minority class l0,1
l1,0

times (oversampling). As in the case of oversampling,

replicating samples from the minority class may induce overfitting [77].

Costing [77] adopts “rejection sampling” to select the instances in the final dataset. Each

instance in the original training set is drawn once, and accepted into the sample with the

accepting probability lj,i
Z where Z is an arbitrary constant such that Z ≥ max lj,i. When

Z = max lj,i, this is equivalent to keeping all examples of the rare class, and sampling

the majority class without replacement according to l1,0
l0,1

.

Distance-based methods

The following methods make use of distance measures between input points either to

undersample or to remove noisy and borderline examples of each class. These methods

are very time consuming since they require computing distances between observations.

Tomek link [96] removes observations from the negative class that are close to the positive

region in order to return a dataset that presents a better separation between the two

classes. Let us consider two input examples xi and xj belonging to different classes,

and let d(xi, xj) be their distance. A (xi, xj) pair is called a Tomek link if there is no

example xk, such that d(xi, xk) < d(xi, xj) or d(xj , xk) < d(xi, xj). If two examples

form a Tomek link, then one of these examples is noisy or both are borderline. Negative

instances that are Tomek links are then removed reducing the majority class. This

method is particularly useful in noisy datasets as it removes those samples for which

noise can lead to a misclassification [97].

Condensed Nearest Neighbor (CNN) [98] is used to select a subset S from the original

unbalanced set T which is consistent with T in the sense that S classifies T correctly

with the one-nearest neighbor rule (1-NN). The idea behind this implementation of a

consistent subset is to eliminate the examples from the majority class that are distant

from the decision border, since these sorts of examples might be considered less relevant

for learning. Since noisy samples are likely to be misclassified, many of them will be

added to the S set which means CNN rule is extremely sensitive to noise [99]. Moreover,

noisy training data will misclassify several of the subsequent test examples.

One Sided Selection (OSS) [100] is an undersampling method resulting from the combi-

nation of Tomek links followed by the application of CNN. Tomek links are used as an

undersampling method and removes noisy and borderline majority class examples. Bor-

derline examples can be considered unsafe since a small amount of noise can make them

fall on the wrong side of the decision border [97]. CNN aims to remove examples from

Chapter 3. State-of-the-art 39

the majority class that are distant from the decision border. The remaining examples,

i.e. safe majority class instances and all minority class examples, are used for learning.

Edited Nearest Neighbor (ENN) [101] removes any example whose class label differs from

the class of at least two of its three nearest neighbors. In this way majority examples

that fall in the minority region are removed and likewise isolated minority examples are

removed. To avoid the risk of losing relevant minority examples ENN is edited to remove

only negative examples that are misclassified by their 3 nearest neighbors.

Neighborhood Cleaning Rule (NCL) [89] modifies the ENN method by increasing the

role of data cleaning. Firstly, NCL removes negative examples that are misclassified by

their 3-nearest neighbors. Secondly, the neighbors of each positive example are found

and the ones belonging to the majority class are removed. Since this algorithm removes

noisy instances, as well as close-border points, the decision boundary becomes smoother

with a consequent reduction of the risk of overfitting [97].

Other hybrid strategies can be easily created by combining sampling, ensemble or distance-

based techniques [27].

3.1.2 Algorithm level methods

Algorithm oriented methods are essentially a modification (or extension) of existing clas-

sification algorithms for unbalanced tasks. Depending on their applications we distin-

guish between imbalanced learning and cost-sensitive learning. In first case, the goal is

to improve accuracy of the minority class, while in the second case the objective is to

minimize the cost associated to the classification task.

Imbalance learning

Standard decision trees such as C4.5 [102] use Information Gain (IG) as splitting criteria

in each node of the tree. However, this splitting criterion returns rules that are biased

towards the majority class. Liu et al. [57] use the Class Confidence Proportion (CCP)

metric for splitting in presence of class imbalance, while Cieslak and Chawla [103] suggest

splitting with Hellinger Distance (HD). They show that HD is skew-insensitive and the

proposed HDDT has better performance compared to standard C4.5. Other studies

have also reported the negative effect of skewed class distributions not only on decision

trees [21, 82], but also for Neural Networks [82, 104], k-Nearest Neighbor (kNN) [100,

105, 106] and SVM [107, 108].

Chapter 3. State-of-the-art 40

A SVM optimized in terms of F-measure is presented by Callut and Dupont [109], while

Li et al. [110] use SVM with RBF kernels as base classifier for AdaBoost. In the family of

lazy learning classifiers, Liu and Chawla [111] propose a kNN weighting strategy designed

for handling the problem of class unbalance. The algorithm, called CCW-kNN (Class

Confidence Weights kNN), is able to correct the inherent bias towards the majority class

in existing kNN classifiers.

Association rule mining with class unbalance is often achieved by specifying multiple

support levels for each class to account for the difference in class frequency [112]. Within

the family of rule-based classifiers, Verhein and Chawla [113] developed a classifier called

SPARCCC that is specifically designed for unbalanced classification. In all these algo-

rithms the general idea is to modify the original classifier in order to learn better patterns

from the minority class. Weiss [114] argues that these algorithmic solution should be pre-

ferred to data level methods cause they are able to deal with the class unbalance directly

without biasing the classifier towards one class.

Following the great success of ensemble learning in machine learning, lots of ensemble

strategies have been proposed for imbalanced learning, with Bagging [41] and Boost-

ing [115] being the most popular methods to aggregate classifiers. Usually, ensemble

methods combine an unbalanced strategy with a classifier to explore the majority and

minority class distribution. BalanceCascade [116] is a supervised strategy to under sam-

ple the majority class. This method iteratively removes the majority class instances that

are correctly classified by a boosting algorithm. The idea is that observations of the

majority class that are easy to classify are redundant and that by removing them the

algorithm can concentrate on the hard cases. The drawback is that a classification algo-

rithm has to be applied several times to reduce the majority class leading to an increase

in computational needs.

EasyEnsemble [116] and UnderBagging [117] combine different models that learn distinct

aspects of the original majority class. This is done by creating different balanced training

sets by undersampling, learning a model for each dataset and then combining all predic-

tions as in bagging. In the case of EasyEnsemble, boosting is used as classifier so that the

method is able to integrate the advantages of boosting and bagging. In the same spirit,

several studies have integrated oversampling/undersampling in ensembles of SVMs [118–

121]. SMOTEBoost [122] combines boosting with SMOTE. Similarly, DataBoost-IM [45]

generates synthetic samples as well within the boosting framework to improve the predic-

tive accuracies of both the majority and minority classes. RareBoost [123] modifies the

boosting algorithm to increase accuracy on the rare class by emphasizing the difference

Chapter 3. State-of-the-art 41

of TN from FN, and TP from FP at each iteration of boosting. JOUS-Boost [124] gener-

ates duplicates of the minority class with oversampling, but also introduce perturbations

(“jittering”) by adding IID noise to minority examples.

Cost-sensitive learning

In unbalanced classification tasks, it is usually more important to correctly predict pos-

itive (minority) instances than negative (majority) instances. This is often achieved by

associating different costs to erroneous predictions of each class. Cost-based methods

operating at the algorithm level are able to consider misclassification costs in the learn-

ing phase without the need of sampling the two classes. Example of these classifiers are

cost-sensitive boosting [125, 126], SVM [127] and Neural Network [128].

In the family of decision tree classifiers, cost-based splitting criteria are used to minimize

costs [129]; or cost information determine whether a subtree should be pruned [130]. In

general, pruning allows improving the generalization of a tree classifier since it removes

leaves with few samples on which we expect poor probability estimates. Although, when

the classification task is unbalanced, leaves containing few samples are often the one

associated to the minority class and the first removed with pruning.

With Metacost [78] Domingos proposed a general framework that allows transforming

any non cost-sensitive classifier into a cost-sensitive one. Similarly, thresholding [131]

allows using cost-insensitive algorithms for cost minimization via different classification

thresholds. These last methods are also called cost-sensitive meta-learners, since they are

wrappers that minimize misclassification costs using standard classification algorithm.

In many applications, however, costs are not explicitly available or easy to estimate,

complicating the use of cost-sensitive algorithms [132].

3.2 Learning with non-stationarity

A standard assumption in machine learning is that the training and testing sets are

drawn from the same underlying distribution. Let Ptr(x, y) and Pts(x, y) denote joint

probability of a sample (x, y) according to training and testing distribution. In a non-

stationary environment we have Ptr(x, y) 6= Pts(x, y). When there is a distributional

mismatch between the test and training data, the model fitted using the training data

will be sub-optimal for the test scenario. Typically, this mismatch is generated by the

following two causes: i) Sample Selection Bias (SSB) or ii) time evolving data.

Chapter 3. State-of-the-art 42

In the first case the selection process of the training samples is responsible for a biased

training set and depending on the bias different solutions exist to correct this bias. The

second cause of non-stationarity is linked to streaming data where the data distributions

evolve with time.

3.2.1 Sample Selection Bias

Sample Selection Bias (SSB) occurs when the training set available is biased because

it has been selected in a way that is not representative of the whole population. For

example, consider the problem where a bank wants to predict whether someone who is

applying for a credit card will be able to repay the credit at the end of the month. The

bank has data available on customers whose applications have been approved, but has

no information on rejected customers. This means that the data available to the bank is

a biased sample of the whole population. The bias in this case is intrinsic to the dataset

collected by the bank.

We formalize the sample bias by means of a random variable s ∈ {0, 1} where samples

included in the biased training set have s = 1, and s = 0 otherwise. Then the joint

distribution of a sample (x, y) in the biased training set is P(x, y|s = 1) and P(x, y)

is the distribution in the case when the training set is unbiased. SSB requires what

is known as the support condition [133]: the support of the probability measure of the

training data has to be a subset of the support of the probability measure of the test data.

Under this condition Ptr(y, x) = P(y, x|s = 1) and Pts(y, x) = P(y, x). The selection

bias can be of different types: class prior bias, feature bias (also called covariate shift)

and complete bias.

Class prior bias, also called prior probability shift, is essentially a change in class priors:

P(y|s = 1) 6= P(y). It corresponds to the case when the selection is independent of

the feature x given the class y: P(s = 1|x, y) = P(s = 1|y). As a consequence of

prior change, class-conditional probabilities are different (P(y|x, s = 1) 6= P(y|x)), while

within-class distribution remain unchanged (P(x|y, s = 1) = P(x|y)). This type of

bias can be introduced voluntarily for unbalanced classification tasks as in the case of

undersampling and oversampling techniques presented in Section 3.1.1. As a result of

class prior bias, classifiers have probability estimates that are poorly calibrated [28].

Well-know methods for correcting the prior bias are given by Saerens et al. [134] and

Elkan [35].

Feature bias refers to changes in the distribution of the input variables without affecting

the conditional probability P(y|x). The selection is independent of the class label y given

the feature x (missing at random): P(s = 1|x, y) = P(s = 1|x). This condition implies

Chapter 3. State-of-the-art 43

P(y|x, s = 1) = P(y|x). Feature bias appears to be most studied type of bias [135–138]

and a standard solution consist into re-weighting training instances [139].

Finally, complete bias is the most general case where the selection depended on both

y and x (missing not at random). The most famous method for correcting complete

bias is the one of Heckman [140] that gave him the Nobel Prize. Heckman defines two

linear models, one for estimating s and one for y, which use different subset of features.

The two-step procedure for bias correction consists into modeling s with ordinary least

squares and then using the output as an additional feature in the model used to estimate

y. If the same features are used to estimate both linear models estimating s and y, then

the additional variable may end up highly correlated with the biased estimate of y and

the Heckman procedure is not effective in correcting the bias [141]. Following the same

idea Zadrozny and Elkan [142] use a classifier to predict P(s = 1|x) and then incorporate

this probability estimate as input feature in a new classifier used to predict P(y|x), but

there is no theoretical guarantee that this method should correct SSB. For a recent

survey on SSB we refer to [141].

The machine learning community has extensively investigated the SSB problem [35,

77, 142–145]. A standard remedy to SSB is importance weighting which consists of

re-weighting the cost of training samples errors to more closely reflect that of the test

distribution [77, 143, 144]. Using the Bayes formula we can write P(x, y) in terms of

P(x, y|s = 1):

P(x, y) =
P(x, y|s = 1)P(s = 1)

P(s = 1|x, y)
=

P(s = 1)

P(s = 1|x, y)
P(x, y|s = 1) (3.1)

Hence, we can correct SSB using a weight-sensitive algorithm, where a training instance

(x, y) receive as weights P(s=1)
P(s=1|x,y) . The probability P(s = 1) can easily be estimated

knowing the proportion of sampled examples, however computing P(s = 1|x, y) is not

straightforward. In the case of feature bias we can rewrite (3.1) as:

P(x, y) =
P(s = 1)

P(s = 1|x)
P(x, y, s = 1) (3.2)

Now we can estimate term P(s = 1|x) using a classifier that distinguish between sampled

points and instances not included in the training set. However, Cortes et al. [133] argue

that the re-weighting approach is able to remove the bias as long as the weights are

estimated correctly. With a poor estimate of the weights we are not guaranteed to be

able to remove the bias. In estimating P(s = 1|x) we might have some values equal

to zero, so it may be safer to assume complete bias [146]. SSB is closely related to the

problem of learning under time evolving data streams, where importance weighting is

used to correct the concept drift due to covariate shift [147].

Chapter 3. State-of-the-art 44

3.2.2 Time evolving data

Most of the times, the main cause of differences between training and testing sets in data

streams is due to a change in the data generating process. Using Bayes rule we can write

the joint distribution of a sample (x, y) as:

P(x, y) = P(y|x)P(x) = P(x|y)P(y) (3.3)

Usually, in classification we are interested in a estimation of P(y|x), from (3.3) we have:

P(y|x) =
P(x|y)P(y)

P(x)
(3.4)

Using (3.4), a change between the distribution of the data stream at time t and t +

1, Pt(x, y) 6= Pt+1(x, y), can come from [135]: i) P(y|x), ii)P(x|y), iii) P(y) and iv)

combinations of the previous. Note that a change in P(x) does not affect y and can

thus be ignored [148]. Most often, regardless of type of terms varying, a change in the

distribution is referred in literature as Concept Drift [23] or Dataset Shift [149].

Change in the probability priors (Pt(y) 6= Pt+1(y)) can cause well-calibrated classifiers

to become miscalibrated [28]. Concept drift due to Pt(x|y) 6= Pt+1(x|y) affects the

distribution of the observations within the class, but leaves the class boundary unchanged

(Pt(y|x) = Pt+1(y|x)). This type of drift is often called covariate shift [141]. When

Pt(y|x) 6= Pt+1(y|x), there is a change in the class boundary that makes any previously

learned classifiers biased. The latter is the worst type of drift, because it directly affects

the performance of a classifier, as the distribution of the features, with respect to the

class, has changed [148] (see Figure 3.2). In general it is hard to say where the change

comes from, because we have access to only estimations of the previous probabilities and

we have no knowledge (or control) of the data generating process.

Learning algorithms operating in non-stationary environments typically rely only on the

supervised information that is up-to-date (thus relevant), and remove obsolete training

samples [150]. However, concepts learned in the past may re-occur in the future, there-

fore when removing obsolete training samples, we could remove information that is still

relevant. This is known as the stability-plasticity dilemma [151].

Concept Drift (CD) adaptation approaches can be grouped into two families: i) active and

ii) passive adaptation [150]. The former [152–155], reacts to CD when a change is detected

(e.g. by means of a Change Detection Test). Active approaches are mostly adopted for

data distributions that change abruptly, because change detection with gradual drift

is typically more difficult [156]. When a change is identified the classifier is updated

or removed and replaced by a new one trained on the most recent samples available.

Chapter 3. State-of-the-art 45

t +1

t

Class%priors%change% Within%class%change% Class%boundary%change%

Figure 3.2: Illustrative example of different types of Concept Drift. Change in class
priors is due to Pt(y) 6= Pt+1(y), while within class change (covariate shift) occurs when
Pt(x|y) 6= Pt+1(x|y). Class boundary change happens when Pt(y|x) 6= Pt+1(y|x).

The change detector can work by: a) checking features distributions or b) analyzing

misclassification errors. In first case features are inspected to detect possible evolving

distributions, whereas misclassification errors are used to identify changes in the class

boundary. CD detection is particularly challenging in the presence of class unbalanced,

because we might have to wait a while before having enough samples from the minority

class [148].

In the case of passive approaches the classifier is continuously updated as soon as new

supervised samples become available (no triggering mechanism involved) [18, 157, 158].

Generally, these approaches are used in the presence of gradual drifts and recurring

concepts [158]. Passive approaches typically rely on ensemble of classifiers, where CD

adaptation is obtained by weighting the ensemble members and creating/removing the

classifiers composing the ensemble. By integrating several classifiers, the ensemble com-

bines what is learned from new observations and the knowledge acquired before [159–161].

The weights of each member in the ensemble are computed to reflect how well a classi-

fier is still relevant for the current concepts. If the weight of a classifier drop below a

certain threshold, then the classifier is usually replaced, see for examples SEA [160] and

DWM [162]. Other ensemble techniques [159–161] use ensemble of classifiers in order to

combine what is learned from new observations and the knowledge acquired before.

Alternatively, passive CD adaptation is achieved by training a classifier over a sliding

window of the recent supervised samples (e.g. STAGGER [163] and FLORA [164]).

Chapter 3. State-of-the-art 46

It becomes critical then to set the rate of forgetting, defined by the window size, in

order to match the rate of change in the distribution [165]. The simplest strategy uses a

constant forgetting rate, which boils down to consider a fix window of recent observations

to retrain the model. FLORA approach [164] uses a variable forgetting rate where the

window is shrunk if a change is detected and expanded otherwise.

For a recent and in-deep review on CD adaptation we refer the reader to [156]. This

thesis we will focus on passive approaches, where the data stream is received in batches

of daily transactions. In the case of fraud detection, the data stream present not only

non-stationary distributions, but also unbalanced classes. The problem of learning in

the case of unbalanced data has been widely explored in the static learning settings

[82, 91, 92, 116]. Learning from non-stationary data stream with skewed class distribution

is however a relatively recent domain and will be treated in the next section.

3.3 Learning with evolving and unbalanced data streams

In many applications (e.g. network traffic monitoring and web access data) the data is

received over time with high frequency and it is not possible to store all historical samples.

The data has to be processed in real time and it may not be feasible to revisit previous

transactions. This restriction is known in the literature as one-pass constraint [166].

One popular algorithm for mining data streams is Very Fast Decision Tree (VFDT) by

Domingos and Hulten [167]. VFDT learns incrementally from each new observation

without storing any examples, i.e. using constant memory and constant time per exam-

ple, and uses Hoeffding bounds to determine the conversion of a tree leaf to a tree node.

Since the seminal paper of Domingos, several similar algorithms have been proposed, e.g.

CVFDT [168] uses a sliding window for concept drift adaptation, VFDTc [169] extends

VFDT for continuous data and CD using a Naive Bayes classifiers in the leaves.

When the data streams are unbalanced, a certain time has to elapse in order to ac-

cumulate enough samples from the minority class. Since a classifier requires a large

set of samples to learn an accurate model, typically the training is done batch wise,

i.e. when a sufficient number of samples from both classes are available. Despite the

large literature on data stream studies, few works have tried to address the problem

of learning with non-stationary data streams with unbalanced class distribution. In

these works the class unbalance problem is typically addressed my adopting one of the

resampling methods presented in Section 3.1.1 to rebalance the batches of the data

streams [19, 170–173]. For example, Ditzler and Polikar propose Learn++.NIE [172]

Chapter 3. State-of-the-art 47

where they extend Learn++.NSE [174] for unbalanced data streams by training clas-

sifiers on multiple balanced batches obtained with undersampling. Following the same

idea, Learn++.CDS [173] rebalances the training sets of each classifier in the ensemble

using SMOTE [92].

Rebalancing a batch with few positive (minority) samples could mean removing many

negative samples (in the case of undersampling) or significant replication of the minority

class (oversampling) with a high risk of overfitting. A different way to compensate

the class imbalance within the batches is to propagate minority class samples along

the stream. For example Gao et al. [170, 171] combine minority class propagation and

undersampling of the majority class. The positive examples are accumulated along the

stream until they represent 40% of the observations. When this happens, the oldest

positive examples are replaced by the new observations from the minority class. This

propagation method ignores the similarity of the minority class instance to the current

concept, relying only on its similarity in time.

Lichtenwalter and Chawla [175] suggest propagating not only minority samples, but also

observations from the majority class that have been previously misclassified to increase

the boundary definition between the two classes. Chen and He proposed REA [176] where

they recommend propagating only examples from the minority class selected using a kNN

algorithm. Similarly, SERA [177] propagates to the last batch only minority class that

belong to the same concept using Mahalanobis distance. Hoens and Chawla [148] use

instead an instance propagation mechanism based on a Naïve Bayes classifier. In this

case, Naïve Bayes is used to select old positive instances which are relevant to the current

minority class context. This method relies on finding instances that are similar to the

current minority class context.

Wang, Minku and Yao [178] propose Sampling-based Online Bagging (SOB) to deal

with unbalanced data streams. Their algorithm, is essentially a modification of Online

Bagging [179], in which the sampling rate of the instances belonging to one class is deter-

mined adaptively based on the current imbalance status and classification performance.

The problem with this approach is that it is not designed to handle CD as it aims to

maximize G-mean greedily over all received examples [178].

3.4 Algorithmic solutions for Fraud Detection

In the literature, both supervised [64, 180, 181] and unsupervised [11, 182] ML algo-

rithms have been proposed for credit card fraud detection. As explained in Section 2.1,

Chapter 3. State-of-the-art 48

supervised techniques assume the availability of annotated datasets, i.e. transaction la-

beled as genuine or fraudulent. In this case a model is trained under the supervision

of the class information to discover patterns associated to the fraudulent and genuine

class. On the contrary, unsupervised methods work with datasets that contain unlabeled

samples. These methods consist in outlier detection or anomaly detection techniques

that associate fraudulent behaviours to any transaction that does not conform to the

majority, without knowledge on transactions class [11]. Unsupervised techniques usually

generate too many false alerts so it is often a good idea to combine both supervised and

unsupervised methods as in [62].

The detection problem can be seen from the transaction and card level. At the card

level is possible to group transactions from the same card and learn behavioral models

of individual cards. Behavioral models are typically unsupervised methods that aim to

characterize the genuine behavior of each individual card over the time. These models

only consider the previous history of each card but do not attempt to identify global

patterns of fraudulent behaviors; they only try to detect changes in behavior. Examples

of these are given by Fawcett and Provost [183], Bolton [11] and Weston [184]. The

problem with this approach is that a change in behavior may not be due to fraud. For

example, the change in spending behavior during holiday seasons may be not necessary

linked to fraudulent activities.

Models that operate at the transaction level try to differentiate legitimate transac-

tions from fraudulent ones without knowing the behavior of a card. These customer-

independent models can serve as a second line of defense, the first being customer-

dependent models (behavioral models). This strategy considers only transactions in

isolation from each other. Neither the previous history of the associated account, nor

other transactions are taken into consideration. Alternatively, it is possible to work at

the transaction level and include customer behavior in the model by using aggregate

variable of the cardholder as presented in Section 2.2.2.

3.4.1 Supervised Approaches

In supervised algorithms fraudulent and non-fraudulent examples are used to predict the

class of a new observation. Supervised techniques developed for fraud detection can be

group into: i) supervised profiling, ii) classification, iii) cost-sensitive and iv) networks

methods.

Chapter 3. State-of-the-art 49

Supervised Profiling

When labeled transactions are available, it is possible to profile the distribution of rel-

evant variables for genuine and fraudulent card [185]. This means that it is possible

to create different profiles for each class. At this point every new transaction can be

compared to see which profile is more similar. For example, Siddiqi [186] proposes to

use Weight Of Evidence (WOE) as similarity measure between two profiles in credit

risk. The same metric can be used to compare the genuine and fraudulent profiles [185].

Profiles can also be created using rule-based methods.

Rules can come from human expert or from statistical models and they have the advan-

tage of being easy to understand and to implement. A set of rules is defined for each

profile and if a new transaction matches these rules it is assumed to have the same pro-

file. Chan [181] for instance uses rules to filter out safe transactions. An adaptive user

profiling method was proposed by Fawcett and Provost [187] but for telecommunication

frauds. Cortes [188] defines an account signature for profiling accounts in data streams.

As the criminal activities and legitimate user-behavior evolves, fraudulent profiles have to

be updated as well. This means that statistical-based rules have to be updated periodi-

cally. Alternatively a weighted ensemble approach can be used to include new rules while

maintaining old rules [189]. Profiles must be updated to reflect the dynamic patterns of

criminal activity as well as changes in legitimate user behavior. This presents a chal-

lenge for static rule-based methods that are learned off-line, as they must be frequently

validated and retrained.

Classification

Classification appears to be the standard way to approach Fraud Detection [190] and

several classification algorithms have been used, e.g. Neural Networks [180, 191–193],

Logistic Regression [65], Association Rules [194], Support Vector Machines [63], Fisher

Discriminant Analysis [69], and Decision Trees [19, 68, 70].

Decision trees have found many applications in fraud detection, for both credit card

fraud detection [126] and credit risk scoring [195]. Neural Networks as well have been

extensively applied in detection system such as Falcon [196], Minerva (Dorronsoro [193]),

FDS [191], Cardwatch [192] and Visa [197]. Dorronsoro [193] shows that a three-layer nets

is capable of dealing with the highly skewed class distributions. However, as explained in

Section 3.1, supervised methods in general suffer from the problem of unbalanced class

sizes: the legitimate transactions generally far outnumber the fraudulent ones.

Chapter 3. State-of-the-art 50

Neural network are able to learn difficult class boundaries, but they are black-boxes as

it is not possible for a human being to understand how they behave. Rules Extraction

and Decision Tree are widely used in fraud detection because unlike black-box techniques

allow a better grasp of the classification. This is important because, often, the analysts

are not Machine Learning specialists and need to understand classification mechanisms

in order to trust and use them. These approaches are often based on the extraction

of conjunction and disjunction of rules that are representational of the choice of the

classification and directly understandable.

Probabilistic graphical model were used as well in fraud detection such as Bayesian

Belief Networks [185]. Card’s activities can be modeled using a Hidden Markov Models.

Sudjianto [185] shows that is possible to use HMM to monitor transactions of a card

defining different status of a card. Finally, between all the algorithms proposed in the

literature, we recommend using Random Forest, because several studies have shown that

it achieves the best results among different classifiers [18, 20, 61, 63, 64, 71].

Cost-sensitive methods

Since businesses are interested in reducing the monetary loss due to fraudulent activities,

there is a large body of work on cost-sensitive classifiers. These methods are also called

cost-sensitive algorithms, because they are able to take into account the different costs in

misclassify a transaction as fraud or legitimate. As shown in Section 3.1.2, cost-sensitive

learning [78], [35] is an alternative way to deal with the unbalanced problem that consist

into assigning larger costs to errors made on the minority class. Many cost-sensitive algo-

rithms available in the literature are based on boosting; see for example AsymBoost [198],

AdaCost [126], CSB [199], DataBoost [45], AdaUBoost [200] and SMOTEBoost [122].

Traditional cost-sensitive learning such as AdaCost [126] assumes that the costs are

fixed and class-dependent, however in fraud detection the cost is proportional to the

transaction amount. The larger the amount, the greater the potential loss in case of

fraud. In these settings the cost of missing a fraud (a false negative) is not fixed,

but proportional to the transaction amount. Examples of cost-sensitive classifiers us-

ing transaction-dependent costs are [68–70]. Mahmoudi and Duman [69] use Modified

Fisher Discriminant Analysis to consider example-dependent cost for each transaction

to maximize total profit. Similarly Bahnsen et al. [70] and Sahin et al.[68] use example-

dependent cost-sensitive decision trees for maximizing the savings. Cost-based methods

are useful when the primary goal is to minimize some costs / maximize the benefits of the

detection or savings since the loss function takes into account the financial loss occurred

in each prediction.

Chapter 3. State-of-the-art 51

Given the higher costs of misclassifying a fraud than a genuine transaction, cost-based

algorithms could in principle prefer to produce a false alert rather than take the risk to

predict a transaction as legitimate when it is not. As a consequence, these algorithms

can generate many false positives and be of no practical use for investigators who require

precise alerts (see Section 2.2.1).

Detection of Fraud Networks

The detection of links between data can also lead to fraud discovering. For example, in

the telecommunication domain, experts have noticed that a fraudulent account is often

connected to another by some calls given between fraudsters. By analyzing these links,

they discover fraud networks. Such approach seems complementary to individual fraud

detection [201].

When the fraudulent activity is spread over many transactions and card, illegal activities

can be uncover by analyzing pattern of related transactions. In particular link analysis

and graph mining methods may be able to detect these groups of fraudulent transaction

[185]. Recently Van Vlasselaer et al. [61] have proposed APATE, a framework for credit

card fraud detection that allows including network information as additional features to

the original feature vector describing a transaction. They show that features including

network information are able to improve significantly the performance of a standard

supervised algorithm.

3.4.2 Unsupervised Approaches

Unsupervised methods are used when there are no prior sets of legitimate and fraudulent

observations. Since they are not based on examples of fraud or genuine transactions,

unsupervised strategies have the advantage of being independent of their selection, and

are able, in theory, to discover frauds still unobserved, that have not been detected by

an expert. Yet they are not affected by the problem of mislabeled dataset and class

imbalance. However unsupervised credit card fraud detection has not received a lot of

attention in the literature [11].

Techniques employed in fraud detection are usually a combination of profiling and outliers

detection methods. They model a baseline distribution that represents normal behavior

and then attempt to detect observations that show the greatest departure from this norm

[202]. One of these methods is Peer Group Analysis [184] which clusters customers into

different profiles and identifies frauds as transactions departing from the customer profile

Chapter 3. State-of-the-art 52

(see also the recent survey by Phua [203]). Others model cardholder behavior by means

of self-organizing maps [5, 204, 205].

In order to detect outliers or anomalies it is important first to define when an example

is an outlier. Grubbs [206] gives the following definition: “An outlying observation, or

outlier, is one that appears to deviate markedly from other members of the sample in

which it occurs”. For Barnett & Lewis [207] an outlier is: “An observation (or subset of

observations) which appears to be inconsistent with the remainder of that set of data”.

When it is possible to define a region or distribution of the data representing the normal

behavior then all observations falling outside can be flagged as outlier. This approach

however comes with several challenges: i) defining a normal region which encompasses

every possible normal behavior is very difficult, ii) normal behavior keeps evolving and

an existing notion of normal behavior might not be sufficiently representative in the

future, iii) the boundary between normal and outlying behavior is often fuzzy, iv) frauds

adapt themselves to make the outlying observations appear like normal, thereby making

the task of defining normal behavior more difficult and v) data contains noise which is

similar to the actual outliers.

In general we can distinguish between two forms of outliers: local and global outliers. A

global outlier is an observation anomalous to the entire data set. In the case of fraud

detection, an example of global outlier can be a transaction of e 10000 when all the other

transactions in the dataset have smaller amount. A local outlier is an observation that

looks anomalous when compared to subgroups of the data. When a card is mostly used

in a restricted geographic area, a purchase made by the same card in foreign country is

a local outlier within its transactions, but is not anomalous with respect to all possible

transactions. Depending on the type of outlier that we want to detect we can use local

and global approaches.

Local Approaches

In [209], the authors aim to detect outliers by analyzing local information of the space.

To achieve this, they introduce the notion of Rough Membership Function that computes

the degree of deviance of data, depending on the density of its local neighborhood.

In [11], Bolton et al. have based their work on the hypothesis that a fraud differs

according to the considered data, similarly to what is proposed in [187, 210]. The idea of

Peer Group Analysis [11] is that time series that are in some sense similar are grouped

together to form a peer group. Transactions that deviate strongly from their peer group

are flagged as potentially fraudulent. The behaviour of the peer group is summarized

Chapter 3. State-of-the-art 53

at each subsequent time point and the behaviour of a time series compared with the

summary of its peer group. The authors present their analysis more as a way to alert

investigators of anomalous data than as a fraud classifier. In the paper, the authors

consider time series of data that are clustered on the basis a distance function in groups

of defined size. They next propose to resume each group by a model and then compute

their deviance. They finally present results in a graph style that allows visualizing

breakpoints. This approach is interesting because it is understandable and it is not

based on an annotated set. It is then, a-priori, capable to detect any kind of fraud.

Global Approaches

The work presented in [211] addresses high dimensional spaces. In this kind of spaces,

any observation can be considered as an outlier because of the sparsity of the data. The

authors propose to project data in fewer dimensions spaces to avoid these phenomena

and study the density of distribution to detect frauds. They split the original space into k

subspaces of same depth on each dimension and then try to combine these spaces to form

hypercubes of dimension n (n little enough) that are of a particularly weak density. To

combine dimensions the best, they use an evolutionary approach that combines randomly

dimensions to extract the best candidates. Experimental results show a quality close to

systematic approach and a good quality of detection. Another benefit of this approach

is, by projecting data, it is capable to deal with data having missing attributes. Its

drawback is again its rendering, even if the selected dimensions can partially explain the

analysis.

In [212], the question is to detect outliers in data having categorical attributes. The

authors formalize the problem this way: “finding a small subset of a target dataset such

that the degree of disorder of the resultant dataset after the removal of this subset is

minimized”. This degree of “disorder” is measured with the entropy of the dataset. Their

technique aims to detect the k most deviant outliers in the dataset. They estimate that

this parameter is not hard to define because, according to them, the problem is given this

way in concrete cases (find for example the 5% of fraudsters). They develop an iterative

algorithm that tries to optimize the set by minimizing the entropy. This approach, which

could appear expensive, is in fact estimated experimentally as almost linear w.r.t. the

size of the dataset and the number of outliers to extract (k). Results are interesting

though the authors make the strong assumption that attributes are independent.

Part II

Contribution

55

Chapter 4

Techniques for unbalanced

classification tasks

Results presented in this chapter have been published in the following papers:

• Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi. When is under-

sampling effective in unbalanced classification tasks?. In European Conference on

Machine Learning. ECML-KDD, 2015.

• Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi.

Calibrating Probability with Undersampling for Unbalanced Classification. In Sym-

posium on Computational Intelligence and Data Mining (CIDM). IEEE, 2015.

• Andrea Dal Pozzolo, Olivier Caelen, Serge Waterschoot, Gianluca Bontempi, Rac-

ing for unbalanced methods selection. Proceedings of the 14th International Con-

ference on Intelligent Data Engineering and Automated Learning (IDEAL), IEEE,

2013

The chapter is divided into three main parts. The first part of the chapter (Section 4.1)

is based on [213] and it analyses a well-known technique called undersampling (see Sec-

tion 3.1.1), which consists into rebalancing (typically by resampling) of the classes before

proceeding with the learning of the classifier. Though this seems to work for the majority

of cases, no detailed analysis exists about the impact of undersampling on the accuracy

of the final classifier. In particular we will propose a theoretical analysis specifying under

which conditions undersampling is recommended and expected to be effective.

In the second part of the chapter (Section 4.2), which is based on [28], we show how

sampling data used to train a model induces an artificial bias into the computed poste-

rior probabilities, for which we show a corrective method. Although this bias does not

57

Chapter 4. Techniques for unabalanced classification tasks 58

affect the ranking order returned by the posterior probability, it significantly impacts the

classification accuracy and probability calibration. We use Bayes Minimum Risk theory

to find the correct classification threshold and show how to adjust it after undersampling.

Finally, the third part of the chapter (Section 4.3) is based on [27]. In this section, we

propose to use a racing algorithm to select adaptively the most appropriate strategy for

a given unbalanced task. Racing allows one to test rapidly a large set of alternatives and

we used it to compare undersampling against a large set of techniques for unbalanced

classification. However, as confirmed by our experimental comparison, no technique

appears to work consistently better in all conditions. The results show that racing is

able to adapt the choice of the strategy to the specific nature of the unbalanced problem

and to select rapidly the most appropriate strategy without compromising the accuracy.

4.1 When is undersampling effective in unbalanced classifi-

cation tasks?

When the data is unbalanced, standard machine learning algorithms that maximize over-

all accuracy tend to classify all observations as majority class instances. This translates

into poor accuracy on the minority class (low recall), which is typically the class of inter-

est. Degradation of classification performance is not only related to a small number of

examples in the minority class in comparison to the number of examples in the majority

classes (expressed by the class imbalance ratio), but also to the minority class decompo-

sition into small sub-clusters [214] (also known in the literature as small disjuncts [80])

and to the overlap between the two classes [84, 215–217]. In these studies it emerges

that performance degradation is strongly caused by the presence of both unbalanced

class distributions and a high degree of class overlap. Additionally, in unbalanced clas-

sification tasks, the performance of a classifier is also affected by the presence of noisy

examples [218, 219].

One possible way to deal with this issue is to adjust the algorithms themselves [77, 78, 82].

Here we will consider instead a data-level strategy known as undersampling [21]. In an

unbalanced problem, it is often realistic to assume that many observations of the majority

class are redundant and that by removing some of them at random the data distribution

will not change significantly. Nevertheless, the risk of removing relevant observations

from the dataset is still present, since the removal is performed in an unsupervised

manner. In practice, sampling methods are often used to balance datasets with skewed

class distributions because several classifiers have empirically shown better performance

when trained on balanced dataset [88, 90]. However, these studies do not imply that

Chapter 4. Techniques for unabalanced classification tasks 59

Undersampling--

Unbalanced- Balanced-

Figure 4.1: Undersampling: remove majority class observations until we have the
same number of instances in the two classes.

classifiers cannot learn from unbalanced datasets. For instance, other studies have also

shown that some classifiers do not improve their performances when the training dataset

is balanced using sampling techniques [82, 106]. As a result, for the moment the only

way to know if sampling helps the learning process is to run some simulations. Despite

the popularity of undersampling, we have to remark that there is not yet a theoretical

framework explaining how it can affect the accuracy of the learning process.

In this chapter we aim to analyze the role of the two side effects of undersampling on

the final accuracy. The first side effect is that, by removing majority class instances,

we perturb the a priori probability of the training set and we induce a warping in the

posterior distribution [35, 134]. The second is that the number of samples available for

training is reduced with an evident consequence in terms of accuracy of the resulting

classifier. We study the interaction between these two effects of undersampling and we

analyze their impact on the final ranking of posterior probabilities. In particular we show

under which conditions an undersampling strategy is recommended and expected to be

effective in terms of final classification accuracy.

4.1.1 The warping effect of undersampling on the posterior probability

Let us consider a binary classification task f : Rn → {0, 1}, where X ∈ Rn is the

input and Y ∈ {0, 1} is the output. In the following we will also use the label negative

(resp. positive) to denote the label 0 (resp. 1). Suppose that the training set TN =

{(x1, y1), . . . , (xN , yN)} of size N is unbalanced (i.e. the number N+ of positive cases is

small compared to the number N− of negative ones) and that rebalancing is performed

by undersampling, i.e. the resulting dataset contains a subset of the negatives. Let us

introduce a random binary selection variable s associated to each sample in TN , which

takes the value 1 if the point is sampled and 0 otherwise. We now derive how the

posterior probability of a model learned on a balanced subset relates to the one learned

on the original unbalanced dataset, on the basis of [149]. Let us assume that the selection

Chapter 4. Techniques for unabalanced classification tasks 60

variable s is independent of the input x given the class y (class-dependent selection):

P(s|y, x) = P(s|y) (4.1)

where P(s = 1|y, x) is the probability that a sample (x, y) is included in the balanced

training sample. This assumption implies P(x|y, s) = P(x|y), i.e. by removing observa-

tion at random in the majority class we do not change within-class distributions. With

undersampling there is a change in the prior probabilities (P(y|s = 1) 6= P(y)) and as

a consequence the class-conditional probabilities are different as well, P(y|x, s = 1) 6=
P(y|x). Let the sign + denote y = 1 and − denote y = 0, e.g. P(+|x) = P(y = 1|x)

and P(−|x) = P(y = 0|x). From Bayes’ rule we can write:

P(+|x, s = 1) =
P(s = 1|+, x)P(+|x)

P(s = 1|+, x)P(+|x) + P(s = 1|−, x)P(−|x)
(4.2)

Using condition (4.1) in (4.2) we obtain:

P(+|x, s = 1) =
P(s = 1|+)P(+|x)

P(s = 1|+)P(+|x) + P(s = 1|−)P(−|x)
(4.3)

With undersampling we keep all positives and a subset of negatives (see Figure 4.1),

therefore we have:

P(s = 1|+) = 1 (4.4)

and
P(+)

P(−)
≤ P(s = 1|−) < 1 (4.5)

Note that if we set P(s = 1|−) = P(+)
P(−) , we obtain a balanced dataset where the number of

positive and negative instances is the same. At the same time, if we set P(s = 1|−) = 1,

no negative instances are removed and no undersampling takes place. Using (4.4), we

can rewrite (4.3) as

P(+|x, s = 1) =
P(+|x)

P(+|x) + P(s = 1|−)P(−|x)
(4.6)

Let us denote β = P(s = 1|−) as the probability of selecting a negative instance with

undersampling, p = P(+|x) as the true posterior probability of class + on the origi-

nal dataset, and ps = P(+|x, s = 1) as the true posterior probability of class + after

sampling. We can rewrite equation (4.6) as:

ps =
p

p+ β(1− p) (4.7)

Chapter 4. Techniques for unabalanced classification tasks 61

Equation (4.7) quantifies the amount of warping of the posterior probability due to

undersampling.1 From it, we can derive p as a function of ps:

p =
βps

βps − ps + 1
(4.8)

The relation between p and ps (parametric in β) is illustrated in Figure 4.2. The top

Figure 4.2: p and ps at different β. When β is low, undersampling is strong, which
means it is removing a lot of negatives, while for high values the removal is less strong.

Low values of β leads to a more balanced problem.

curve of Figure 4.2 refers to the complete balancing which corresponds to β = P(+)
P(−) ≈ N+

N− ,

assuming that N+

N− provides an accurate estimation of the ratio of the prior probabilities.

Figure 4.4 illustrates the warping effect for two univariate (n = 1) classification tasks

(see Figure 4.3). In both tasks the two classes are normally distributed (X− ∼ N (0, σ)

and X+ ∼ N (µ, σ)), σ = 3 and P(+) = 0.1 but the degree of separability is different (on

the left large overlap for µ = 3 and on the right small overlap for µ = 15). It is easy to

remark that the warping effect is larger in the low separable case.

As a final remark, consider that when β = N+

N− , the warping due to undersampling maps

two close and low values of p into two values ps with a larger distance. The opposite

occurs for high values of p. In Section 4.1.3 we will show how this has an impact on the

ranking returned by estimations of p and ps.
1In the case of oversampling it can be showed that ps = αp

αp+1−p , where α denotes the number of
times a positive instance is replicated. The larger the class imbalanced, the large α has to be in order
to obtain a balanced distribution.

Chapter 4. Techniques for unabalanced classification tasks 62

3 15

0

500

1000

1500

−10 0 10 20 −10 0 10 20
x

C
ou

nt class
0
1

Figure 4.3: Synthetic datasets with positive and negative observations sampled from
two different normal distributions. Positives account for 10% of the 10,000 random
values. On the left we have a difficult problem with overlapping classes (µ = 3), on the

right an easy problem where the classes are well-separated (µ = 15).

Figure 4.4: Posterior probability ps as a function of β for two univariate binary
classification tasks with norm class conditional densities X− ∼ N (0, σ) and X+ ∼
N (µ, σ) (on the left µ = 3 and on the right µ = 15, in both examples σ = 3). Note

that the original probability p corresponds to ps when β = 1.

4.1.2 Warping and class separability

In this section we are going to show how the impact of warping depends on the sepa-

rability nature of the classification task. Let ω+ and ω− denote the class conditional

probabilities P(x|+) and P(x|−), and π+ (π+
s) the class priors before (after) under-

sampling. It is possible to derive the relation between the warping and the difference

δ = ω+−ω− between the class conditional distributions. From Bayes’ theorem we have:

p =
ω+π+

ω+π+ + ω−π−
(4.9)

Suppose δ = ω+ − ω−, we can write (4.9) as:

p =
ω+π+

ω+π+ + (ω+ − δ)π− =
ω+π+

ω+(π+ + π−)− δπ− =
ω+π+

ω+ − δπ− (4.10)

Chapter 4. Techniques for unabalanced classification tasks 63

Figure 4.5: ps−p as a function of δ, where δ = ω+−ω− for values of ω+ ∈ {0.01, 0.1}
when π+

s = 0.5 and π+ = 0.1. Note that δ is upper bounded to guarantee 0 ≤ ps ≤ 1
and 0 ≤ p ≤ 1.

since π+ + π− = 1. Similarly, since ω+ does not change with undersampling:

ps =
ω+π+

s

ω+ − δπ−s
(4.11)

Now we can write ps − p as:

ps − p =
ω+π+

s

ω+ − δπ−s
− ω+π+

ω+ − δπ− (4.12)

Since ps ≥ p because of (4.7), 0 ≤ ps ≤ 1 and 0 ≤ p ≤ 1 we have: 0 ≤ ps − p ≤ 1. In

Figure 4.5 we plot ps − p as a function of δ when π+
s = 0.5 and π+ = 0.1. For small

values of the class conditional densities it appears that the difference have the highest

values for δ values close to zero. This means that the warping is higher for similar class

conditional probabilities (i.e. low separable configurations).

4.1.3 The interaction between warping and variance of the estimator

Section 4.1.1 discussed the first consequence of undersampling, i.e. the transformation of

the original conditional distribution p into a warped conditional distribution ps according

to equation (4.7). The second consequence of undersampling is the reduction of the

training set size, which inevitably leads to an increase of the variance of the classifier.

This section discusses how these two effects interact and their impact on the final accuracy

of the classifier, by focusing in particular on the accuracy of the ranking of the minority

class (typically the class of interest).

Undersampling transforms the original classification task (i.e. estimating the conditional

distribution p) into a new classification task (i.e. estimating the conditional distribution

ps). In what follows we aim to assess whether and when undersampling has a beneficial

effect by changing the target of the estimation problem.

Chapter 4. Techniques for unabalanced classification tasks 64

Let us denote by p̂ (resp. p̂s) the estimation of the conditional probability p (resp. ps).

Assume we have two distinct test points having probabilities p1 < p2 where ∆p = p2−p1

with ∆p > 0. A correct classification aiming to rank the most probable positive samples

should rank p2 before p1, since the second test sample has an higher probability of

belonging to the positive class. Unfortunately the values p1 and p2 are not known and

the ranking should rely on the estimated values p̂1 and p̂2. For the sake of simplicity we

will assume here that the estimator of the conditional probability has the same bias and

variance in the two test points. This implies p̂1 = p1 + ε1 and p̂2 = p2 + ε2, where ε1 and

ε2 are two realizations of the random variable ε ∼ N (b, ν) where b and ν are the bias

and the variance of the estimator of p. Note that the estimation errors ε1 and ε2 may

induce a wrong ranking if p̂1 > p̂2.

What happens if instead of estimating p we decide to estimate ps, as in undersampling?

Note that because of the monotone transformation (4.7), p1 < p2 ⇒ ps,1 < ps,2. Is the

ranking based on the estimations of ps,1 and ps,2 more accurate than the one based on

the estimations of p1 and p2?

In order to answer this question let us suppose that also the estimator of ps is biased but

that its variance is larger given the smaller number of samples.2 Then p̂s,1 = ps,1 + η1

and p̂s,2 = ps,2 + η2, where η ∼ N (bs, νs), νs > ν and ∆ps = ps,2 − ps,1. Let us now

compute the derivative of ps w.r.t. p. From (4.7) we have:

dps
dp

=
β

(p+ β(1− p))2
(4.13)

corresponding to a concave function. In particular for p = 0 we have dps = 1
βdp, while

for p = 1 it holds dps = βdp. We will now show that dps
dp is bounded in the range [β, 1

β].

Let λ be the value of p for which dps
dp = 1:

λ =

√
β − β

1− β

from (4.13) we have

1 <
dps
dp

<
1

β
, when 0 < p < λ

and

β <
dps
dp

< 1 when λ < p < 1.

It follows that:

β ≤ dps
dp
≤ 1

β
(4.14)

2It is well-known that training a classifier on a reduced dataset leads to probability estimates with
larger variance [220].

Chapter 4. Techniques for unabalanced classification tasks 65

Let us now suppose that the quantity ∆p is small enough to have an accurate approxi-

mation ∆ps
∆p ≈

dps
dp . We can define the probability of obtaining a wrong ranking of p̂1 and

p̂2 as:

P(p̂2 < p̂1) = P(p2 + ε2 < p1 + ε1)

= P(ε2 − ε1 < p1 − p2) = P(ε1 − ε2 > ∆p)

where ε2 − ε1 ∼ N (0, 2ν).3 By making a hypothesis of normality we have

P(ε1 − ε2 > ∆p) = 1− Φ

(
∆p√

2ν

)
(4.15)

where Φ is the cumulative distribution function of the standard normal distribution.

Similarly, the probability of a ranking error with undersampling is:

P(p̂s,2 < p̂s,1) = P(η1 − η2 > ∆ps)

and

P(η1 − η2 > ∆ps) = 1− Φ

(
∆ps√

2νs

)
(4.16)

We can now say that a classifier learned after undersampling has better ranking w.r.t. a

classifier learned with unbalanced distribution when

P(ε1 − ε2 > ∆p) > P(η1 − η2 > ∆ps) (4.17)

or equivalently from (4.15) and (4.16) when

1− Φ

(
∆p√

2ν

)
> 1− Φ

(
∆ps√

2νs

)
⇐⇒ Φ

(
∆p√

2ν

)
< Φ

(
∆ps√

2νs

)
which boils down to

∆p√
2ν

<
∆ps√

2νs
⇐⇒ ∆ps

∆p
>

√
νs
ν
> 1 (4.18)

since Φ is monotone non decreasing and we have assumed that νs > ν. Then from (4.18),

it follows that undersampling is useful in terms of more accurate ranking if:

dps
dp

>

√
νs
ν

(4.19)

or, using (4.13), when:
β

(p+ β(1− p))2
>

√
νs
ν

(4.20)

3We assume that the bias of p̂1 and p̂2 is similar: E[ε2 − ε1] = b2 − b1 = 0.

Chapter 4. Techniques for unabalanced classification tasks 66

(a) (b)

Figure 4.6: Left: dps
dp as a function of p. Right: dps

dp as a function of β

The value of this inequality depends on several terms: the rate of undersampling β, the

ratio of the variances of the two classifiers and the posteriori probability p of the testing

point. Also the nonlinearity of the first left-hand term suggests a complex interaction

between the involved terms. For instance if we plot the left-hand term of (4.20) as a

function of the posteriori probability p (Figure 4.6(a)) and of the value β (Figure 4.6(b)),

it appears that the most favorable configurations for undersampling occur for the lowest

values of the posteriori probability (e.g. non separable or badly separable configurations)

and intermediate β (neither too unbalanced nor too balanced). However if we modify

β, this has an impact on the size of the training set and consequently on the right-hand

term (i.e. variance ratio) too. Also, though the designer can control the β term, the

other two terms vary over the input space. This means that the condition (4.20) does

not necessarily hold for all the test points.

In order to illustrate the complexity of the interaction, let us consider two univariate

(n = 1) classification tasks where the minority class is normally distributed around zero

and the majority class is distributed as a mixture of two Gaussians. Figure 4.7 and 4.8

show the non separable and separable case, respectively: on the left side we plot the

class conditional distributions (thin lines) and the posterior distribution of the minority

class (thicker line), while on the right side we show the left and the right term of the

inequality (4.20) (solid: left-hand term, dotted: right-hand term). What emerges form

the figures is that the least separable regions (i.e. the regions where the posteriori of the

minority class is low) are also the regions where undersampling helps more. However,

the impact of undersampling on the overall accuracy is difficult to be predicted since

the regions where undersampling is beneficial change with the characteristics of the

classification task and the rate β of undersampling.

Chapter 4. Techniques for unabalanced classification tasks 67

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

Po
st

er
io

r p
ro

ba
bi

lit
y

(a) Class conditional distributions (thin lines) and
the posterior distribution of the minority class
(thicker line).

(b) dps
dp

(solid lines),
√

νs
ν

(dotted lines).

Figure 4.7: Non separable case. On the right we plot both terms of inequality 4.20
(solid: left-hand, dotted: right-hand term) for β = 0.1 and β = 0.4

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

Po
st

er
io

r p
ro

ba
bi

lit
y

(a) Class conditional distributions (thin lines) and
the posterior distribution of the minority class
(thicker line).

(b) dps
dp

(solid lines),
√

νs
ν

(dotted lines).

Figure 4.8: Separable case. On the right we plot both terms of inequality 4.20 (solid:
left-hand, dotted: right-hand term) for β = 0.1 and β = 0.4

4.1.4 Experimental validation

In this section we assess the validity of the condition (4.20) by performing a number of

tests on synthetic and real datasets. We first simulate two unbalanced synthetic tasks

(5% and 25% of positive samples) with overlapping classes and generate a testing set

and several training sets from the same distribution. Figures 4.9(a) and Figure 4.11(a)

show the distributions of the testing sets for the two tasks.

In order to compute the variance of p̂ and p̂s in each test point, we generate 1000 times

a training set and we estimate the conditional probability on the basis of sample mean

and covariance.

Chapter 4. Techniques for unabalanced classification tasks 68

In Figure 4.9(b) (first task) we plot
√

νs
ν (dotted line) and three percentiles (0.25, 0.5, 0.75)

of dps
dp vs. the rate of undersampling β. It appears that for at least 75% of the testing

points, the term dps
dp is higher than

√
νs
ν . In Figure 4.10(a) the points surrounded with

a triangle are those one for which dps
dp >

√
νs
ν hold when β = 0.053 (balanced dataset).

For such samples we expect that ranking returned by undersampling (i.e. based on p̂s)

is better than the one based on the original data (i.e. based on p̂). The plot shows that

undersampling is beneficial in the region where the majority class is situated, which is

also the area where we expect to have low values of p. Figure 4.10(b) shows also that

this region moves towards the minority class when we do undersampling with β = 0.323

(90% negatives, 10% positives after undersampling).

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

0

5

10

15

20

0 5 10 15

X1

X
2

class

●

●

0

1

(a) Synthetic dataset 1 (b)
√

νs
ν

and dps
dp

for different β

Figure 4.9: Left: distribution of the testing set where positives account for 5% of the
total. Right: plot of dpsdp percentiles (25th, 50th and 75th) and of

√
νs
ν (black dashed).

In order to measure the quality of the rankings based on p̂s and p̂ we compute the Kendall

rank correlation of the two estimates with p, which is the true posterior probability of

the testing set that defines the correct ordering. In Table 4.1 we show the ranking

correlations of p̂s (and p̂) with p for the samples where the condition (4.20) (first five

rows) holds and where it does not (last five rows). The results indicate that points for

which condition (4.20) is satisfied have indeed better ranking with p̂s than p̂.

We repeated the experiments for the second task having a larger proportion of positives

(25%) (dataset 2 in Figure 4.11(a)). From the Figure 4.11(b), plotting dps
dp and

√
νs
ν as

a function of β, it appears that only the first two percentiles are over
√

νs
ν . This means

that less points of the testing set satisfy the condition (4.20). This is confirmed from

the results in Table 4.2 where it appears that the benefit due to undersampling is less

significant than for the first task.

Chapter 4. Techniques for unabalanced classification tasks 69

(a) Undersampling with β = 0.053 (b) Undersampling with β = 0.323

Figure 4.10: Regions where undersampling should work. Triangles indicate the testing
samples where the condition (4.20) holds for the dataset in Figure 4.9.

Table 4.1: Classification task in Figure 4.9: Ranking correlation between the poste-
rior probability p̂ (p̂s) and p for different values of β. The value K (Ks) denotes the
Kendall rank correlation without (with) undersampling. The first (last) five lines refer

to samples for which the condition (4.20) is (not) satisfied.

β K Ks Ks −K %points satisfying (4.20)
0.053 0.298 0.749 0.451 88.8
0.076 0.303 0.682 0.379 89.7
0.112 0.315 0.619 0.304 91.2
0.176 0.323 0.555 0.232 92.1
0.323 0.341 0.467 0.126 93.7
0.053 0.749 0.776 0.027 88.8
0.076 0.755 0.773 0.018 89.7
0.112 0.762 0.764 0.001 91.2
0.176 0.767 0.761 -0.007 92.1
0.323 0.768 0.748 -0.020 93.7

Now we assess the validity of the condition (4.20) on a number of real unbalanced binary

classification tasks obtained by transforming some datasets from the UCI repository [1]

(Table 4.3)4.

Given the unavailability of the conditional posterior probability function, we first ap-

proximate p by fitting a Random Forest over the entire dataset in order to compute the

left-hand term of (4.20). Then we use a bootstrap procedure to estimate p̂ and apply
4 Transformed datasets are available at http://www.ulb.ac.be/di/map/adalpozz/

imbalanced-datasets.zip

http://www.ulb.ac.be/di/map/adalpozz/imbalanced-datasets.zip
http://www.ulb.ac.be/di/map/adalpozz/imbalanced-datasets.zip

Chapter 4. Techniques for unabalanced classification tasks 70

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5

0

5

10

15

0 10 20

X1

X
2

class

●

●

0

1

(a) Synthetic dataset 2 (b)
√

νs
ν

and dps
dp

for different β

Figure 4.11: Left: distribution of the testing set where positives account for 25%
of the total. Right: plot of dps

dp percentiles (25th, 50th and 75th) and of
√

νs
ν (black

dashed).

Table 4.2: Classification task in Figure 4.11: Ranking correlation between the pos-
terior probability p̂ (p̂s) and p for different values of β. The value K (Ks) denotes the
Kendall rank correlation without (with) undersampling. The first (last) five lines refer

to samples for which the condition (4.20) is (not) satisfied.

β K Ks Ks −K % points satisfying (4.20)
0.333 0.586 0.789 0.202 66.4
0.407 0.588 0.761 0.172 66.6
0.500 0.605 0.738 0.133 68.1
0.619 0.628 0.715 0.087 70.3
0.778 0.653 0.693 0.040 73
0.333 0.900 0.869 -0.030 66.4
0.407 0.899 0.875 -0.024 66.6
0.500 0.894 0.874 -0.020 68.1
0.619 0.885 0.869 -0.016 70.3
0.778 0.870 0.856 -0.014 73

undersampling to the original dataset to estimate p̂s. We repeat bootstrap and under-

sampling 100 times to compute the right hand term
√

νs
ν . This allows us to define the

subsets of points for which the condition (4.20) holds.

Figure 4.12 reports the difference between Kendall rank correlation of p̂s and p̂, av-

eraged over different levels of undersampling (proportions of majority vs. minority:

90/10, 80/20, 60/40, 50/50). Higher difference means that p̂s returns a better ordering

than p̂ (assuming that the ranking provided by p is correct). The plot distinguishes

between samples for which condition (4.20) is satisfied and not. In general we see that

points with a positive difference corresponds to those having the condition satisfied and

Chapter 4. Techniques for unabalanced classification tasks 71

Table 4.3: Selected datasets from the UCI repository [1]

Datasets N N+ N− N+/N

ecoli 336 35 301 0.10
glass 214 17 197 0.08
letter-a 20000 789 19211 0.04
letter-vowel 20000 3878 16122 0.19
ism 11180 260 10920 0.02
letter 20000 789 19211 0.04
oil 937 41 896 0.04
page 5473 560 4913 0.10
pendigits 10992 1142 9850 0.10
PhosS 11411 613 10798 0.05
satimage 6430 625 5805 0.10
segment 2310 330 1980 0.14
boundary 3505 123 3382 0.04
estate 5322 636 4686 0.12
cam 18916 942 17974 0.05
compustat 13657 520 13137 0.04
covtype 38500 2747 35753 0.07

the opposite for negative differences. These results seem to confirm the experiments with

synthetic data, where a better ordering is given by p̂s when the condition (4.20) holds.

Figure 4.12: Difference between the Kendall rank correlation of p̂s and p̂ with p,
namely Ks and K, for points having the condition (4.20) satisfied and not. Ks and K

are calculated as the mean of the correlations over all βs.

In Figure 4.13 we show the ratio of samples in each dataset satisfying condition (4.20)

averaged over all the βs. The proportion of points in which undersampling is useful

changes heavily with the dataset considered. For example, in the datasets vehicle, yeast,

german and pima, underdamping returns a better ordering for more than 80% of the

samples, while the proportion drops to less than 50% in the page dataset.

This seems to confirm our intuition that the right amount of undersampling depends on

the classification task (e.g. degree of non separability), the learning algorithm and the

targeted test set. It follows that there is no reason to believe that undersampling until

the two classes are perfectly balanced is the default strategy to adopt.

Chapter 4. Techniques for unabalanced classification tasks 72

It is also worth to remark that the check of the condition (4.20) is not easy to be done,

since it involves the estimation of
√

νs
ν (ratio of the variance of the classifier before and

after undersampling) and of dps
dp , which demands the knowledge of the true posterior

probability p. In practice since p is unknown in real datasets, we can only rely on a data

driven approximation of dps
dp . Also the estimation of

√
νs
ν is a hard statistical problem,

as known in the statistical literature on ratio estimation [221].

Figure 4.13: Ratio between the number of samples satisfying condition (4.20) and all
the instances available in each dataset averaged over all the βs.

4.1.5 Discussion

Undersampling has become the de facto strategy to deal with skewed distributions, but,

though easy to be justified, it conceals two major effects: i) it increases the variance

of the classifier and ii) it produces warped posterior probabilities. The first effect is

typically addressed by the use of averaging strategies (e.g. UnderBagging [117]) to reduce

the variability while the second requires the calibration of the probability to the new

priors of the testing set [134]. Despite the popularity of undersampling for unbalanced

classification tasks, it is not clear how these two effects interact and when undersampling

leads to better accuracy in the classification task.

In this first part of the chapter, we aimed to analyze the interaction between undersam-

pling and the ranking error of the posterior probability. We derive the condition (4.20)

under which undersampling can improve the ranking and we show that when it is satis-

fied, the posterior probability obtained after sampling returns a more accurate ordering of

testing instances. To validate our claim we used first synthetic and then real datasets, and

in both cases we registered a better ranking with undersampling when condition (4.20)

was met. It is important to remark how this condition shows that the beneficial impact

of undersampling is strongly dependent on the nature of the classification task (degree

of imbalance and non separability), on the variance of the classifier and as a consequence

is extremely dependent on the specific test point. We think that this result sheds light

Chapter 4. Techniques for unabalanced classification tasks 73

on the reason why several discordant results have been obtained in the literature about

the effectiveness of undersampling in unbalanced tasks.

However, the practical use of this condition is not straightforward since it requires the

knowledge of the posteriori probability and of the ratio of variances before and after

undersampling. It follows that this result should be used mainly as a warning against a

naive use of undersampling in unbalanced tasks and should suggest instead the adoption

of specific adaptive selection techniques (e.g. racing [27], see Section 4.3) to perform a

case-by-case use (and calibration) of undersampling.

4.2 Using calibrated probability with undersampling

In the previous section we showed with equation (4.7) that undersampling induces an

artificial bias (warping) into the posterior probabilities returned by a model. We now

demonstrate how to correct for this bias using the equations derived in Section 4.1.1.

Although this method does not affect the ranking order returned by the posterior proba-

bility, it significantly impacts the classification accuracy and probability calibration. We

use Bayes Minimum Risk theory [30] to find the correct classification threshold and show

how to adjust it after undersampling. Experiments on several real-world unbalanced

datasets validate our results.

4.2.1 Adjusting posterior probabilities to new priors

The first part of the chapter showed that undersampling is responsible for a drift in pos-

terior probabilities and induces warped probability estimates (see Section 4.1). However,

the first and most direct effect of undersampling is the change in the class priors. To

show this effect, let us use an illustrative example.

Let’s suppose we have an unbalanced problem where the positives account for 10% of

10,000 observations (i.e., we have 1,000 positives and 9,000 negatives). Suppose we want

to have a balanced dataset β = N+

N− ≈ 0.11, where ≈ 88.9% (8000/9000) of the negative

instances are discharged. Table 4.4 shows how, by reducing β, the original unbalanced

dataset becomes more balanced and smaller as negative instances are removed. After

undersampling, the number of negatives is N−s = βN−, while the number of positives

stays the same N+
s = N+. The percentage of negatives (perc−) in the dataset decreases

as N−s → N+.

After a classification model is learned on a balanced training set, it is normally used to

predict a testing set, which is likely to have an unbalanced distribution similar to the

Chapter 4. Techniques for unabalanced classification tasks 74

Table 4.4: Undersampling a dataset with 1,000 positives in 10,000 observations. Ns
defines the size of the dataset after undersampling and N−s (N+

s) the number of negative
(positive) instances for a given β. When β = 0.11 the negative samples represent 50%

of the observations in the dataset.

Ns N−s N+
s β perc−

2,000 1,000 1,000 0.11 50.00
2,800 1,800 1,000 0.20 64.29
3,700 2,700 1,000 0.30 72.97
4,600 3,600 1,000 0.40 78.26
5,500 4,500 1,000 0.50 81.82
6,400 5,400 1,000 0.60 84.38
7,300 6,300 1,000 0.70 86.30
8,200 7,200 1,000 0.80 87.80
9,100 8,100 1,000 0.90 89.01
10,000 9,000 1,000 1.00 90.00

original training set. This means that the posterior probability of a model learned on the

balanced training set should be adjusted for the change in priors between the training

and testing sets. In this section we propose to use equation (4.8) to correct the posterior

probability estimates after undersampling. Let us call p′ the bias-corrected probability

obtained from ps using (4.8):

p′ =
βps

βps − ps + 1
(4.21)

Equation (4.21) can be seen as a special case of the framework proposed by Saerens et

al. [134] and Elkan [35] for correcting the posterior probability in the case of testing and

training sets sharing the same priors.

Let pt = p(yt = +|xt) be the posterior probability for a testing instance (xt, yt), where

the testing set has priors: π−t =
N−t
Nt

and π+
t =

N+
t
Nt

. In the unbalanced training set

we have π− = N−

N , π+ = N+

N and after undersampling the training set π−s = βN−

N++βN− ,

π+
s = N+

N++βN− . If we assume that the class conditional distributions P(x|+) and P(x|−)

remain the same between the training and testing sets, Saerens et al. [134] show that,

given different priors between the training and testing sets, the posterior probability can

be corrected with the following equation:

pt =

π+
t

π+
s
ps

π+
t

π+
s
ps +

π−t
π−s

(1− ps)
(4.22)

Let us assume that the training and testing sets share the same priors: π+
t = π+ and

π−t = π−:

pt =

π+

π+
s
ps

π+

π+
s
ps + π−

π−s
(1− ps)

Chapter 4. Techniques for unabalanced classification tasks 75

Then, since
π+

π+
s

=
N+

N++N−

N+

N++βN−

=
N+ + βN−

N+ +N−
(4.23)

π−

π−s
=

N−

N++N−

βN−

N++βN−

=
N+ + βN−

β(N+ +N−)
(4.24)

we can write

pt =

N++βN−

N++N− ps
N++βN−

N++N− ps + N++βN−

β(N++N−)
(1− ps)

pt =
ps

ps + (1−ps)
β

=
βps

βps − ps + 1

Hence, the transformation proposed by Saerens et al. [134] is essentially equivalent

to (4.21). Similarly, Elkan [35] proposes to adjust the posterior probability after un-

dersampling with the following equation:

pt = π+
t

ps − π+
s ps

π+
s − π+

s ps + π+
t ps − π+

t π
+
s

(4.25)

pt =
(1− π+

s)ps
π+
s

π+
t

(1− ps) + ps − π+
s

using equation (4.23) and the assumption that π+
t = π+ and π−t = π−:

pt =

βN−

N++βN− ps
N++N−

N++βN− (1− ps) + ps − N+

N++βN−

pt =
βN−ps

(N+ +N−)(1− ps) + (N+ + βN−)ps −N+

pt =
βN−ps

N− −N−ps + βN−ps
=

βps
βps − ps + 1

Equation (4.25) is equivalent to (4.21) and therefore to the one proposed by Saerens et

al. [134].

In summary, when we know the priors in the testing set we can correct the probability

with Elkan’s and Saerens’ equations. However, these probabilities are usually unknown

and must be estimated. If we make the assumption that training and testing have the

same priors we can use (4.21) for calibrating ps. Note that the above transformation will

not affect the ranking produced by ps. Equation (4.21) defines a monotone transforma-

tion, hence the ranking of ps will be the same as p′. While p is estimated using all the

samples in the unbalanced dataset, ps and p′ are computed considering a subset of the

original samples and therefore their estimations are subjected to higher variance [213].

Chapter 4. Techniques for unabalanced classification tasks 76

4.2.2 Warping correction and classification threshold adjustment

As previously described in Section 2.1.2, a classifier typically defines the optimal class

of a sample as the one minimizing the risk. In practice, this translates into calculating

the posterior probability and predicting an instance as positive or negative when the

probability is above a certain threshold. If we assume that there is no cost in case of

correct prediction, then from (2.9) the threshold minimizing the risk is:

τ =
l1,0

l1,0 + l0,1

where li,j is the cost occurred in deciding i when the true class is j. In an unbalanced

problem, the cost of missing a positive instance (false negative) is usually higher than

the cost of missing a negative (false positive). If the costs of a false negative and false

positive are unknown, a natural solution is to set these costs using the priors (π− and

π+). Let l1,0 = π+ and l0,1 = π−. Then, since π− > π+ we have l0,1 > l1,0 as desired.

We can then write

τ =
l1,0

l1,0 + l0,1
=

π+

π+ + π−
= π+ (4.26)

since π+ + π− = 1. This is also the optimal threshold in a cost-sensitive application

where the goal is to minimize overall costs and the misclassification costs are defined

using the priors [35].

Even if undersampling produces warped probability estimates, it is often used to balance

datasets with skewed class distributions because several classifiers have empirically shown

better performance when trained on a balanced dataset [88, 90]. Let τs denote the

threshold used to classify an observation after undersampling, from (4.26) we have τs =

π+
s , where π+

s is the positive class prior after undersampling. In the case of undersampling

with β = N+

N− (balanced training set) we have τs = 0.5.

When correcting ps with (4.21), we must also correct the probability threshold to main-

tain the predictive accuracy defined by τs (this is needed otherwise we would use different

misclassification costs for p′). Let τ ′ be the threshold for the unbiased probability p′.

From Elkan [35]:
τ ′

1− τ ′
1− τs
τs

= β (4.27)

τ ′ =
βτs

(β − 1)τs + 1
(4.28)

Using τs = π+
s , (4.28) becomes:

τ ′ =
βπ+

s

(β − 1)π+
s + 1

Chapter 4. Techniques for unabalanced classification tasks 77

τ ′ =
β N+

N++βN−

(β − 1) N+

N++βN− + 1
=

N+

N+ +N−
= π+

The optimal threshold to use with p′ is equal to the one for p. As an alternative to

classifying observations with ps and τs, we can obtain equivalent results with p′ and

τ ′. In summary, as a result of undersampling, a higher number of observations are

predicted as positive, but the posterior probabilities are biased due to a change in the

priors. Equation (4.28) allows us find the threshold that guarantees equal accuracy after

the posterior probability correction. Therefore, in order to classify observations with

unbiased probabilities after undersampling, we have to first obtain p′ from ps with (4.21)

and then use τ ′ as a classification threshold.

4.2.3 Experimental results

The rational of the following experiments is to compare the probability estimates of two

models, one learned in the presence and the other in the absence of undersampling, and

test the benefit of probability calibration after undersampling. We use G-mean as a

measure of classification accuracy, AUC to assess the quality of the ranking produced by

the probability and Brier Score (BS) as a measure of probability calibration (see Section

2.1.4). In our experiments we use the same datasets of Section 4.1.4 (Table 4.3). For

each dataset we used 10-fold CV to test our models and we repeated the CV 10 times.

In particular, we used a stratified CV, where the class proportion in the datasets is

kept the same over all the folds. As the original datasets are unbalanced, the resulting

folds are unbalanced as well. For each fold of CV we learn two models: one using

all the observations and the other with the ones remaining after undersampling. Then

both models are tested on the same testing set (Figure 4.14). We used several supervised

classification algorithms available in R [25] with default parameters: RF [222], SVM [223]

and Logit Boost (LB) [224].

We denote as p̂s and p̂ the posterior probability estimates obtained with and without

undersampling and as p̂′ the bias-corrected probability obtained from p̂s with equa-

tion (4.21). Let τ , τs and τ ′ be the probability thresholds used for p̂, p̂s and p̂′ re-

spectively, where τ = π+, τs = π+
s and τ ′ = π+. The goal of these experiments is to

compare which probability estimates return the highest ranking (AUC), calibration (BS)

and classification accuracy (G-mean) when coupled with the thresholds defined before.

In undersampling, the amount of sampling defined by β is usually set to be equal to N+

N− ,

leading to a balanced dataset where π+
s = π−s = 0.5. However, there is no reason to

believe that this is the optimal sampling rate. Often, the optimal rate can be found only

a posteriori after trying different values of β. For this reason we replicate the CV with

Chapter 4. Techniques for unabalanced classification tasks 78

Test%set% Train%set%

Undersampling%Unbalanced%Model%

Balanced%Model%p̂

ˆ!p

τ

τ '

τ s

Fold%1% Fold%2% Fold%3% Fold%4% Fold%10%

Unbalanced%Dataset%

.%.%.%.%

p̂s

Figure 4.14: Learning framework for comparing models with and without undersam-
pling using CV. We use one fold of the CV as testing set and the others for training,

and iterate the framework to use all the folds once for testing.

different β such that {N+

N−
≤ β ≤ 1} and for each CV the accuracy is computed as the

average G-mean (or AUC) over all the folds.

In Table 4.5 we report the results over all the datasets. For each dataset, we rank the

probability estimates p̂s, p̂ and p̂′ from the worst to the best performing for different

values of β. We then sum the ranks over all the values of β and over all datasets. More

formally, let Ri,k,b ∈ {1, 2, 3} be the rank of probability i on dataset k when β = b.

The probability with the highest accuracy in k when β = b has Ri,k,b = 3 and the one

with the lowest has Ri,k,b = 1. Then the sum of ranks for the probability i is defined as∑
k

∑
bRi,k,b. The higher the sum, the higher the number of times that one probability

has higher accuracy than the others.

For AUC, a higher rank sum means a higher AUC and hence a better ranking returned

by the probability. Similarly, with G-mean, a higher rank sum corresponds to higher

predictive accuracy. However, in the case of BS, a higher rank sum means poorer prob-

ability calibration (larger bias). Table 4.5 has in bold the probabilities with the best

rank sum according to the different metrics. For each metric and classifier it reports the

p-values of the paired t-test based on the ranks between p̂ and p̂′ and between p̂ and p̂s.

In terms of AUC, we see that p̂s and p̂′ have better performances than p̂ for LB and

SVM. The rank sum is the same for p̂s and p̂′ since the two probabilities are linked by

a monotone transformation (equation (4.21)). If we look at G-mean, p̂s and p̂′ return

better accuracy than p̂ two times out of three. In this case, the rank sums of p̂s and p̂′

are the same since we used τs and τ ′ as the classification threshold, where τ ′ is obtained

Chapter 4. Techniques for unabalanced classification tasks 79

from τs using (4.28). If we look at the p-values, we can strongly reject the null hypothesis

that the accuracy of p̂s and p̂ are from the same distribution. For all classifiers, p̂ is the

probability estimate with the best calibration (lower rank sum with BS), followed by p̂′

and p̂s. The rank sum of p̂′ is always lower than the one of p̂s, indicating that p̂′ has

lower bias than p̂s. This result confirms our claim that equation (4.21) allows one to

reduce the bias introduced by undersampling.

In summary from this experiment we can conclude that undersampling does not always

improve the ranking or classification accuracy of an algorithm, but when it is the case

we should use p̂′ instead of p̂s because the first has always better calibration.

Table 4.5: Sum of ranks and p-values of the paired t-test between the ranks of p̂ and
p̂′ and between p̂ and p̂s for different metrics. In bold the probabilities with the best

rank sum (higher for AUC and G-mean, lower for BS).

Metric Algo
∑
Rp̂

∑
Rp̂s

∑
Rp̂′ ρ(Rp̂, Rp̂s) ρ(Rp̂, Rp̂′)

AUC LB 22,516 23,572 23,572 0.322 0.322
AUC RF 24,422 22,619 22,619 0.168 0.168
AUC SVM 19,595 19,902.5 19,902.5 0.873 0.873

G-mean LB 23,281 23,189.5 23,189.5 0.944 0.944
G-mean RF 22,986 23,337 23,337 0.770 0.770
G-mean SVM 19,550 19,925 19,925 0.794 0.794

BS LB 19809.5 29448.5 20402 0.000 0.510
BS RF 18336 28747 22577 0.000 0.062
BS SVM 17139 23161 19100 0.001 0.156

We now consider a real-world dataset, composed of credit card transactions from Septem-

ber 2013 made available by our industrial partner.5 It contains a subset of online trans-

actions that occurred in two days, where we have 492 frauds out of 284,807 transactions.

The dataset is highly unbalanced, where the positive class (frauds) account for 0.172%

of all transactions, and the minimum value of β is ≈ 0.00173. In Figure 4.15 we have the

AUC for different values of β. The boxplots of p̂s and p̂′ are identical because of (4.21),

they increase with β → N+

N− and have higher median than the one of p̂. This example

shows how in case of extreme class imbalance, undersampling can improve predictive

accuracy of several classification algorithms.

In Figure 4.16 we have the BS for different values of β. The boxplots of p̂′ show in

general smaller calibration error (lower BS) than those of p̂s and the latter have higher

BS especially for small values of β. This supports our previous results, which found that

the loss in probability calibration for p̂s is greater the stronger the undersampling.
5The dataset is available at http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata

http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata

Chapter 4. Techniques for unabalanced classification tasks 80

LB RF SVM

●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●● ●●●●●●

●●●●●● ●●●●●●

●●●●●● ●●●●●●

●●●●●●●● ●●●●●●●●

●●●●●●●● ●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.900

0.925

0.950

0.975

1.000

0.
1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

 beta

A
U

C

Probability
p
p'
ps

Credit−card

Figure 4.15: Boxplot of AUC for different values of β in the Credit-card dataset.

LB RF SVM
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●

●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●

●●●●●●

●●●●●●

●●●●●●●● ●●●●●●●●

3e−04

6e−04

9e−04

0.
1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

 beta

B
S

Probability
p
p'
ps

Credit−card

Figure 4.16: Boxplot of BS for different values of β in the Credit-card dataset.

4.2.4 Discussion

The warping due to the instance selection procedure in undersampling is essentially

equivalent to the bias that occurs with a change in the priors when class-within distribu-

tions remain stable. With undersampling, we create a different training set, where the

classes are less unbalanced. However, if we make the assumption that the training and

testing sets come from the same distribution, it follows that the probability estimates

obtained after undersampling are biased. As a result of undersampling, the posterior

probability p̂s is shifted away from the true distribution, and the optimal separation

boundary moves towards the majority class so that more cases are classified into the

minority class.

Chapter 4. Techniques for unabalanced classification tasks 81

By making the assumptions that prior probabilities do not change from training and

testing, i.e. they both come form the same data generating process, we propose the

transformation given in equation (4.21), which allows us to remove the drift in p̂s due to

undersampling.

The bias on p̂s registered by BS gets larger for small values of β, which means stronger un-

dersampling produces probabilities with poorer calibration (larger loss). With synthetic,

UCI and Credit-card datasets, the drift-corrected probability (p̂′) has significantly better

calibration than p̂s (lower Brier Score).

Even if undersampling produces poorly calibrated probability estimates p̂s, several stud-

ies have shown that it often provides better predictive accuracy than p̂ [88, 90]. To

improve the calibration of p̂s we propose to use p̂′ since this transformation does not af-

fect the ranking. In order to maintain the accuracy obtained with p̂s and the probability

threshold τs, we proposed to use p̂′ together with τ ′ to account for the change in priors.

By changing the undersampling rate β we give different costs to false positives and false

negatives, combining p̂′ with τ ′ allows one to maintain the same misclassification costs

of a classification strategy with p̂s and τs for any value of β.

Finally, we considered a highly unbalanced dataset (Credit-card), where the minority

class accounts for only 0.172% of all observations. In this dataset, the large improvement

in accuracy obtained with undersampling was coupled with poor calibrated probabilities

(large BS). By correcting the posterior probability and changing the threshold we were

able to improve calibration without losing predictive accuracy.

4.3 Racing for sampling methods selection

As already seen in Section 4.1, the degree of imbalance is not the only factor that

determines the difficulty of a classification/detection task. Another influential factor

is the amount of overlapping of the classes of interest [86]. Prati [84] showed that class

unbalance, by itself, does not seem to be a problem. Most studies [78, 82, 84, 106]

propose one method that seems to work well under certain conditions, however there is

no empirical evidence than one technique is superior to all the others. In general the best

method does not exits, however in some cases some techniques are better than others,

this is known in the literature as no-free-lunch Theorem [225, 226].

All these support the idea that under different conditions, such as distinct datasets, al-

gorithms, metrics, the best methods may change. Since in real large tasks it is hard to

know a priori the nature of the unbalanced tasks, the user is recommended to test all

Chapter 4. Techniques for unabalanced classification tasks 82

techniques with a consequent computational overhead. We make an exhaustive compar-

ison of these methods on a real credit-card fraud dataset and nine public benchmark

datasets. The results show that there is no balancing technique which is consistently

the best one and that the best method depends on the algorithm applied as well as the

dataset used. For this reason, we propose the adoption of a racing strategy [227] to

automatically select the most adequate technique for a given dataset. The rationale of

the racing strategy consists in testing multiple balancing strategies on a subset of the

dataset and to remove progressively the alternatives that are significantly worse. Our re-

sults show that by adopting a racing strategy we are able to select in an efficient manner

either the best balancing method or a method that is not significantly different from the

best one. Moreover, racing is able to reduce consistently the computation needed before

finding the right methods for the dataset.

4.3.1 Racing for strategy selection

The variety of approaches discussed in Section 3.1 suggests that in a real situation where

we have no prior information about the data distribution, it is difficult to decide which

unbalanced strategy to use. In this case testing all alternatives is not an option either

because of the associated computational cost.

A possible solution comes form the adoption of the Racing approach which was proposed

in [227] to perform efficiently model selection in a learning task. The principle of Racing

consists in testing in parallel a set of alternatives and using a statistical test to determine

if an alternative is significantly worse than the others. In that case such alternative is

discarded from the competition, and the computational effort is devoted to differentiate

the remaining ones. Historically the first example of racing method is called Hoeffding

Race since it relies on the Hoeffding theorem to decide when a model is significantly worse

than the others. The F-race version was proposed in [26] and combines the Friedman test

with Hoeffding Races [227] to eliminate inferior candidates as soon as enough statistical

evidence arises against them. In F-race, the Friedman test is used to check whether there

is evidence that at least one of the candidates is significantly different from others and

post-tests are applied to eliminate those candidates that are significantly worse than the

best one.

Here we adopt F-Race to search efficiently for the best strategy for unbalanced data.

The candidates are assessed on different subsets of data and, each time a new assessment

is made, the Friedman test is used to dismiss significantly inferior candidates. We used a

10 fold CV to provide the assessment measure to the race. If a candidate is significantly

better than all the others then the race is terminated without the need of using the whole

Chapter 4. Techniques for unabalanced classification tasks 83

dataset. In case there is no evidence of worse/better methods, the race terminates when

the entire dataset is explored and the best candidate is the one with the best average

result.

Candidate(1 Candidate(2 Candidate(3
subset(1(0.50 0.47 0.48
subset(2 0.51 0.48 0.30
subset(3 0.51 0.47
subset(4 0.49 0.46
subset(5 0.48 0.46
subset(6 0.60 0.45
subset(7 0.59
subset(8
subset(9
subset(10

Original(Dataset

Tim
e

Figure 4.17: Illustrative example of Racing: test in parallel a set of candidates using
a subset of the dataset and remove from the race those that are significantly worse than
the best. The race continues with the remaining candidates until only one is selected.

4.3.2 Experimental results

In these experiments we tested some of the techniques for unbalanced classification

discussed in Section 3.1.1 on the datasets of Table 4.3 and the credit card data used

in [28]. In particular, we considered the following techniques: undersampling, oversam-

pling, SMOTE, CNN, ENN, NCL, OSS and Tomek Link.

We started by performing a CV for each technique with different classification algo-

rithms: RF [222], Neural Network (NNET) [228], SVM [228], LB [224] and Decision

Tree [229]. Figure 4.18 displays the results of the CV for all the algorithms and datasets.

For each dataset we compute the average G-mean in the CV and then calculate the

average accuracy over all the datasets. We also include the performances in the case of

unbalanced datasets as benchmark. In this study, we see that the combination of RF

and undersampling appears to return the largest accuracy.

However, the results are highly dependent on the dataset and classifier considered. In

Figure 4.19 we show the accuracy on two datasets. In the case of the cam dataset under-

sampling is the best technique for all the classification algorithms used. On the contrary,

we see that for ecoli dataset, there is not a single technique that clearly outperforms the

others.

Chapter 4. Techniques for unabalanced classification tasks 84

0.0

0.2

0.4

0.6

0.8

Unb
al

Ove
r

Und
er

SM
OTE

OSS
CNN

ENN
NCL

To
m

ek

G
−

m
ea

n

Algo
LB
NNET
RF
SVM
TREE

Figure 4.18: Comparison of strategies for unbalanced data with different classifiers
over all datasets of Table 4.3 in terms of G-mean (the higher the better).

cam ecoli

0.00

0.25

0.50

0.75

Unb
al

Ove
r

Und
er

SM
OTE

OSS
CNN

ENN
NCL

To
m

ek

Unb
al

Ove
r

Und
er

SM
OTE

OSS
CNN

ENN
NCL

To
m

ek

G
−

m
ea

n

Algo
LB
NNET
RF
SVM
TREE

Figure 4.19: Comparison of strategies for unbalanced data with different classifiers
on cam and ecoli datasets in terms of G-mean (the higher the better).

In these experiments the classification accuracy was measured in terms of G-mean, but we

could have different outcomes when using another metric [27]. In general there is no single

strategy that is coherently superior to all the others in all conditions (i.e. algorithm and

dataset). Even if sometimes it is possible to find a strategy that is statistically better

than others it is computationally demanding testing all strategies on several datasets

and algorithms. For this reason in [27] we proposed to adopt the F-race algorithm to

automatize the way to select the best strategy for unbalanced data. The algorithm is

available in the companion unbalanced package [24] available for the R language (see

Appendix A). Tables 4.6 and 4.7 show the results of the F-race.

The first thing we notice is that for almost all datasets F-race is able to return the best

Chapter 4. Techniques for unabalanced classification tasks 85

Dataset Exploration Method Ntest % Gain Mean Sd

ecoli Race Under 46 49 0.836 0.04
CV SMOTE 90 - 0.754 0.112

letter-a Race Under 34 62 0.952 0.008
CV SMOTE 90 - 0.949 0.01

letter-vowel Race Under 34 62 0.884 0.011
CV Under 90 - 0.887 0.009

letter Race SMOTE 37 59 0.951 0.009
CV Under 90 - 0.951 0.01

oil Race Under 41 54 0.629 0.074
CV SMOTE 90 - 0.597 0.076

page Race SMOTE 45 50 0.919 0.01
CV SMOTE 90 - 0.92 0.008

pendigits Race Under 39 57 0.978 0.011
CV Under 90 - 0.981 0.006

PhosS Race Under 19 79 0.598 0.01
CV Under 90 - 0.608 0.016

satimage Race Under 34 62 0.843 0.008
CV Under 90 - 0.841 0.011

segment Race SMOTE 90 0 0.978 0.01
CV SMOTE 90 - 0.978 0.01

estate Race Under 27 70 0.553 0.023
CV Under 90 - 0.563 0.021

covtype Race Under 42 53 0.924 0.007
CV SMOTE 90 - 0.921 0.008

cam Race Under 34 62 0.68 0.007
CV Under 90 - 0.674 0.015

compustat Race Under 37 59 0.738 0.021
CV Under 90 - 0.745 0.017

creditcard Race Under 43 52 0.927 0.008
CV SMOTE 90 - 0.924 0.006

Table 4.6: Comparison of CV and F-race results in terms of G-mean for RF classifier.

method according to CV. In the case where there is no agreement between F-race and CV

on the best method, the difference in performances is however not significant. The main

advantage of Racing is that bad methods are not tested on the whole dataset reducing

the computation needed. Taking into consideration the 8 methods and the unbalanced

case, in a 10 fold CV we have 90 tests to make (10 folds x 9 methods). In the case of

F-race the number of total tests depends upon how many folds are needed before F-race

finds the best method. The Gain column of Tables 4.6 and 4.7 shows the computational

gain (in percentage of the CV tests) obtained by using F-race. In the case of the segment

dataset and RF classifier the gain is 0, meaning that the Race did not find significant

worse candidates. In all the other cases F-race allows a significant computational saving

with no loss in performance.

4.3.3 Discussion

Recent literature in data mining and machine learning has plenty of research works

on strategies to deal with unbalanced data. However, a definitive answer on the best

Chapter 4. Techniques for unabalanced classification tasks 86

Dataset Exploration Method Ntest % Gain Mean Sd

ecoli Race SMOTE 55 39 0.83 0.068
CV OSS 90 - 0.613 0.361

letter-a Race SMOTE 31 66 0.96 0.009
CV SMOTE 90 - 0.961 0.008

letter-vowel Race SMOTE 31 66 0.878 0.007
CV SMOTE 90 - 0.876 0.005

letter Race SMOTE 31 66 0.96 0.007
CV SMOTE 90 - 0.96 0.007

oil Race Over 90 0 0.356 0.155
CV Tomek 90 - 0.311 0.272

page Race SMOTE 31 66 0.91 0.015
CV SMOTE 90 - 0.905 0.012

pendigits Race SMOTE 63 30 0.992 0.003
CV SMOTE 90 - 0.992 0.003

PhosS Race Under 31 66 0.571 0.008
CV Under 90 - 0.509 0.112

satimage Race Under 41 54 0.842 0.011
CV SMOTE 90 - 0.837 0.012

segment Race SMOTE 84 7 0.971 0.021
CV CNN 90 - 0.972 0.014

boundary Race Under 34 62 0.401 0.051
CV Under 90 - 0.423 0.079

estate Race Under 31 66 0.56 0.068
CV Under 90 - 0.593 0.016

covtype Race SMOTE 34 62 0.927 0.007
CV SMOTE 90 - 0.924 0.006

cam Race Under 31 66 0.684 0.026
CV Under 90 - 0.686 0.017

compustat Race Under 27 70 0.742 0.012
CV Under 90 - 0.741 0.013

creditcard Race SMOTE 42 53 0.919 0.011
CV Under 90 - 0.916 0.008

Table 4.7: Comparison of CV and F-race results in terms of G-mean for SVM classifier.

strategy to adopt is yet to come. Our experimental results support the idea that the

final performance is extremely dependent on the data nature and distribution.

This consideration has led us to adopt the F-race strategy where different candidates

(unbalanced methods) are tested simultaneously. We have showed that this algorithm is

able to select few candidates that perform better than other without exploring the whole

dataset. F-race was able to get results similar to the cross validation for most of the

datasets.

In general we saw that undersampling and SMOTE together with RF are often the meth-

ods returning the larger accuracy. As far as the fraud dataset is concerned, we prefer

undersampling over SMOTE because it reduces the dataset set allowing faster training of

the classifier. However, as the frauds evolve over the time the same method could become

sub-optimal in the future. In this context the F-race contribution to the selection of the

best strategy is crucial in order to have a detection system that quickly adapts to the

new data distribution. Within the UCI datasets we noticed that some tasks are much

easier (high accuracy) than the others and they may not have an unbalanced method

Chapter 4. Techniques for unabalanced classification tasks 87

that performs significantly better than the others.

4.4 Conclusion

A standard approach to deal with unbalanced classification tasks is to rebalance the

dataset before training a learning algorithm. One of the most straightforward ways to

achieve a balanced distribution is to use undersampling, i.e. remove observations from

the majority class. Despite the popularity of this technique, no detailed analysis about

the impact of undersampling on the accuracy of the final classifier was available yet.

This chapter aims to fill this gap by proposing an integrated analysis of the two elements

which have the largest impact on the effectiveness of an undersampling strategy: the

increase of the variance due to the reduction of the number of samples and the warping

of the posterior distribution due to the change of priori probabilities.

We proposed a theoretical analysis specifying under which conditions undersampling is

recommended and expected to be effective. It emerges that undersampling is not al-

ways the best solution and several factors affect its power (e.g. variance of the classifier,

the degree of imbalance, class separability and the value of the posterior probability.)

However, when it appears to improve predictive accuracy we show that it is important

to re-calibrate the posterior probability of a classifier to account for the change in class

priors. Finally, we propose to use a Racing algorithm to choose between multiple strate-

gies for unbalanced classification in order to avoid testing all possible techniques and

configurations.

Chapter 5

Learning from evolving data

streams with skewed distributions

Results presented in this chapter have been published in the following papers:

• Andrea Dal Pozzolo, Olivier Caelen, Yann-Ael Le Borgne, Serge Waterschoot, and

Gianluca Bontempi. Learned lessons in credit card fraud detection from a practi-

tioner perspective. Expert Systems with Applications, 41(10):4915-4928, 2014.

• Andrea Dal Pozzolo, Reid A. Johnson, Olivier Caelen, Serge Waterschoot, Nitesh

V Chawla, and Gianluca Bontempi. Using HDDT to avoid instances propagation

in unbalanced and evolving data streams. In Neural Networks (IJCNN), The 2014

International Joint Conference on. IEEE, 2014.

Fraud Detection problems are typically addressed in two different ways. In the static

learning setting, a detection model is periodically retrained from scratch (e.g. once a

year or month). In the online learning setting, the detection model is updated as soon as

new data arrives. Though this strategy is the most adequate to deal with issues of non-

stationarity, little attention has been devoted in the literature to the unbalanced problem

in a changing environment. Another problematic issue in credit card fraud detection is

the scarcity of available data due to confidentiality issues that give little chance to the

community to share real datasets and assess existing techniques.

The first part of the chapter (Section 5.1) is based on [18] and it aims at making an

experimental comparison of several state-of-the-art algorithms and modeling techniques

on one real dataset, focusing in particular on some open questions like: Which machine

learning algorithm should be used? Is it enough to learn a model once a month or it is

necessary to update the model everyday? How many transactions are sufficient to train

89

Chapter 5. Learning from evolving data streams with skewed distributions 90

the model? Should the data be analyzed in their original unbalanced form? If not, which

is the best way to rebalance them? Which performance measure is the most adequate to

assess results?

We address these questions with the aim of assessing their importance on real data and

from a practitioner perspective. These are just some of potential questions that could

rise during the design of a detection system. We do not claim to be able to give a definite

answer to the problem, but we aim to give some guidelines to other people in the field.

Our goal is to show what worked and what did not in a real case study.

Section 5.1 starts by formalizing the credit card fraud detection task and present a way

to create new features in the datasets that can trace the cardholder spending habits.

Then, we propose and compare three approaches for online learning in order to identify

what is important to retain or to forget in a changing and non-stationary environment.

We show the impact of the rebalancing technique on the final performance when the

class distribution is skewed. In doing this we merge techniques developed for unbalanced

static datasets with online learning strategies. Our experimental analysis shows that to

adapt to changing environments, it is imperative to update the learning algorithm. A

static approach that never updates the learning algorithm often fails to maintain good

predictive performances.

The second part of the chapter (Section 5.2) builds upon this result and proposes an

algorithm solution for unbalanced data streams based on Hellinger Distance Decision Tree

(HDDT) [19], which removes the need of sampling techniques or instances propagation.

HDDT [230] has been previously used for static datasets with skewed distributions and it

has shown better performance than standard decision trees. In unbalanced data streams,

state-of-the-art techniques use instance propagation and decision trees (e.g. C4.5 [102])

to cope with the unbalanced problem. However, it is not always possible to either revisit

or store old instances of a data stream. Using HDDT allows us to: i) remove instance

propagations between batches and ii) using all information available in a batch without

need to rebalance the classes before training a classifier. This has several benefits, for

example: i) improved predictive accuracy, ii) speed, and iii) single-pass through the

data. We also use a Hellinger weighted ensemble of HDDTs to combat concept drift and

increase the accuracy of single classifiers. We test our framework on several streaming

datasets with unbalanced classes and concept drift.

Chapter 5. Learning from evolving data streams with skewed distributions 91

5.1 Learning strategies in credit card fraud detection

5.1.1 Formalization of the learning problem

In this section, we formalize the credit card fraud detection task as a statistical learning

problem. Each transaction is described by a feature vector x containing basic information

such as amount of the expenditure, the shop where it was performed, the currency,

etc. However, these variables do not provide any information about the normal card

usage. The normal behavior of a cardholder can be measured by using a set of historical

transactions from the same card. For example, as previously explained in Section 2.2.2,

we can get an idea of the cardholder spending habits by looking at the average amount

spent in different merchant categories (e.g. restaurant, online shopping, gas station, etc.)

in the last 3 months preceding the transaction.

Let xij be the transaction number j of a card number i and dt(xij) be the corresponding

transaction date-time. We assume that the transactions are ordered in time such that

if xiv occurs before xiw then dt(xiv) < dt(xiw). Let xiλ be a new incoming transaction

and ∆t denote the time-frame of a set of historical transactions for the same card. Hiλ
is then the set of the historical transactions occurring in the time-frame ∆t before xiλ
such that Hiλ = {xij}, where dt(xiλ) > dt(xij) ≥ dt(xiλ) − ∆t. For instance, with

∆t = 90 days, Hiλ is the set of transactions for the same card occurring in the 3 months

preceding dt(xiλ). The card behavior can be summarized using classical aggregation

methods (e.g. mean, max, min or count) on the set Hiλ. This means that it is possible

to create new aggregated variables that can be added to the original variables in x to

include information of the card. In this way we have included information about the user

behavior at the transaction level. As a consequence, transactions from cardholders with

similar spending habits will share analogous aggregate variables. Let x̄k indicate the

feature vector associated to a transaction xij obtained by adding aggregated features.

At day t, a classifier Kt is trained on a batch of supervised transactions, denoted as

Bt = {(x̄k, yk), k = 1, . . . , N}, to predict P(+|x̄λ), the probability of a new incoming

transaction x̄λ to be fraudulent. Note that in this formulation we ignore the status of

the card. We also assume to know the true class of all transactions, i.e. no mislabeled

samples due to undetected frauds nor frauds reported with a delay by the cardholders.

5.1.2 Strategies for learning with unbalanced and evolving data streams

The most conventional way to deal with sequential fraud data is to adopt a Static ap-

proach (see Figure 5.1 and Algorithm 1), which creates once in a while a classification

model and uses it as a predictor during a long horizon. Though this approach reduces the

Chapter 5. Learning from evolving data streams with skewed distributions 92

Time%Sta)c%approach%

Fraudulent%transac)ons%
Genuine%transac)ons%

Bt�2 Bt�1 Bt Bt+1 Bt+2 Bt+3 Bt+4

Mt

Figure 5.1: Static approach: a model Mt is trained on K = 3 batches and used to
predict future batches.

Algorithm 1 Static approach
Require: K: number of batches used for training, B: total number of batches available (B > K), K:
classification algorithms, sampling: sampling method.
T ← empty set of transactions.
for t ∈ {1, . . . ,K} do

Bt ← tth batch of transactions.
T← merge Bt with T.

M← buildModel(T, K, sampling)
for t ∈ {K + 1, . . . , B} do

p̂← useM to predict P(+, x̄) for transactions in Bt.
acct ← predictive accuracy of p̂ . measured by AUC, AP, Pk.

return Average(acc)

learning effort, its main problem resides in the lack of adaptivity that makes it insensitive

to any change of distribution in the upcoming batches.

On the basis of the state-of-the-work described in Section 3.3, it is possible to conceive

two alternative strategies to address both the incremental and the unbalanced nature of

the fraud detection problem. The first approach, denoted as the Update approach and

illustrated in Figure 5.2 and Algorithm 2, is inspired by Wang et al. [189]. It uses a set

of M models and a number K of batches to train each model. Note that for M > 1

and K > 1 the training sets of the M models are overlapping. This approach adapts

to changing environment by forgetting batches at a constant rate. The classifier used to

make predictions is an ensemble of last M models.

The second approach denoted as the Propagate and Forget approach and illustrated in

Figure 5.3 and Algorithm 3 is inspired by Gao et all’s work [170]. In order to mitigate

the unbalanced effects, each time a new batch is available, a model is learned on the

genuine transactions of the previous Kgen batches and all past fraudulent transactions.

Chapter 5. Learning from evolving data streams with skewed distributions 93

Time%Update%approach%

Bt�2 Bt�1 Bt Bt+1

Mt�2 Mt�1 MtMt�3

Et

Bt�5 Bt�4 Bt�3

Fraudulent%transac)ons%
Genuine%transac)ons%

Figure 5.2: Updating approach for K = 3 and M = 4. For each new batch a model is
trained on the K latest batches. Single models are used to predict the following batch

or can be combined into an ensemble Et.

Algorithm 2 Update approach
Require: K: number of batches used for training, B: total number of batches available (B > K), M :
number of models in the ensemble, K: classification algorithms, sampling: sampling method.
T ← empty set of transactions.
Et ← empty array of models.
k ← 0
m← 0
for t ∈ {1, . . . , B} do

Bt ← tth batch of transactions.
k ← k + 1.
T← merge Bt with T.
if k ≥ K then

remove Bt−K from T
k ← k − 1.

m← m+ 1.
Mt ← buildModel(T, K, sampling)
Et ← addMt to Et.
if m ≥M then

removeMt−M from Et
m← m− 1.

p̂← use Et to predict P(+, x̄) for transactions in Bt+1.
acct+1 ← predictive accuracy of p̂ . measured by AUC, AP, Pk.

return Average(acc)

Since this approach leads to training sets which grow in size over the time, a maximum

training size is set to avoid overloading. Once this size is reached, older observations

are removed in favor of the more recent ones. An ensemble of models is obtained by

combining the last M models as in the update approach.

Note that in all these approaches (including the static one), a balancing technique (e.g.

undersampling, SMOTE) can be introduced to reduce the skewness of the training set.

Chapter 5. Learning from evolving data streams with skewed distributions 94

Time%
Propagate%and%Forget%approach%

Bt�2 Bt�1 Bt Bt+1Bt�3

Mt�2 Mt�1 MtMt�3

Et
Fraudulent%transac)ons%
Genuine%transac)ons%

Figure 5.3: Propagate and Forget approach: for each new batch a model is created
by keeping all previous fraudulent transactions and a small set of genuine transactions
from the last 2 batches (Kgen = 2). Single models are used to predict the following

batch or can be combined into an ensemble (M = 4).

Algorithm 3 Propagate and Forget approach
Require: Kgen: number of batches from which to retain genuine transactions, B: total number of
batches available (B > K), M : number of models in the ensemble, N : max size of the training set,
K: classification algorithms, sampling: sampling method.
T ← empty set of transactions.
Et ← empty array of models.
k ← 0
m← 0
for t ∈ {1, . . . , B} do

Bt ← tth batch of transactions.
k ← k + 1.
T← merge Bt with T.
if k ≥ Kgen then

remove genuine transactions of Bt−Kgen from T
k ← k − 1.

if |T| > N then
remove oldest fraudulent transactions from T until |T| = N

m← m+ 1.
Mt ← buildModel(T, K, sampling)
Et ← addMt to Et.
if m ≥M then

removeMt−M from Et
m← m− 1.

p̂← use Et to predict P(+, x̄) for transactions in Bt+1.
acct+1 ← predictive accuracy of p̂ . measured by AUC, AP, Pk.

return Average(acc)

In Table 5.1 we have summarized the strengths and weaknesses of these approaches. The

Static strategy has the advantage of being fast as the training of the model is done only

once, but this does not return a model that follows the changes in the distribution of the

Chapter 5. Learning from evolving data streams with skewed distributions 95

Table 5.1: Strengths and weaknesses of the different learning approaches.

Approach Strengths Weaknesses

Static • Speed • No CD adaptation

Update • No instances propagation • Needs several batches
• CD adaptation for the minority class

Propagate and Forget • Accumulates minority • Propagation leads to
instances faster larger training time

• CD adaptation

data. The other two approaches on the contrary can adapt to Concept Drift (CD). They

differ essentially in the way the minority class is accumulated in the training batches. The

Propagate and Forget strategy propagates instances between batches leading to bigger

training sets and computational burden.

5.1.3 Experimental assessment

In this section we perform an extensive experimental assessment on the basis of real data

in order to address common issues that the practitioner has to solve when facing large

credit card fraud datasets.

Dataset and features transformation

The credit card fraud dataset contains a subset of the transactions from the first of

February 2012 to the twentieth of May 2013 (details in Table 5.2). The dataset was

divided in daily batches and contained e-commerce fraudulent transactions.

Table 5.2: Fraudulent dataset

Days # Features # Transactions Period
422 45 2’202’228 1Feb12 - 20May13

This dataset is strongly unbalanced (the percentage of fraudulent transactions is lower

than 0.4%) and has a total of 422 batches containing daily transactions with an average

of 5218 transactions per batch.

The original variables available in the dataset included the transaction amount, point

of sale, currency, country of the transaction, merchant type and many others. However,

these variables do not explain cardholder behavior, so aggregated features are added to

the original ones in order to profile the user behavior (see Section 5.1.1). For example,

the transaction amount and the CARD_ID is used to compute the average expenditure

Chapter 5. Learning from evolving data streams with skewed distributions 96

per week and per month of one card, the difference between the current and previous

transaction and many others. For each transaction and card we took 3 months (∆t =

90 days) to compute the aggregated variables.

A great number of the variables in the original dataset are discrete features taking sev-

eral values. However, some classifiers such as NNET are not able to handle discrete

variable, so these features had to be transformed into numerical features. In the R envi-

ronment [25], discrete variables are also known as factors and their values as levels. One

straightforward way to transform factors into numerical feature is to compute the risk

of having a fraudulent transaction for each level of a factor. Let’s consider for example

a factor variable f . We can compute the probability of the jth level of factor f to be

fraudulent, denoted as βj , as follows: βj =
N+
f=j

Nf=j
, where N+

f=j is the number of fraudulent

transactions and Nf=j the total number of transactions for factor f with level j.

As first option we could use βj to associate to each level a fraud score, but this would

lead to the following issues: i) with few fraudulent transactions, many levels are going

to have βj = 0 making the distribution of the new feature skewed towards zero, and ii)

βj could be the same for levels with big and small frequency. For example if we have a

level with 1 fraudulent transaction out of 10 we have βj = 0.1 as for a level with 100

fraudulent transactions out of 1000. In the first example however we compute βj using

only 10 observations whereas in the second we can use 1000 observations, therefore in

the second scenario we are more confident about the probability calculation.

In our work we used a scoring function which combine some a-priori fraud probability

with βj . The idea is that when there’s not much information (levels with few transac-

tions) we should use what we called the Average Fraud Probability (AFP) that is the

mean probability of having a fraud in a day. On the other hand, when we have enough

information we want to consider the fraud probability coming from the factor levels (de-

fined by βj). We used a weighted average of AFP and βj where the weight αj given

to βj is defined by the proportion of transactions for that level to all the transactions:

αj =
Nf=j
N . As a result a factor can be transformed into a numerical feature by associ-

ating to each level a fraud score Sj as follow:

Sj = αjβj + (1− αj)AFP (5.1)

In this scoring function however, even with the maximum value of αj (which is always

less than 1) we still have the influence of the a-priori part given by (1 − αj)AFP. To

avoid this problem, we can transform the previous function to bind the weights to be in

the range [0, 1] using a new weight α′j =
αj−minαj

maxαj−minαj
. We can now rewrite (5.1) as:

Sj = α′jβj + (1− α′j)AFP (5.2)

Chapter 5. Learning from evolving data streams with skewed distributions 97

A new problem with this new type of scoring function emerges when there is a factor

that does not have a uniform distribution of the transactions over its levels. For example

the factor variable TERM_MCC (terminal Merchant Category Code) has few frequent

levels and many rare levels. With this factor we would end up with few levels having a

big weight αj and many levels with small αj (Figure 5.4(a)). In this kind of situation

we can apply the log function to have a smoother α′j (Figure 5.4(b)).

!

(a) α′j =
αj−minαj

maxαj−minαj

!

(b) α′j =
log (αj−minαj)

log (maxαj−minαi)

Figure 5.4: Weight α′j for variable TERM_MCC.

Solved the factors problem, the dataset now contains only numerical variables, where the

original discrete variables have been transformed into numerical features ranging from 0

(low risk) to 1 (high risk).

Results

Our experimental analysis allows one to compare several strategies for credit card fraud

detection. Based on the approaches presented in Section 5.1.2, our experimental findings

aim to give guidelines to practitioners working on credit card fraud detection. To evaluate

our results, we measure the performance of the detection in terms of AUC, AP and Pk
(see Sections 2.2.3).

Influence of algorithm and training set size in a static approach

The static approach (described in Section 5.1.2) is one of the most commonly used by

practitioners because of its simplicity and rapidity. However, open questions remain

about which learning algorithm should be used and the consequent sensitivity of the

accuracy to the training size. We tested three different supervised algorithms: RF,

Chapter 5. Learning from evolving data streams with skewed distributions 98

NNET and SVM provided by the R software [25]. We used R version 3.0.1 with packages

randomForest [222], e1071 [228], unbalanced [24] and MASS [231]1.

In order to assess the impact of the training set size (in terms of days/batches) we carried

out the predictions with different windows (K = 30, 60 and 90). All training sets were

rebalanced using undersampling and all experiments are replicated five times to reduce

the variance caused by the sampling implicit in unbalanced techniques. Figure 5.5 shows

the sum of the ranks from the Friedman test [232] for each strategy in terms of AP, AUC

and Pk. For each batch, we rank the strategies from the least to the best performing.

Then we sum the ranks over all batches. More formally, let rs,b ∈ {1, ..., S} be the rank

of strategy s on batch b and S be the number of strategies to compare. The strategy with

the highest accuracy in b has rs,b = S and the one with the lowest has rs,b = 1. Then

the sum of ranks for the strategy s is defined as
∑B

b=1 rs,b, where B is the total number

of batches. The higher the sum, the higher is the number of times that one strategy is

superior to the others. The white bars denote models which are significantly worse than

the best (paired t-test based on the ranks of each batch).

The strategy names follow a structure built on the following options:

• Algorithm used (RF, SVM, NNET)

• Sampling method (Under, SMOTE, EasyEnsemble)

• Model update frequency (One, Daily, 15days, Weekly)

• Number of models in the ensemble (M)

• Learning approach (Static, Update, Propagate and Forget)

• Learning parameter (K, Kgen)

Then the strategy options are concatenated using the dot as separation point (e.g.

RF.Under.Daily.10M.Update.60K). In both datasets, Random Forests clearly outper-

forms its competitors and, as expected, accuracy is improved by increasing the training

size (Figure 5.5). Because of the significative superiority of Random Forests with re-

spect to the other algorithms, in what follows we will limit to consider only this learning

algorithm.

Advantage of updating models

Here we assess the advantage of adopting the update approach described in Section 5.1.2.

Figure 5.6 reports the results for different values of K and M . The strategies are called
1For each classifier we used the default settings provided by the package.

Chapter 5. Learning from evolving data streams with skewed distributions 99

NNET.Under.One.1M.Static.60K

SVM.Under.One.1M.Static.60K

NNET.Under.One.1M.Static.90K

SVM.Under.One.1M.Static.90K

RF.Under.One.1M.Static.30K

RF.Under.One.1M.Static.60K

RF.Under.One.1M.Static.90K

0 500 1000 1500

Sum of the ranks

Best significant
FALSE
TRUE

Metric: AP

(a) Metric: AP

SVM.Under.One.1M.Static.60K

SVM.Under.One.1M.Static.90K

NNET.Under.One.1M.Static.60K

NNET.Under.One.1M.Static.90K

RF.Under.One.1M.Static.30K

RF.Under.One.1M.Static.60K

RF.Under.One.1M.Static.90K

0 500 1000 1500

Sum of the ranks

Best significant
FALSE
TRUE

Metric: AUC

(b) Metric: AUC

NNET.Under.One.1M.Static.60K

SVM.Under.One.1M.Static.60K

NNET.Under.One.1M.Static.90K

SVM.Under.One.1M.Static.90K

RF.Under.One.1M.Static.30K

RF.Under.One.1M.Static.60K

RF.Under.One.1M.Static.90K

0 500 1000 1500

Sum of the ranks

Best significant
FALSE
TRUE

Metric: PrecisionRank

(c) Metric: Pk

Figure 5.5: Comparison of static strategies using sum of ranks in all batches.

Chapter 5. Learning from evolving data streams with skewed distributions 100

daily if a model is built every day, weekly if once a week or 15days if every 15 days.

We compare ensemble strategies (M > 1) with models built on single batches (K = 1)

against single models strategies (M = 1) using several batches in the training (K > 1).

For all metrics, the best strategy is RF.Under.Daily.5M.Update.90K. It creates a new

model at each batch using previous 90 days (K = 90) for training and keeps the last 5

models created (M = 5) for predictions. In the case of AP however this strategy is not

statistically better than the ensemble approaches ranked as second.

For all metrics, the strategies that use only the current batch to build a model (K = 1)

are coherently the worst. This confirms the result of previous analysis showing that a

too short window of data (and consequently a very small fraction of frauds) is insufficient

to learn a reliable model. When comparing the update frequency of the models using

the same number of batches for training (K = 90), daily update is ranking always better

than weekly and 15days. This confirms the intuition that the fraud distribution is always

evolving and therefore it is better to update the models as soon as possible.

Benefit of propagating old frauds

This section assesses the accuracy of the Propagate and Forget approach described in

Section 5.1.2 whose rationale is to avoid discarding old fraudulent observations.

Accumulating old frauds leads to less unbalanced batches. In order to avoid having

batches where the accumulated frauds outnumber the genuine transactions, two options

are available: i) forgetting some of the old frauds ii) accumulating old genuine trans-

actions as well. In the first case when the accumulated frauds represent 40% of the

transactions, new frauds replace old frauds as in Gao [171]. In the second case we accu-

mulate genuine transactions from previous Kgen batches, where Kgen defines the number

of batches used (see Figure 5.3).

Figure 5.7 shows the sum of ranks for different strategies where the genuine transactions

are taken from a different number of days (Kgen). The best strategy according to AP

and Pk uses an ensemble of 5 models for each batch (M = 5) and 30 days for genuine

transactions (Kgen = 30). The same strategy ranks third in terms of AUC and is

significantly worse than the best. To create ensembles we use a time-based array of

models of fixed sizeM , which means that when the number of models available is greater

than M , the most recent in time model replaces the M th model in the array removing

the oldest model in the ensemble.

In general we see better performances when Kgen increases from 0 to 30 and only in few

cases Kgen > 30 leads to significantly better accuracy. Note that in all our strategies

Chapter 5. Learning from evolving data streams with skewed distributions 101

RF.Under.Daily.90M.Update.1K
RF.Under.Daily.60M.Update.1K
RF.Under.Daily.15M.Update.1K
RF.Under.Daily.30M.Update.1K
RF.Under.Daily.1M.Update.30K

RF.Under.15days.1M.Update.90K
RF.Under.Weekly.1M.Update.90K

RF.Under.Daily.1M.Update.60K
RF.Under.Daily.1M.Update.90K

RF.Under.Daily.30M.Update.90K
RF.Under.Daily.15M.Update.90K
RF.Under.Daily.5M.Update.90K

0 1000 2000

Sum of the ranks

Best significant
FALSE
TRUE

Metric: AP

(a) Metric: AP

RF.Under.Daily.90M.Update.1K
RF.Under.Daily.60M.Update.1K
RF.Under.Daily.15M.Update.1K
RF.Under.Daily.30M.Update.1K
RF.Under.Daily.1M.Update.30K

RF.Under.15days.1M.Update.90K
RF.Under.Daily.1M.Update.60K

RF.Under.Weekly.1M.Update.90K
RF.Under.Daily.1M.Update.90K

RF.Under.Daily.30M.Update.90K
RF.Under.Daily.15M.Update.90K
RF.Under.Daily.5M.Update.90K

0 1000 2000

Sum of the ranks

Best significant
FALSE
TRUE

Metric: AUC

(b) Metric: AUC

RF.Under.Daily.90M.Update.1K
RF.Under.Daily.60M.Update.1K
RF.Under.Daily.15M.Update.1K
RF.Under.Daily.30M.Update.1K
RF.Under.Daily.1M.Update.30K

RF.Under.15days.1M.Update.90K
RF.Under.Daily.1M.Update.60K

RF.Under.Weekly.1M.Update.90K
RF.Under.Daily.1M.Update.90K

RF.Under.Daily.30M.Update.90K
RF.Under.Daily.15M.Update.90K
RF.Under.Daily.5M.Update.90K

0 500 1000 1500 2000 2500

Sum of the ranks

Best significant
FALSE
TRUE

Metric: PrecisionRank

(c) Metric: Pk

Figure 5.6: Comparison of update strategies using sum of ranks in all batches.

Chapter 5. Learning from evolving data streams with skewed distributions 102

after selecting the observations to include in the training sets we use undersampling to

make sure we have the two classes equally represented.

Impact of balancing techniques on detection accuracy

So far we considered exclusively undersampling as balancing technique in our experi-

ments. In this section we assess the impact of using alternative methods like SMOTE

and EasyEnsemble. Experimental results (Figure 5.8) show that they both over-perform

undersampling.

In our datasets, the number of frauds is on average 0.4% of all transactions in the batch.

Undersampling randomly selects a number of genuine transactions equal to the num-

ber of frauds, which means removing about 99.6% of the genuine transactions in the

batch. EasyEnsemble is able to reduce the variance of undersampling by using several

sub-models for each batch, while SMOTE creates new artificial fraudulent transactions.

In our experiments we used 5 sub-models in EasyEnsemble. For all balancing tech-

niques, between the three approaches presented in Section 5.1.2, the static approach is

consistently the worse.

In Figure 5.9 we compare the previous strategies in terms of average prediction time over

all batches. SMOTE is computationally heavy since it consists in oversampling, leading

to bigger batch sizes. EasyEnsemble replicates undersampling and learns from several

sub-batches. This gives higher computational time than undersampling. Between the

different incremental approaches, static has the lowest time as the model is learned once

and not retrained. Propagate and Forget strategy has the highest prediction time over

all balancing methods. This is expected since it retains old transactions to deal with

unbalanced batches.

Analysis of the best overall strategy

The large number of possible alternatives (in terms of learning classifier, balancing tech-

nique and incremental learning strategy) requires a joint assessment of several combina-

tions in order to come up with a recommended approach. Figure 5.10 summaries the

best strategies in terms of different metrics. The combinations of EasyEnsemble with

Propagate and Forget emerge as best for all metrics. SMOTE with update is not signifi-

cantly worse of the best for AP and Pk, but it is not ranking well in terms of AUC. The

fact that within the best strategies we see different balancing techniques confirms that

in unbalanced data streams, the adopted balancing strategy may play a major role. As

expected the static approach ranks low in Figures 5.10 as it is not able to adapt to the

Chapter 5. Learning from evolving data streams with skewed distributions 103

RF.Under.Daily.1M.Forget.0Kgen

RF.Under.Daily.30M.Forget.30Kgen

RF.Under.Daily.1M.Forget.90Kgen

RF.Under.Daily.1M.Forget.60Kgen

RF.Under.Daily.1M.Forget.30Kgen

RF.Under.Daily.1M.Forget.15Kgen

RF.Under.Daily.15M.Forget.30Kgen

RF.Under.Daily.10M.Forget.30Kgen

RF.Under.Daily.5M.Forget.30Kgen

0 1000 2000 3000

Sum of the ranks

Best significant
FALSE
TRUE

Metric: AP

(a) Metric: AP

RF.Under.Daily.1M.Forget.0Kgen

RF.Under.Daily.1M.Forget.15Kgen

RF.Under.Daily.30M.Forget.30Kgen

RF.Under.Daily.1M.Forget.30Kgen

RF.Under.Daily.15M.Forget.30Kgen

RF.Under.Daily.10M.Forget.30Kgen

RF.Under.Daily.5M.Forget.30Kgen

RF.Under.Daily.1M.Forget.60Kgen

RF.Under.Daily.1M.Forget.90Kgen

0 1000 2000 3000

Sum of the ranks

Best significant
FALSE
TRUE

Metric: AUC

(b) Metric: AUC

RF.Under.Daily.1M.Forget.0Kgen

RF.Under.Daily.30M.Forget.30Kgen

RF.Under.Daily.1M.Forget.15Kgen

RF.Under.Daily.15M.Forget.30Kgen

RF.Under.Daily.1M.Forget.30Kgen

RF.Under.Daily.10M.Forget.30Kgen

RF.Under.Daily.1M.Forget.90Kgen

RF.Under.Daily.1M.Forget.60Kgen

RF.Under.Daily.5M.Forget.30Kgen

0 1000 2000

Sum of the ranks

Best significant
FALSE
TRUE

Metric: PrecisionRank

(c) Metric: Pk

Figure 5.7: Comparison of forgetting strategies using sum of ranks in all batches.

Chapter 5. Learning from evolving data streams with skewed distributions 104

RF.Under.One.1M.Static.90K

RF.SMOTE.One.1M.Static.90K

RF.EasyEnsemble.One.1M.Static.90K

RF.Under.Daily.1M.Update.90K

RF.Under.Daily.1M.Forget.90Kgen

RF.EasyEnsemble.Daily.1M.Update.90K

RF.SMOTE.Daily.1M.Forget.90Kgen

RF.EasyEnsemble.Daily.1M.Forget.90Kgen

RF.SMOTE.Daily.1M.Update.90K

0 500 1000 1500

Sum of the ranks

Best significant
FALSE
TRUE

Metric: AP

(a) Metric: AP

RF.SMOTE.One.1M.Static.90K

RF.Under.One.1M.Static.90K

RF.EasyEnsemble.One.1M.Static.90K

RF.Under.Daily.1M.Update.90K

RF.SMOTE.Daily.1M.Forget.90Kgen

RF.Under.Daily.1M.Forget.90Kgen

RF.SMOTE.Daily.1M.Update.90K

RF.EasyEnsemble.Daily.1M.Update.90K

RF.EasyEnsemble.Daily.1M.Forget.90Kgen

0 500 1000 1500

Sum of the ranks

Best significant
FALSE
TRUE

Metric: AUC

(b) Metric: AUC

RF.Under.One.1M.Static.90K

RF.SMOTE.One.1M.Static.90K

RF.EasyEnsemble.One.1M.Static.90K

RF.Under.Daily.1M.Update.90K

RF.Under.Daily.1M.Forget.90Kgen

RF.SMOTE.Daily.1M.Forget.90Kgen

RF.EasyEnsemble.Daily.1M.Update.90K

RF.EasyEnsemble.Daily.1M.Forget.90Kgen

RF.SMOTE.Daily.1M.Update.90K

0 500 1000 1500

Sum of the ranks

Best significant
FALSE
TRUE

Metric: PrecisionRank

(c) Metric: Pk

Figure 5.8: Comparison of different balancing techniques and strategies using sum of
ranks in all batches.

Chapter 5. Learning from evolving data streams with skewed distributions 105

EasyEnsemble SMOTE Under

0

200

400

Da
ily

.1
M

.F
or

ge
t.9

0K
ge

n
Da

ily
.1

M
.U

pd
at

e.9
0K

On
e.1

M
.S

ta
tic

.9
0K

Da
ily

.1
M

.F
or

ge
t.9

0K
ge

n
Da

ily
.1

M
.U

pd
at

e.9
0K

On
e.1

M
.S

ta
tic

.9
0K

Da
ily

.1
M

.F
or

ge
t.9

0K
ge

n
Da

ily
.1

M
.U

pd
at

e.9
0K

On
e.1

M
.S

ta
tic

.9
0K

Strategy

C
om

pu
ta

tio
na

l t
im

e

algo
RF

Figure 5.9: Comparison of different balancing techniques and strategies in terms
of average prediction time (in seconds) over all batches. Experiments run on a HP
ProLiant BL465c G5 blades with 2x AMD Opteron 2.4 GHz, 4 cores each and 32 GB

DDR3 RAM.

changing distribution. The Propagate and Forget approach is significantly better than

Update for EasyEnsemble, while SMOTE gives better ranking with update.

It is worth to note that strategies which combine more than one model (M > 1) to-

gether with undersampling are not superior to the predictions with a single model and

EasyEnsemble. EasyEnsemble learns from different samples of the majority class, which

means that for each batch different concepts of the majority class are learned.

5.1.4 Discussion

The need to detect fraudulent patterns in huge amounts of data demands the adoption of

automatic methods. The scarcity of public available dataset in credit card transactions

gives little chance to the community to test and assess the impact of existing techniques

on real data. The goal of this first part of the chapter is to give some guidelines to

practitioners on how to tackle the detection problem.

Credit card fraud detection relies on the analysis of recorded transactions. However, sin-

gle transaction information is not considered sufficient to detect a fraud occurrence [11]

and the analysis has to take into consideration the cardholder behavior. To this purpose

we include cardholder information into the transaction by computing aggregated vari-

ables on historical transactions of the same card. As new credit-card transactions keep

arriving, the detection system has to process them as soon as they arrive and avoid re-

taining in memory too many old transactions. We compare three alternative approaches

Chapter 5. Learning from evolving data streams with skewed distributions 106

NNET.Under.One.1M.Static.60K
SVM.Under.One.1M.Static.60K

NNET.Under.One.1M.Static.90K
NNET.Under.One.1M.Static.120K

SVM.Under.One.1M.Static.90K
SVM.Under.One.1M.Static.120K

RF.Under.One.1M.Static.30K
RF.Under.One.1M.Static.60K

RF.SMOTE.One.1M.Static.90K
RF.Under.One.1M.Static.90K

RF.EasyEnsemble.One.1M.Static.90K
RF.Under.One.1M.Static.120K

RF.Under.15days.1M.Update.90K
RF.Under.Weekly.1M.Update.90K

RF.Under.Daily.1M.Update.90K
RF.Under.Daily.1M.Forget.90Kgen

RF.Under.Daily.30M.Forget.30Kgen
RF.Under.Daily.30M.Update.90K
RF.Under.Daily.15M.Update.90K

RF.Under.Daily.5M.Update.90K
RF.Under.Daily.15M.Forget.30Kgen
RF.Under.Daily.10M.Forget.30Kgen

RF.EasyEnsemble.Daily.1M.Update.90K
RF.SMOTE.Daily.1M.Forget.90Kgen

RF.Under.Daily.5M.Forget.30Kgen
RF.SMOTE.Daily.1M.Update.90K

RF.EasyEnsemble.Daily.1M.Forget.90Kgen

0 1000 2000 3000 4000

Sum of the ranks

Best significant
FALSE
TRUE

Metric: AP

(a) Metric: AP

SVM.Under.One.1M.Static.60K
SVM.Under.One.1M.Static.120K
SVM.Under.One.1M.Static.90K

NNET.Under.One.1M.Static.60K
NNET.Under.One.1M.Static.90K

NNET.Under.One.1M.Static.120K
RF.Under.One.1M.Static.30K
RF.Under.One.1M.Static.60K

RF.SMOTE.One.1M.Static.90K
RF.Under.One.1M.Static.90K

RF.EasyEnsemble.One.1M.Static.90K
RF.Under.Daily.30M.Forget.30Kgen

RF.Under.One.1M.Static.120K
RF.Under.Daily.15M.Forget.30Kgen

RF.Under.15days.1M.Update.90K
RF.Under.Daily.10M.Forget.30Kgen
RF.Under.Daily.5M.Forget.30Kgen
RF.Under.Weekly.1M.Update.90K

RF.SMOTE.Daily.1M.Forget.90Kgen
RF.Under.Daily.1M.Update.90K

RF.Under.Daily.30M.Update.90K
RF.Under.Daily.1M.Forget.90Kgen
RF.SMOTE.Daily.1M.Update.90K
RF.Under.Daily.15M.Update.90K

RF.Under.Daily.5M.Update.90K
RF.EasyEnsemble.Daily.1M.Update.90K

RF.EasyEnsemble.Daily.1M.Forget.90Kgen

0 1000 2000 3000 4000

Sum of the ranks

Best significant
FALSE
TRUE

Metric: AUC

(b) Metric: AUC

NNET.Under.One.1M.Static.60K
SVM.Under.One.1M.Static.60K

NNET.Under.One.1M.Static.90K
SVM.Under.One.1M.Static.90K

NNET.Under.One.1M.Static.120K
SVM.Under.One.1M.Static.120K

RF.Under.One.1M.Static.30K
RF.Under.One.1M.Static.60K

RF.SMOTE.One.1M.Static.90K
RF.Under.One.1M.Static.90K

RF.EasyEnsemble.One.1M.Static.90K
RF.Under.One.1M.Static.120K

RF.Under.15days.1M.Update.90K
RF.Under.Daily.30M.Forget.30Kgen

RF.Under.Weekly.1M.Update.90K
RF.Under.Daily.15M.Forget.30Kgen
RF.Under.Daily.10M.Forget.30Kgen

RF.Under.Daily.1M.Update.90K
RF.Under.Daily.30M.Update.90K

RF.SMOTE.Daily.1M.Forget.90Kgen
RF.Under.Daily.5M.Forget.30Kgen
RF.Under.Daily.1M.Forget.90Kgen

RF.Under.Daily.15M.Update.90K
RF.Under.Daily.5M.Update.90K

RF.EasyEnsemble.Daily.1M.Update.90K
RF.SMOTE.Daily.1M.Update.90K

RF.EasyEnsemble.Daily.1M.Forget.90Kgen

0 1000 2000 3000 4000

Sum of the ranks

Best significant
FALSE
TRUE

Metric: PrecisionRank

(c) Metric: Pk

Figure 5.10: Comparison of all strategies using sum of ranks in all batches.

Chapter 5. Learning from evolving data streams with skewed distributions 107

(Static, Update and Propagate and Forget) to study which approach is better to adopt

in unbalanced and non-stationary credit card data streams.

In the static learning setting a wide range of techniques have been proposed to deal

with unbalanced datasets. However, in online/incremental learning few attempts have

tried to deal with unbalanced data streams [52, 148, 170]. In these works, the most

common balancing technique consists in undersampling the majority class in order to

reduce class imbalance. In our work we adopted two alternatives to undersampling:

SMOTE and EasyEnsemble. In particular we show that they are both able to return

higher accuracies. Our framework can be easily extended to include other data-level

balancing techniques.

The experimental part has shown that in data streams, with standard classification

algorithms, when the distribution is skewed towards one class it is important maintaining

previous minority examples in order to learn a better separation of two classes. Instance

propagation from previous batches has the effect of increasing the minority class in the

current batch, but it is of limited impact given the small number of frauds. We tested

several ensembles and single models strategies using different number of batches for

training. In general we see that models trained on multiple batches have better accuracy

than single batch models. Multi-batches models learn on overlapping training sets, when

this happens single models strategies can beat ensembles.

Our framework addresses the problem of non-stationarity in data streams by creating a

new model every time a new batch is available. This approach has showed better results

than updating the models at a lower frequency (weekly or every 15days). Updating the

models is crucial in a non-stationary environment, this intuition is confirmed by the bad

results of the static approach. In our dataset, overall we saw Random Forest beating

Neural Network and Support Vector Machine. The final best strategy implemented the

Propagate and Forget approach together with EasyEnsemble and daily update.

5.2 Using HDDT to avoid instances propagation

The results from the previous sections have shown that, in fraud detection, it is important

to update the model as soon as new data arrives in order to adapt to possible changes

in the data distributions. In this second part of the chapter we aim to improve the

update approach presented in Section 5.1.2 by proposing Hellinger Distance Decision

Tree (HDDT) [103] as a base learner for data streams.

Several state-of-the-art techniques for unbalanced data streams have addressed the imbal-

ance problem by propagating minority observations between batches, with C4.5 decision

Chapter 5. Learning from evolving data streams with skewed distributions 108

trees being the most common algorithm used [148, 171, 175, 176]. These techniques re-

tain previous minority class instances in order to provide the algorithm balanced batches,

since the classifier is not able to learn from skewed distributions. However, when data

arrive as a continuous stream of transactions, it can become impossible to store or prop-

agate previous observations. Therefore, there is the need of tools that are able to process

streams of data as soon as they arrive, without revising old observations.

This section is based on our previous work [19], where we used HDDT [103] as a base

classifier for data streams in order to avoid instance propagation between subsequent

batches of data. We show that HDDT is able to produce superior performances than

standard C4.5 decision trees in terms of predictive accuracy, computational time and

resources needed.

In order to combat concept drift we have used a batch-ensemble model combination

based on Hellinger Distance and Information Gain as in [175]. This choice has proved to

be beneficial in the presence of changing distributions in the data. We have tested our

framework with different types of datasets: unbalanced datasets without known concept

drift, artificial datasets with known concept drift and a highly unbalanced credit card

fraud dataset with concept drift.

5.2.1 Hellinger Distance Decision Trees

Originally introduced to quantify the similarity between two probability distributions [233],

the Hellinger Distance (HD) has been recently proposed as a splitting criterion in decision

trees to improve the accuracy in unbalanced problems [103, 230]. In the context of data

streams, it has produced excellent results in detecting classifier performance degradation

due to concept drift [175, 234]. Let P1 and P2 be two discrete probability distributions

taking values φ ∈ Φ, Hellinger Distance is defined as:

HD(P1, P2) =

√∑
φ∈Φ

(√
P1(φ)−

√
P2(φ)

)2
(5.3)

Hellinger Distance has several properties:

• HD(P1, P2) = HD(P2, P1) (symmetric)

• HD(P1, P2) >= 0 (non-negative)

• HD(P1, P2) ∈ [0,
√

2]

Starting from (5.3), Cieslak and Chawla [103] derive a new decision tree splitting criteria

based on Hellinger Distance that is skew insensitive. They start from the assumption

Chapter 5. Learning from evolving data streams with skewed distributions 109

that all numerical features are partitioned into q bins, so that the resulting dataset is

made of only categorical variables. Then for each feature f , they compute the distance

between the classes over all the feature’s partitions. In the case of a binary classification

problem where f+ denotes the instances of the positive class and f− the negatives, the

Hellinger distance between f+ and f− is:

HD(f+, f−) =

√√√√√ q∑
j=1

√ |f+
j |
|f+| −

√
|f−j |
|f−|

2

(5.4)

where j defines the jth bin of feature f and |f+
j | is the number of positive instances of

feature f in the jth bin. At each node of the tree, HD(f+, f−) is computed for each

feature and then the feature with the maximum distance is used to split. The authors

of [55, 103, 235] recommend to leave the tree unpruned and to use Laplace smoothing

for obtaining posterior probabilities.2 Note that the class priors do not appear explicitly

in equation (5.4), which means that class imbalance ratio does not influence the distance

calculation.

5.2.2 Hellinger Distance as weighting ensemble strategy

In evolving data streams it is important to understand how similar two consecutive data

batches are in order to decide whether a model learned on a previous batch is still valid.

Lichtenwalter and Chawla [175] propose to employ HD as a measure of the distance

between two separate batches. Let us define as Bt the batch at time t used for training

and Bt+1 as the subsequent testing batch. First numeric features are discretized into

equal-width bins, then Hellinger distance between Bt and Bt+1 for a given feature f is

calculated as:

HD(Bft ,B
f
t+1) =

√√√√√∑
v∈f

√ |Bf=v
t |
|Bt|

−

√
|Bf=v
t+1 |
|Bt+1|

2

(5.5)

where |Bf=v
t | is the number of instances of feature f taking value v in the batch at time

t, while |Bt| is the total number of instances in the same batch.

Equation (5.5) does not account for differences in feature relevance. In general, feature

distance should have a higher weight when the feature is relevant, while a small weight

should be assigned to a weak feature. Making the assumption that feature relevance

remains stable over time, Lichtenwalter and Chawla [175] suggest using the information

gain to weight the distances. For a given feature f of a batch B, the Information Gain
2When the class distribution is unbalanced, pruning would remove those leaves with few samples

which are also the ones more likely to be associated with the minority class.

Chapter 5. Learning from evolving data streams with skewed distributions 110

is defined as the decrease in entropy H of a class c:

IG(B, f) = H(Bc)−H(Bc|Bf) (5.6)

where Bc defines the class of the observations in batch B and Bf the observations of

feature f . For the testing batch we cannot compute IG(B, f), as the labels are not

provided, therefore the feature relevance is calculated on the training batch. We can now

define a new distance function that combines Information Gain and Hellinger Distance

as:

HDIG(Bt,Bt+1, f) = HD(Bft ,B
f
t+1) ∗ (1 + IG(Bt, f)) (5.7)

HDIG(Bt,Bt+1, f) provides a relevance-weighted distance for each single feature. The

final distance between two batches is then computed by taking the average over all the

features.

AHDIG(Bt,Bt+1) =

∑
f∈Bt HDIG(Bt,Bt+1, f)

|f ∈ Bt|
(5.8)

We learn a new model as soon as a new batch is available and combine learned models into

an ensemble where the weights of the models are inversely proportional to the batches’

distances. The lower the distance between two batches the more similar is the concept

between them. In a streaming environment with concept drift we should expect good

performances on the current batch from models learned on similar concepts. With this

reasoning in mind, the ensemble weights should be higher for smaller distances. We used

the same transformation of [175], where the weight wt of a classifier trained on Bt and

that predicts on Bt+1 is defined as follows:

wt = AHDIG(Bt,Bt+1)−M (5.9)

where M represents the ensemble size.

5.2.3 Experimental assessment

Many of the data streaming frameworks for concept drift and unbalanced data use

C4.5 [102] decision tree as the base learner [148, 171, 175, 236]. In our experiments

we compare the results of C4.5 to the Hellinger Distance Decision Tree (HDDT) with

the parameters suggested in [103] (unpruned and with Laplace smoothing). The com-

parison is done using different propagation/sampling methods and model combinations

(ensemble vs. single models).

In an unbalanced data stream, for each batch/chunk, the positive class examples repre-

sent the minority of the observations. Each batch can be considered as a small unbalanced

dataset, permitting all the techniques already developed for static unbalanced datasets

Chapter 5. Learning from evolving data streams with skewed distributions 111

to be implemented. In a streaming environment, however, it is possible to collect minor-

ity observations from previous batches to combat class imbalance. For our experiments

we considered instance propagation methods that assume no sub-concepts within the

minority class. In particular we used Gao’s [171] and Lichtenwalter’s [175] propagation

methods presented in Section 3.3 and two other benchmark methods (UNDER and BL):

• SE (Gao’s [171] propagation of rare class instances and undersampling at 40%)

• BD (Lichtenwalter’s Boundary Definition [175]: propagating rare-class instances

and instances in the negative class that the current model misclassifies.)

• UNDER (Undersampling: no propagation between batches, undersampling at 40%)

• BL (Baseline: no propagation, no sampling)

The first two methods can be considered as oversampling methods since the minority

proportion in the batches is augmented. From now on, for simplicity we will call all the

previously discussed instance propagation methods sampling strategies.

For each of the previous sampling strategies we tested: i) HDIG: ensemble with weights

from (5.9) and ii) No ensemble: single classifier. In the first case, an ensemble is built

combining all models learned with weights given by (5.9). In the second case, we use the

model learned in the current batch to predict the incoming batch. This option has the

advantage of being faster as no models are stored during the learning phase.

In all our experiments we reported the results in terms of AUC. The framework was

written in Java and we used the Weka [237] implementation of C4.5 and HDDT. We

used UCI datasets [1] to first study the unbalanced problem without worrying about

concept drift. These datasets are not inherently sequential and exhibit no concept drift;

we render them as data streams by randomizing the order of instances and processing

them in batches as in [175]. Then we used the MOA [238] framework to generate some

artificial datasets with drifting features to test the behavior of the algorithms under

concept drift. Finally we used a real-world credit card dataset which is highly unbalanced

and whose frauds are changing in type and distribution. This dataset contains credit

card transactions from online payment between the 5th of September 2013 and the 25th

of September 2013, where only 0.15% of the transactions are fraudulent.

We first tested the different sampling strategies using HDDT and C4.5. On the left

side of Figure 5.11 we see the results where HDIG distance (discussed in Section 5.2.2)

is used to weight the models from different batches according to (5.9). On the right

are the results where only the model of the current batch is used for prediction. The

columns indicate the batch mean AUC for each strategy averaged over all UCI datasets.

Chapter 5. Learning from evolving data streams with skewed distributions 112

Table 5.3: Datasets

Dataset Source # Instances # Features Imbalance Ratio
Adult UCI 48,842 14 3.2:1
can UCI 443,872 9 52.1:1

compustat UCI 13,657 20 27.5:1
covtype UCI 38,500 10 13.0:1
football UCI 4,288 13 1.7:1
ozone-8h UCI 2,534 72 14.8:1
wrds UCI 99,200 41 1.0:1
text UCI 11,162 11465 14.7:1

DriftedLED MOA 1,000,000 25 9.0:1
DriftedRBF MOA 1,000,000 11 1.02:1
DriftedWave MOA 1,000,000 41 2.02:1
Creditcard FRAUD 3,143,423 36 658.8:1

This means that for each dataset we computed the mean AUC over all batches and then

averaged the results between all datasets. In general we notice that HDDT is able to

HDIG No Ensemble

0.00

0.25

0.50

0.75

BD BL SE UNDER BD BL SE UNDER

Sampling

AU
RO

C Algorithm
C4.5
HDDT

Figure 5.11: Batch average results in terms of AUC (higher is better) using different
sampling strategies and batch-ensemble weighting methods with C4.5 and HDDT over

all UCI datasets.

outperform C4.5. For each sampling method we see that the ensembles counterpart of

the single models have higher accuracy.

In Figure 5.12 we display the average computational time. As expected, when a single

classifier is used the framework is much faster, but it comes at the cost of lower accuracy

(see Figure 5.11). When undersampling is used in the framework we have the smallest

computational time, as it uses a subset of the observations in each batch and no instances

are propagated between batches.

Figure 5.13 shows the results for the datasets with concept drift generated using the

MOA framework. HDIG-based ensembles return better results than a single classifier

and HDDT again gives better accuracy than C4.5.

Chapter 5. Learning from evolving data streams with skewed distributions 113

HDIG No Ensemble

0

1000

2000

3000

4000

BD BL SE UNDER BD BL SE UNDER

Sampling

TI
M

E Algorithm
C4.5
HDDT

Figure 5.12: Batch average results in terms of computational time (lower is better)
using different sampling strategies and batch-ensemble weighting methods with C4.5

and HDDT over all UCI datasets.

HDIG No Ensemble

0.0

0.2

0.4

0.6

0.8

BD BL SE UNDER BD BL SE UNDER

Sampling

AU
RO

C Algorithm
C4.5
HDDT

Figure 5.13: Batch average results in terms of computational AUC (higher is better)
using different sampling strategies and batch-ensemble weighting methods with C4.5

and HDDT over all drifting MOA datasets.

Figure 5.14 displays the results on the Creditcard dataset. This dataset is a good example

of an unbalanced data stream with concept drift. Once again HDDT is always better than

C4.5, however the increase in performance given by the ensemble is less important than

the one registered with the UCI datasets. From Figure 5.14, it is hard to discriminate

the best strategy, as many of them have comparable results.

Figure 5.15 shows the sum of the ranks for each strategy over all the batches. As explained

in Section 5.1.3, for each batch, we assign the highest rank to the most accurate strategy

and then sum the ranks over all batches. The higher the sum, the higher the number of

times one strategy is superior to the others.

The strategy with the highest sum of ranks (BL_HDIG_HDDT) combines BL with

HDIG ensembles of HDDTs. BL method leaves the batches unbalanced, which means

that the best strategy is actually the one avoiding instance propagation/sampling. A

Chapter 5. Learning from evolving data streams with skewed distributions 114

HDIG No Ensemble

0.00

0.25

0.50

0.75

1.00

BD BL SE UNDER BD BL SE UNDER

Sampling

AU
RO

C Algorithm
C4.5
HDDT

Figure 5.14: Batch average results in terms of AUC (higher is better) using different
sampling strategies and batch-ensemble weighting methods with C4.5 and HDDT over

the Credit Card dataset.

paired t-test on the ranks was then used to compare each strategy with the best. Based

on this test, we saw that the strategy with the second-highest sum of ranks (UN-

DER_HDIG_HDDT) is not significantly worse than the first. Compared to the first,

this strategy implements undersampling at each batch instead of BL. Figure 5.15 con-

firms that HDDT is better than C4.5. The C4.5 implementation of the winning strategy

(BL_HDIG_C4.5) is significantly worse than the best (BL_HDIG_HDDT). The same

happens for the second best ranking strategy (UNDER_HDIG_HDDT ranks higher

than UNDER_HDIG_C4.5).

BL_C4.5
SE_C4.5
BD_C4.5

UNDER_C4.5
BL_HDIG_C4.5

SE_HDDT
SE_HDIG_C4.5
UNDER_HDDT

BL_HDDT
BD_HDIG_C4.5

BD_HDDT
BD_HDIG_HDDT

UNDER_HDIG_C4.5
SE_HDIG_HDDT

UNDER_HDIG_HDDT
BL_HDIG_HDDT

0 100 200

Sum of the ranks

Best significant
FALSE
TRUE

AUROC

Figure 5.15: Comparison of different strategies using the sum of ranks in all batches
for the Credit Card dataset in terms of AUC. In gray are the strategies that are not

significantly worse than the best having the highest sum of ranks.

5.2.4 Discussion

To our knowledge, our work was the first to evaluate the use of the HDDT tree algorithm

for streaming data. Many of the state-of-the-art techniques use the C4.5 algorithm

Chapter 5. Learning from evolving data streams with skewed distributions 115

combined with sampling or instance propagation to balance the batches before training.

We have shown that when used in data streams, HDDT without sampling typically leads

to better results than C4.5 with sampling. Thus, HDDT can offer better performance

than C4.5, while actually removing sampling from the process.

The removal of the propagation/sampling step in the learning process has several benefits:

• It allows a single-pass approach (the observations are processed as soon as they

arrive, avoiding several passes throughout the batches for instance propagation).

• It reduces the computational cost/resources needed (this is important since with

massive amounts of data it may no longer be possible to store/retrieve old in-

stances).

• It avoids the problem of finding previous minority instances from the same concept

(in the case of a new concept in the minority class, it may not be possible to find

previous observations to propagate).

We have used artificial datasets to test how different strategies work under concept drift.

The use of HDIG as an ensemble weighting strategy has increased the performances of

the single classifiers, not only in artificial datasets with known drift (MOA datasets), but

even in datasets whose distribution is assumed to be more or less stable (UCI datasets).

Finally, we tested our framework on a proprietary dataset containing credit card trans-

actions from online payment. This is a particularly interesting dataset, as it is extremely

unbalanced and exhibits concept drift within the minority class. HDDT performs very

well when combined with BL (no sampling) and undersampling. An important feature of

these basic sampling strategies is the fact that frameworks implementing them are much

faster (see Figure 5.12) since no observations are stored from previous batches. When

these two sampling strategies give comparable results, the practitioner could prefer un-

dersampling as it is more memory efficient since it uses a reduced part of the batch for

training. By using undersampling, however, a lot of instances from the majority class

are not considered.

5.3 Conclusion

In the first part of the chapter (Section 5.1) we have first formalized the problem of fraud

detection and then presented three different approaches for unbalanced data streams. We

have compared a static approach against two dynamic ways to learn in the presence of

non-stationarity and unbalanced distribution. From our experimental assessment the

Chapter 5. Learning from evolving data streams with skewed distributions 116

static approach is consistently the worst in terms of predictive accuracy, a strong signal

that the data stream is evolving and updating the detection strategy is beneficial. From

the experiments it emerges also that it is important to use strategies to rebalance the

batches of the stream before training a classification algorithm, either by resampling (e.g.

undersampling, SMOTE) or by propagating instances from the minority class along the

stream.

However, it is not always possible to store or revisit previous transactions in high fre-

quency data streams. For this reason, in the second part of the chapter (Section 5.2)

we have presented a classification algorithm (HDDT) optimized for unbalanced datasets

and used it in a data stream environment in order to avoid the propagation of instances

between batches. HDDT showed good performances without the need of rebalancing the

two classes (e.g. no undersampling required) and proved to perform better than standard

decision trees (e.g. C4.5).

Chapter 6

A real-world Fraud Detection

Systems: Concept Drift Adaptation

with Alert-Feedback Interaction

Part of the results presented in this chapter have been published in the following paper:

• Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen, Cesare Alippi, and Gian-

luca Bontempi. Credit Card Fraud Detection and Concept-Drift Adaptation with

Delayed Supervised Information. In Neural Networks (IJCNN), The 2015 Interna-

tional Joint Conference on. IEEE, 2015.

Most FDSs monitor streams of credit card transactions by means of classifiers returning

alerts for the riskiest payments. Fraud detection differs from conventional classification

because, in a first phase, human investigators who have time to assess only a reduced

number of alerts providing a small set of supervised samples denoted as feedbacks. Labels

of the vast majority of transactions are made available only several days later, when

customers have possibly reported unauthorized transactions. These transactions define

an additional set of supervised samples called delayed samples. The delay in obtaining

accurate labels and the interaction between alerts and supervised information has to be

carefully taken into consideration when learning in a concept-drifting environment.

In this chapter we address a realistic fraud detection setting and we show that feedbacks

and delayed samples have to be handled separately. We design two prototypes of FDS

on the basis of an ensemble and a sliding-window approach (Section 6.3.1) and we show

that the winning strategy consists in training two separate classifiers (on feedbacks and

delayed samples, respectively), and then aggregating the outcomes. Experiments on large

117

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 118

datasets show that the alert precision, which is the primary concern of investigators, can

substantially be improved by the proposed approach.

In order to obtain precise alerts, feedbacks samples have to receive larger weights than

non-alerted transactions and methods that diminish their role in the learning process

lead to loss of predictive accuracy.

6.1 Realistic working conditions

As discussed in Section 3.4, FDSs typically relay on classification algorithms to iden-

tify transactions at risk of fraud that generate alerts, but are not able to integrate the

feedback that investigators provide on the alerts raised by the FDS. As a consequence,

most FDSs available in the literature (e.g. [11, 180, 181]) ignore Alert-Feedback Interac-

tion (AFI), making the unrealistic assumption that all transactions are correctly labeled

by a supervisor.

With a limited number of investigators only a restricted quantity of alerts can be checked,

which means a small set of labeled transactions returned as feedback. Non-alerted trans-

actions are a large set of unsupervised samples that can be either fraud or genuine.

Additional labeled observations are obtained by means of cardholders that report unau-

thorized transactions [20, 61]. The number of customers reporting frauds not detected by

the FDS is usually small and hard to model since cardholders have different habits when

it comes to check the transcript of credit card transactions given by the bank. Then,

every day in addiction to investigators’ feedback, we have historical supervised samples

for which the labels can safely assumed to be correct after some time. In summary,

we can distinguish between two types of supervised samples: i) feedbacks provided by

investigators and ii) historical transactions whose labels are received with a large delay.

We will call the latter delayed samples to stress the fact that their label is available only

after a while.

In this formulation we assume that the FDS is updated everyday at midnight and the

detection model is then applied to all the transactions occurring the following day. Feed-

backs of alerted transactions are given by investigators during the day and by the end of

the day we have all the feedbacks for the alerts generated by the FDS. In these settings,

the ML algorithm learns from the batch of feedbacks available at the end of the day

and is not trained from each transaction incrementally, i.e. the algorithm is trained only

when a sufficient batch of supervised samples is provided.

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 119

6.2 Fraud Detection with Alert-Feedback Interaction

As in Section 5.1.1, we formulate the fraud detection problem as a binary classification

task where each transaction is associated to a feature vector x and a label y. Features

in x could be the transaction amount, the shop id, the card id, the timestamp or the

country, as well as features extracted from the customer profile. Because of the time-

varying nature of the transactions’ stream, typically, FDSs train (or update) a classifier

Kt every day (t). In general, FDSs receive a continuous stream of transactions and they

have to score each transaction online (i.e. in few milliseconds), however, the classifier

is updated once a day, to gather a sufficient amount of supervised transactions. The

set of transactions arriving at day t, denoted as Bt, is processed by the classifier Kt−1

trained in the previous day (t − 1). The k riskiest transactions of Bt are reported to

the investigators, where k > 0 represents the number of alerts the investigators are able

to validate. The reported alerts At are determined by ranking the transactions of Bt
according to the posterior probability P̂Kt−1(+|x), which is the estimate, returned by

Kt−1, of the probability for x to be a fraud. More formally, At is defined as:

At = {x ∈ Bt s.t. r(x) ≤ k} (6.1)

where r(x) ∈ {1, . . . , |Bt|} is the rank of the transaction x according to PKt−1(+|x). In

other terms, the transaction with the highest probability ranks first (r(x) = 1) and the

one with the lowest probability ranks last (r(x) = |Bt|).

Once the alerts At are generated, investigators provide feedbacks Ft, defining a set of k

supervised couples: Ft = {(x, y), x ∈ At}, which represents the most recent information

that the FDS receives. At day t, we also receive the labels of all the transactions processed

at day t− δ, providing a set of delayed supervised couples Dt−δ = {(x, y), x ∈ Bt−δ}, see
Figure 6.1. Though investigators have not personally checked these transactions, they are

by default assumed to be genuine after δ days, as far as customers do not report frauds.1

As a result, the labels of all the transactions older than δ days are provided at day t.

The problem of receiving delayed labels is also referred to as verification latency [239].

Feedbacks Ft can either refer to frauds (correct alerts) or genuine transactions (false

alerts): correct alerts are then True Positives (TPs), while false alerts are FPs. Similarly,

Dt−δ contains both fraud (false negative) and genuine transactions (true negatives),

although the vast majority of transactions belongs to the genuine class.

The goal of a FDS is to return accurate alerts: when too many FPs are reported, in-

vestigators might decide to ignore forthcoming alerts. Thus, what actually matters is
1 Investigators typically assume that frauds missed by the FDS are reported by customers themselves

(e.g. after having checked their credit card balance), within a maximum time-interval of δ days.

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 120

t −1 t t +1

Feedbacks)Delayed)Samples)

t −δ

All)fraudulent)transac6ons)of)a)day)

All)genuine)transac6ons)of)a)day)

Fraudulent)transac6ons)in)the)feedback)
Genuine)transac6ons)in)the)feedback)

FtFt�1Ft�3Ft�4Ft�5Ft�6 Ft�2Dt�7Dt�8 Bt+1

Figure 6.1: The supervised samples available at day t include: i) feedbacks of the
first δ days and ii) delayed couples occurred before the δth day. In this Figure we set

δ = 7.

to achieve the highest precision in At. As shown in Section 2.2.3, this precision can be

measured by the quantity

Pk(t) =
|TPk(t)|

k
(6.2)

where TPk(t) = {(x, y) ∈ At s.t. y = +}.2 Pk(t) is then the proportion of frauds in the

top k transactions with the highest estimated likelihood of being frauds [64].

6.3 Learning strategy

The fraud detection scenario described in Section 6.2 suggests that learning from feed-

backs Ft is a different problem than learning from delayed samples in Dt−δ. The first

difference is evident: Ft provides recent, up-to-date, information while Dt−δ might be

already obsolete once it is available. The second difference concerns the percentage of

frauds in Ft and Dt−δ. While it is clear that the class distribution in Dt−δ is always

skewed towards the genuine class, the number of frauds in Ft actually depends on the

performance of classifier Kt−1: when Pk(t) = 0.5 we have feedbacks Ft with a balanced

distribution, while for Pk(t) > 0.5 we have more frauds than genuine transactions in

Ft. The third, and probably the most subtle, difference is that supervised couples in Ft
are not independently drawn, but are instead selected by Kt−1 among those transaction

that are more likely to be frauds. As such, a classifier trained on Ft learns how to label

transactions that are most likely to be fraudulent, and might be in principle not precise

on the vast majority of genuine transactions. Therefore, beside the fact that Ft and Dt−δ

might require different resampling methods, Ft and Dt−δ are also representative of two
2Note that in this formulation |Ft| = |At| and |At| = k.

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 121

different classification problems and, as such, they have to be separately handled. In

the following, two traditional fraud detection approaches are presented (Section 6.3.1),

and further developed to handle separately feedbacks and delayed supervised couples

(Section 6.3.2). Experiments in Section 6.5 show that this is a valuable strategy, which

substantially improves the alert precision.

6.3.1 Conventional Classification Approaches in FDS

During the FDS operation, both feedbacks Ft and delayed supervised samples Dt−δ can be

exploited for training or updating the classifier Kt. In particular, we train the FDS con-

sidering the feedbacks from the last δ days (i.e. {Ft,Ft−1, . . . ,Ft−(δ−1)}) and the delayed

supervised pairs from the lastM days before the feedbacks, i.e. {Dt−δ, . . . ,Dt−(δ+M−1)}.

In the following we present two conventional solutions for concept-drift adaptation [171,

182] built upon a classification algorithm proving an estimate of the probability P(+|x).

• Wt: a sliding window classifier that is daily updated over the supervised samples

received in the last δ +M days, i.e. {Ft, . . . ,Ft−(δ−1),Dt−δ, . . . ,Dt−(δ+M−1)} (see

Figure 6.2(a)).

• Et: an ensemble of classifiers {M1,M2, . . . ,MM ,F }, where Mi is trained on

Dt−(δ+i−1) and Ft is trained on all the feedbacks of the last δ days {Ft, . . . ,Ft−(δ−1)}

(see Figure 6.2(b)). The posterior probability PEt(+|x) is estimated by averaging

the posterior probabilities of the individual classifiers, PMi(+|x), i = 1, . . . ,M and

PFt(+|x). Note that we use a single classifier to learn from the set of feedbacks

since their size is typically small. Everyday, Ft is re-trained considering the new

feedbacks, while a new classifier is trained on the new delayed supervised couples

provided (Dt−δ) and included in the ensemble. At the same time, the most obsolete

classifier is removed from the ensemble.

These solutions implement two basic approaches for handling concept drift that can be

further improved by adopting dynamic sliding windows or adaptive ensemble sizes [240].

6.3.2 Separating delayed Supervised Samples from Feedbacks

As explained in Section 6.3, our intuition is that feedbacks and delayed transactions

have to be treated separately. Therefore, at day t we train a specific classifier Ft on

the feedbacks of the last δ days {Ft, . . . ,Ft−(δ−1)} and denote by PFt(+|x) its posterior

probability. We then train a second classifier on the delayed samples by means either of

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 122

FtFt�1Ft�3Ft�4Ft�5Ft�6 Ft�2Dt�7Dt�8

Wt

FtWD
t

AW
t

(a) Sliding window strategies

FtFt�1Ft�3Ft�4Ft�5Ft�6 Ft�2Dt�7Dt�8

Ft
M1M2

ED
t AE

t

Et

M1M2 Ft

(b) Ensemble strategies

Figure 6.2: Learning strategies for feedbacks and delayed transactions occurring in
the two days (M = 2) before the feedbacks (δ = 7).

a sliding-window or an ensemble mechanism (see Figure 6.2): Let us denote by WD
t the

classifier trained on a sliding window of delayed samples {Dt−δ, . . . ,Dt−(δ+M−1)} and

by PWD
t

(+|x) its posterior probabilities, while EDt denotes the ensemble of M classi-

fiers {M1,M2, . . . ,MM} where each individual classifier Mi is trained on Dt−δ−i, i =

1, . . . ,M . Then, the posterior probability PEDt (+|x) is obtained by averaging the poste-

rior probabilities of the individual classifiers.

Both “delayed” classifiers WD
t and EDt have to be aggregated with Ft to exploit informa-

tion provided by feedbacks. However, to raise alerts, we are not interested in aggregation

methods at the label level but rather at the posterior probability level. For the sake of

simplicity we adopt the most straightforward approach based on a linear combination of

the posterior probabilities of the two classifiers (Ft and one among WD
t and EDt). Let us

denote by AEt the aggregation of Ft and EDt where PAEt (+|x) is defined as:

PAEt (+|x) = αtPFt(+|x) + (1− αt)PEDt (+|x) (6.3)

A similar definition holds for AWt , the aggregation of Ft and WD
t :

PAWt (+|x) = αtPFt(+|x) + (1− αt)PWD
t

(+|x) (6.4)

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 123

Note that Ft andWD
t jointly use the training set ofWt and, similarly, the two classifiers

Ft and EDt jointly use the same training samples of Et (see Figure 6.2).

Feedbacks represent a small portion of the supervised samples used for training classifier

Wt, hence they have little influence on PWt(+|x). Similarly, Ft represents one of the

classifiers of the ensemble Et, hence feedbacks influence PEt(+|x) only for 1
M+1 , while

delayed samples for M
M+1 . By aggregating according to (6.3) and (6.4) we are able to

give a larger weight to feedbacks via the parameter αt, e.g. a larger αt give greater

influence to Ft in the aggregated posteriori probability PAWt and PAEt .

Experiments in Section 6.5 show that handling feedbacks separately from delayed su-

pervised samples provides much more precise alerts, and by aggregating with αt = 0.5

we are able to outperform standard FDSs trained on feedbacks and delayed supervised

samples pooled together (like Wt and Et).3

Table 6.1 summarizes the classifiers used in this chapter.

Table 6.1: Classifiers used in the chapter.

Ft A feedback classifier daily updated using feedback from t to t− δ.
Wt A sliding window classifier daily updated using δ +M days.
WD
t A delayed sliding window classifier daily updated using M days.
AWt An aggregation of WD

t and Ft according to (6.3).
Et An ensemble of classifiers daily updated using δ +M days.
EDt A delayed ensemble of classifiers daily updated using M days.
Mi ith member of an ensemble of classifiers.
AEt An aggregation of EDt and Ft according to (6.4).
αt Weight assigned to Ft in aggregations AEt and AWt .

6.3.3 Two Specific FDSs based on Random Forest

The FDSs presented in the previous section has been implement using a Random For-

est [43] with 100 trees. In particular, forWD
t ,Wt and for allMi, i = 1, . . . ,M , we used a

Balanced Random Forest (BRF) [50] where each tree is trained on a balanced bootstrap

sample, obtained by randomly undersampling the majority class while preserving all the

minority class samples in the corresponding training set. Each tree of BRF receives a

different random sample of the genuine transactions and the same samples from the fraud

class in the training set, yielding a balanced training set. This undersampling strategy

allows one to learn trees with balanced distribution and to exploit many subsets of the

majority class. At the same time, this resampling method reduces training time. A
3In the specific case of the ensemble approach and αt = 0.5, the aggregation of Ft and EDt (AEt)

corresponds to assigning a larger weight to Ft in Et.

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 124

drawback of undersampling is that we are potentially removing relevant training sam-

ples form the dataset, however this problem is mitigated by the fact that we learn 100

different trees. Using undersampling allows us to rebalance the batches without propa-

gating minority class observations along the streams as in [171]. In contrast, for Ft that
is trained on feedbacks we adopted a standard RF where no resampling is performed.

6.4 Selection bias and Alert-Feedback Interaction

In this section we discuss the problem of training a classifier on feedback samples. A

conventional assumption in ML is that the learning algorithm receives training and test

samples drawn according to the same distribution. However, this assumption does not

hold in our case, since Alert-Feedback Interaction (AFI) provides a recent biased subset of

supervised transactions (Ft), which is not representative of all the transactions occurring

in a day (Bt). As a consequence, classifier Ft learns under a selection bias governed by

AFI.

Let us define a random selection variable s that associates to each sample in Bt value 1 if

the transaction is in Ft and 0 otherwise. When training a classifier Ft on Ft instead of Bt
we get an estimate of PFt(+|x, s = 1) rather than PFt(+|x). As shown in Section 3.2.1

(see (3.1)), a standard solution to SSB consist into training a weight-sensitive algorithm,

where a training sample (x, y) receives as weight w:

w =
P(s = 1)

P(s = 1|x, y)
(6.5)

Alternatively, if the learning algorithm is not able to accept weighted training samples,

it suffices to resample the training set with replacement and probability equal to the

weights [133].

In equation (6.5), P(s = 1) can be easily estimate by calculating the proportion of

feedbacks in a day. However, P(s = 1|x, y) is not easy to estimate since we know the

label of only few feedback samples. An assumption often made in literature [135–138] is

that the selection variable s is independent of the class y given the input x (covariate

shift): P(s|y, x) = P(s|x). Then equation (6.5) becomes:

w =
P(s = 1)

P(s = 1|x)
(6.6)

We can get an estimate of P(s = 1|x) by building a classifier that predicts s as the class

label, which is a classifier that learn to discriminate feedbacks and non-feedbacks sample

between t and t− δ.

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 125

The problem with all these corrections is that, since feedbacks are selected according

to P(+|x), we have that P(s = 1|x) and P(+|x) are highly correlated. Moreover, we

expect P(s = 1|x) and P(s = 1|x, y) to be larger for feedbacks samples, leading to

smaller weights in (6.5) and (6.6). This means that importance weighting techniques

are expected to lower the influence of feedbacks in the learning process. As shown in

our previous work [20], strategies reducing the weight of feedback samples are often

returning less precise alerts (lower Pk). For this reason, re-weighting is not expected

to bring improvement with AFI. Additionally, the covariate shift assumption is hard

to defend, because the percentage of fraud in the feedback is much higher than the one

registered in typical day, i.e. the probability of selecting a feedback cannot be said to be

independent of the class of the transaction (P(s|y, x) 6= P(s|x)).

6.5 Experiments

In this work we used three large datasets containing credit card transactions made by

European cardholders via on-line websites. The first, referred to as 2013, has transac-

tions from September 2013 to January 2014, the second one, referred to as 2014, has

transactions from August to December 2014 and the third, referred to as 2015, from

January 2015 to end of May 2015. In Table 6.2 we have reported additional information

about the data. The datasets contain both original and aggregated features calculated as

shown in Section 5.1.3. It is easy to notice that these datasets are highly unbalanced, i.e.

frauds account for about 0.2% of all transactions. The number of frauds is also varying

significantly over the year (see Figure 6.3).

Table 6.2: Datasets

Id Start day End day # Days # Transactions # Features % Fraud
2013 2013-09-05 2014-01-18 136 21’830’330 51 0.19%
2014 2014-08-05 2014-12-31 148 27’113’187 51 0.22%
2015 2015-01-05 2015-05-31 146 27’651’197 51 0.26%

In the first experiments we process all datasets to assess the importance of separating

feedbacks from delayed supervised samples. Though we expect these streams to be

affected by Concept Drift (CD), since they span a quite long time range, we do not have

any ground truth to investigate the reaction to CD of the proposed FDS. To this purpose,

we design the second experiment where we juxtapose batches of transactions acquired in

different times of the year to artificially introduce CD in a specific day in the transaction

stream.

In both experiments we test FDSs built on Random Forests as presented in Section 6.3.3.

We considered both the sliding window and ensemble approaches and compared the

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 126

2013 2014 2015

●

●
●●●

●
●

●

●●
●
●

●

●●
●

●

●

●

●●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●
●●
●
●●●

●●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●
●

●

●

●

●

●

●
●
●

●

●●●
●
●

●

●●
●

●
●

●
●
●●

●
●

●

●

●

●

●
●●●

●
●
●
●
●●
●●
●●●

●
●●
●●
●●●

●
●
●

●

●

●
●
●●●

●

●

●

●●
●
●

●●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●

●●

●●

●
●

●

●

●
●
●

●

●●

●

●
●●●●

●●
●

●
●

●
●

●

●●
●
●

●●

●

●

●
●●●

●●

●
●
●

●

●
●●
●●
●●
●
●●●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●●

●●
●

●

●
●

●

●
●

●●●
●
●

●●
●●
●●●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●
●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●

●
●
●●
●
●
●

●

●
●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●
●

●

●●
●●●

●

●
●

●
●
●
●

●

●

●
●●

●

●
●●

●●

●

●

●

●
●

●

●

●●
●●●

●
●
●

●

●

●
●

●●
●

●

●

●

●

●

●●

●
●
●

●

●

●
●
●

●

●●●
●

●

0

500

1000

1500

2000

2500

Sep Oct Nov Dec Jan Aug Sep Oct Nov Dec JanJan Feb Mar Apr May Jun

 Day

N
um

be
r

of
 fr

au
ds

Figure 6.3: Number of daily frauds for datasets in Table 6.2.

accuracy of pooling feedbacks and delayed supervised samples together (Wt and Et)
against learning separate classifiers (Ft, WD

t and EDt) that are then aggregated (AWt
and AEt). Let us recall that each tested classifier raises alerts differently. This means

that also the feedbacks returned to the classifiers might be different. This has to be

considered when comparing several classifiers, for instance, when comparing Wt and

WD
t , the supervised information provided is not the same because, in the first case alerts

are raised by Wt while in the second by WD
t .

At first we assume that after δ = 7 days all the transactions labels are provided (delayed

supervised information) and that we have a budget of k = 100 alerts that can be checked

by the investigators: thus, Ft is trained on a window of 700 feedbacks. Then in the

experiments of Section 6.5.3 we use δ = 15 and we allow Ft to be trained on a larger

number of feedbacks per day (|Ft| ≥ 100) to see how these parameters influence the

performance of the detection. In the same section we test some SSB correction techniques

to see whether they can actually improve the performance of Ft.

Experiments from Section 6.5.4 compare the proposed classifiers’ aggregationAWt against

a classifier Rt trained on all recent transactions that makes the unrealistic assumption

that all daily transactions can be checked by investigators. This experiment aims to com-

pare a classifier Rt ignoring AFI with the aggregation proposed using different accuracy

measures, Pk, AUC and AP.

In Section 6.5.5 we run experiments to study whether adapting the weight αt given to

Ft in (6.3) and (6.4) has an impact on the performances of AWt and AEt . It emerges that

combining classifiers with a standard mean (αt = 0.5 for all the data stream) is often

competitive to more complicated weighting strategies.

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 127

For all experiments, we set M = 16 so that WD
t is trained on a window of 16 days

and EDt (resp. Et) is an ensemble of 16 (resp. 17) classifiers.4 Each experiments is

repeated 10 times to reduce the results’ variability due to bootstrapping of the training

sets in the random forests. The FDS performance is assessed by means of the average Pk
over all the batches (the higher the better) and use a paired t-test to assess whether the

performance gaps between each pair of tested classifiers is significant or not. We compute

the paired t-test on the ranks resulting from the Friedman test [232] as recommended by

Demsar [241] (see Section 5.1.3).

6.5.1 Separating feedbacks from delayed supervised samples

In order to evaluate the benefit of learning on feedbacks and delayed samples separately,

we first compare the performance of classifier Wt against Ft, WD
t and the aggregation

AWt . The aggregations AWt and AEt are computed using αt = 0.5 over all the data

stream. In addition to the classifiers presented in Section 6.3, we consider also a static

classifier called St that is trained once on the first M day and never updated. In absence

of concept drift we expect St to perform similarly to WD
t (WD

t is just St updated every

day). Table 6.3(a) shows the average Pk over all the batches for the three datasets

separately.

Table 6.3: Average Pk for the sliding and ensemble strategies (δ = 7, M = 16 and
αt = 0.5).

(a) sliding approach

dataset classifier mean sd
2013 F 0.62 0.25
2013 WD 0.54 0.22
2013 W 0.57 0.23
2013 S 0.48 0.25
2013 AW 0.70 0.21
2014 F 0.59 0.29
2014 WD 0.58 0.26
2014 W 0.60 0.26
2014 S 0.54 0.24
2014 AW 0.69 0.24
2015 F 0.67 0.25
2015 WD 0.66 0.21
2015 W 0.68 0.21
2015 S 0.58 0.23
2015 AW 0.75 0.20

(b) ensemble approach

dataset classifier mean sd
2013 F 0.62 0.25
2013 ED 0.50 0.24
2013 E 0.58 0.24
2013 S 0.47 0.24
2013 AE 0.69 0.21
2014 F 0.60 0.30
2014 ED 0.49 0.28
2014 E 0.56 0.27
2014 S 0.53 0.25
2014 AE 0.68 0.26
2015 F 0.66 0.25
2015 ED 0.61 0.19
2015 E 0.67 0.20
2015 S 0.58 0.23
2015 AE 0.74 0.20

In all datasets, AWt outperforms the other FDSs in terms of Pk. The barplots of Figure

6.5 show the sum of ranks for each classifier and the results of the paired t-tests. Figure

6.5 indicates that in all datasets (Figures 6.5(a), 6.5(b) and 6.5(c)) AWt is significantly
4We ran several experiments with M = 1, 8, 16, 24 and found M = 16 as a good trade-off between

performance, computational load, and the number of days that can be used for testing in each stream.

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 128

better than all the other classifiers. Ft achieves higher average Pk and higher sum of

ranks than WD
t and Wt: this confirms that feedbacks are very important to increase Pk.

Figure 6.4(a) displays the value of Pk for AWt and Wt in each day, averaged in a neigh-

borhood of 15 days. After December there is a substantial performance drop, which can

be seen as a CD due to a change in cardholder behaviour in the period before and after

Christmas. However, AWt dominates Wt along the whole 2013 dataset, which confirms

that a classifier AWt that learns on feedbacks and delayed transactions separately outper-

forms a classifierWt trained on all the supervised information pooled together (feedbacks

and delayed transactions).

Table 6.3(b) and Figures 6.5(d), 6.5(e) and 6.5(f) confirm this claim also when the

FDS implements an ensemble of classifiers.5 In particular, Figure 6.4(b) displays the

smoothed average Pk of classifiers AEt and Et. For the whole dataset AEt has better Pk
than Et.

W
AW

(a) Sliding window strategies

AE

E

(b) Ensemble strategies

Figure 6.4: Average Pk per day (the higher the better) for classifiers on dataset 2013
smoothed using moving average of 15 days. In the sliding window approach classifier
AWt has higher Pk than Wt, and in the ensemble approach AEt is superior than Et.

6.5.2 Artificial dataset with Concept Drift

The rationale of this experiment is to test the reaction of the proposed FDS to abrupt

CD. To this purpose, in this section we artificially introduce an abrupt CD in specific

days by juxtaposing transactions acquired in different times of the year. Table 6.4 reports

the three datasets that have been generated by concatenating batches of the dataset 2013

with batches from 2014. The number of days after CD is set such that the FDS has the

time to forget the information from the previous concept.

Table 6.5(a) shows the values of Pk averaged over all the batches in the month before the

change for the sliding window approach, while Table 6.5(b) shows Pk in the month after

the CD. AWt reports the highest Pk before and after CD. Similar results are obtained with
5Please note that classifier Ft returns different results between 6.3(a) and 6.3(b) because of the

stochastic nature of RF.

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 129

SWDWFAW

(a) Sliding window strate-
gies on dataset 2013

SWDFWAW

(b) Sliding window strate-
gies on dataset 2014

SWDFWAW

(c) Sliding window strate-
gies on dataset 2015

EDSEFAE

(d) Ensemble strategies on
dataset 2013

EDSEFAE

(e) Ensemble strategies on
dataset 2014

SE EDFAE

(f) Ensemble strategies on
dataset 2015

Figure 6.5: Comparison of classification strategies using sum of ranks in all batches
and paired t-test based upon on the ranks of each batch (classifiers having the same
label on their bar are not significantly different with a confidence level of 0.95). In all
datasets (2013, 2014 and 2015), classifiers aggregation AWt and AEt are significantly

better that the others.

Table 6.4: Datasets with Artificially Introduced CD

Id Start 2013 End 2013 Start 2014 End 2014
CD1 2013-09-05 2013-09-30 2014-08-05 2014-08-31
CD2 2013-10-01 2013-10-31 2014-09-01 2014-09-30
CD3 2013-11-01 2013-11-30 2014-08-05 2014-08-31

Table 6.5: Average Pk in the month before and after CD for the sliding window

(a) Before CD
CD1 CD2 CD3

classifier mean sd mean sd mean sd
F 0.411 0.142 0.754 0.270 0.690 0.252
WD 0.291 0.129 0.757 0.265 0.622 0.228
W 0.332 0.215 0.758 0.261 0.640 0.227
AW 0.598 0.192 0.788 0.261 0.768 0.221

(b) After CD
CD1 CD2 CD3

classifier mean sd mean sd mean sd
F 0.635 0.279 0.511 0.224 0.599 0.271
WD 0.536 0.335 0.374 0.218 0.515 0.331
W 0.570 0.309 0.391 0.213 0.546 0.319
AW 0.714 0.250 0.594 0.210 0.675 0.244

the ensemble approach (Tables 6.6(a), 6.6(b)). In all these experiments, AEt is also faster

than standard classifiers Et and Wt to react in the presence of a CD (see Figure 6.6).

The large variation of Pk over the time reflects the non-stationarity of the data stream.

Expect for dataset CD1, we have on average lower Pk after Concept Drift.

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 130

Table 6.6: Average Pk in the month before and after CD for the ensemble

(a) Before CD
CD1 CD2 CD3

classifier mean sd mean sd mean sd
F 0.585 0.183 0.731 0.267 0.706 0.245
ED 0.555 0.318 0.563 0.217 0.562 0.223
E 0.618 0.313 0.696 0.276 0.648 0.245
AE 0.666 0.222 0.772 0.272 0.751 0.221

(b) After CD
CD1 CD2 CD3

classifier mean sd mean sd mean sd
F 0.696 0.270 0.477 0.235 0.610 0.270
ED 0.551 0.298 0.286 0.182 0.486 0.265
E 0.654 0.266 0.373 0.235 0.581 0.268
AE 0.740 0.232 0.575 0.227 0.659 0.245

AW

W

(a) Sliding window strategies on dataset CD1

AW

W

(b) Sliding window strategies on dataset CD2

W
AW

(c) Sliding window strategies on dataset CD3

AE

E

(d) Ensemble strategies on dataset CD3

Figure 6.6: Average Pk per day (the higher the better) for classifiers on datasets with
artificial concept drift (CD1, CD2 and CD3) smoothed using moving average of 15
days. In all datasets AWt has higher Pk than Wt. For the ensemble approach we show
only dataset CD3, where AEt dominates Et for the whole dataset (similar results are
obtained on CD1 and CD2, but they are not included for compactness). The vertical

bar denotes the date of the concept drift.

6.5.3 Improving the performance of the feedback classifier

The goal of these experiments is to see how the performance of Ft are influenced by:

i) the number of days of feedback available (defined by δ), ii) methods correcting the

selection bias, and iii) the number of feedbacks available everyday. To this purpose we

first test strategies with Ft trained on 15 days (δ = 15). In Table 6.7 we see that, with

δ = 15, Ft has higher Pk than when it is trained with δ = 7 (see Table 6.3). The

aggregations AWt and AEt also improve their performances with δ = 15.

The rationale of the second experiment is to see where or not the methods for SSB

would improve the performance of the feedback classifier Ft. In Table 6.8 we test two

types of methods for correcting the selection bias: importance weighting with weights

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 131

Table 6.7: Average Pk for the sliding and ensemble approach when δ = 15.

(a) sliding approach

dataset classifier mean sd
2013 F 0.67 0.24
2013 WD 0.54 0.22
2013 AW 0.72 0.20
2014 F 0.67 0.27
2014 WD 0.56 0.27
2014 AW 0.71 0.25
2015 F 0.71 0.21
2015 WD 0.62 0.21
2015 AW 0.76 0.19

(b) ensemble approach

dataset classifier mean sd
2013 F 0.67 0.23
2013 ED 0.48 0.23
2013 AE 0.72 0.21
2014 F 0.67 0.28
2014 ED 0.49 0.27
2014 AE 0.70 0.25
2015 F 0.71 0.22
2015 ED 0.56 0.18
2015 AE 0.75 0.20

provided by (6.5) and Joint Probability Averaging [242]. In the first case we used as

weight-sensitive algorithm an implementation of the Random Forest based on conditional

inference trees [243] available in the party package [244]. In the second case we used

the semi-supervised version (SJA) of the algorithms proposed by Fan et al. [242] for

SSB correction. These results are obtained with the sliding approach when δ = 15,

but equivalent one can be obtained with the ensemble since Ft is the same for both

approaches. If we compare the results of Table 6.8 with the one of Ft in Table 6.7 we see

that techniques for SSB do not improve the performance of Ft, and weighting techniques

can actually deteriorate its performance.

Table 6.8: Average Pk of Ft with methods for SSB correction when δ = 15.

dataset SSB correction mean sd
2013 SJA 0.66 0.24
2013 weigthing 0.64 0.25
2014 SJA 0.66 0.27
2014 weigthing 0.65 0.28
2015 SJA 0.71 0.22
2015 weigthing 0.68 0.23

In the remainder of the section we investigate how requesting a larger number of feedbacks

(i.e. generating a larger number of alerts) influences the performances of Ft and its

aggregation. If having more feedbacks, leads to better performances, then the company

should hire more investigators. In Table 6.9 we allow Ft to be trained on a larger

number of feedbacks (|Ft| ≥ 100) and evaluate the performances with Pk using k = 100

for all experiments. It emerges that, the company would obtain a better detection by

increasing the number of investigators. However, the increase in accuracy should be

evaluated against the cost of hiring more investigators, perhaps better accuracy is not

sufficient to justify the higher cost of investigation.

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 132

Table 6.9: Average Pk for the sliding approach with more than 100 feedbacks per day
when δ = 15 and k = 100.

(a) dataset 2013
|Ft| classifier mean sd
100 F 0.68 0.23
100 AW 0.72 0.20
300 F 0.74 0.22
300 AW 0.78 0.19
500 F 0.76 0.20
500 AW 0.79 0.18

(b) dataset 2014
|Ft| classifier mean sd
100 F 0.68 0.27
100 AW 0.71 0.24
300 F 0.73 0.25
300 AW 0.76 0.22
500 F 0.75 0.23
500 AW 0.78 0.21

(c) dataset 2015
|Ft| classifier mean sd
100 F 0.71 0.21
100 AW 0.76 0.19
300 F 0.80 0.18
300 AW 0.82 0.17
500 F 0.82 0.17
500 AW 0.83 0.17

6.5.4 Standard accuracy measures and classifiers ignoring AFI

In this section we compare the performance of the feedback classifier Ft and its aggre-

gation AWt against a classifier Rt that is trained on all recent transactions occurred

between t and t − δ (feedbacks and non-alerted transactions, see Figure 6.7). In this

experiment we want to see how a classifier Rt ignoring Alert-Feedback Interaction com-

pares to Ft (trained only on feedbacks).6 It is important to remark than Rt and Ft are
trained on the same number of days (defined by δ), while WD

t is trained on a window

of delayed samples. We assess the results using Pk and two other detection measures

presented in Section 2.2.3, namely AUC and AP. Note that these last figures of merit

can be considered as global ranking measures, because they assess the ranking quality

over all the instances, not only in the top k as Pk does. As explained in Section 6.1,

most works in fraud detection use AUC as performances measure and train a classifier

using all available information like Rt without considering investigators’ feedback.

FtFt�1Ft�3Ft�4Ft�5Ft�6 Ft�2Dt�7Dt�8

FtWD
t

AW
t

Rt

Figure 6.7: A classifier Rt trained on all recent transactions occurred between t and
t − δ makes the unrealistic assumption that all these transactions have been checked

and labeled by investigators. In this figure we use δ = 7 and M = 2.

Table 6.10 reports the results for the three datasets. We notice that, when using global

ranking measure such as AUC and AP, Rt always outperforms Ft and the latter is
6Note that in a real scenario we cannot compute Rt, since labels are available only for feedback

samples between t and t− δ.

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 133

often the worst between all classifiers considered. On the contrary, when the accuracy

is evaluated in terms of Pk, then Ft is a better alternative to Rt. These results can

be interpreted in the following way: when the objective is to get accurate ranking of

the most suspicious transactions (maximize Pk) we should use a classifier trained on

transactions that are as risky as the one we want to predict, hence Ft should be favored

because it contains only risky samples (feedbacks). On the contrary, a classifier trained

on all daily transactions (which are mostly genuine), like Rt, will be a better choice if

we want to obtain a good ranking on all samples (e.g. maximize AUC).

From Table 6.10 and Figure 6.8 we see also that Rt has in general better accuracy than

WD
t , which confirms the presence of a non-stationary environment and training on more

recent transactions allows one to react faster to CD. The aggregation of Ft and WD
t in

AWt returns higher Pk than Rt, but it is beaten by Rt in terms of AUC. In a nutshell, to

have good prediction on the k transactions with the largest fraud risk it is better to train

a specific classifier on the feedbacks (previous risky transactions). When the objective is

instead to obtain good overall accuracy (not only on the top k) we should perhaps use a

standard classifier that use all information available.

Table 6.10: Average AP, AUC and Pk for the sliding approach (δ = 15, M = 16 and
αt = 0.5).

(a) dataset 2013
metric classifier mean sd
AP F 0.31 0.13
AP WD 0.28 0.15
AP R 0.33 0.15
AP AW 0.40 0.14
AUC F 0.83 0.06
AUC WD 0.94 0.03
AUC R 0.96 0.01
AUC AW 0.94 0.03
Pk F 0.67 0.24
Pk WD 0.54 0.22
Pk R 0.60 0.22
Pk AW 0.72 0.20

(b) dataset 2014
metric classifier mean sd
AP F 0.30 0.15
AP WD 0.29 0.17
AP R 0.35 0.19
AP AW 0.39 0.16
AUC F 0.81 0.08
AUC WD 0.94 0.03
AUC R 0.96 0.02
AUC AW 0.93 0.03
Pk F 0.67 0.27
Pk WD 0.56 0.27
Pk R 0.63 0.25
Pk AW 0.71 0.25

(c) dataset 2015
metric classifier mean sd
AP F 0.27 0.11
AP WD 0.30 0.13
AP R 0.39 0.16
AP AW 0.37 0.12
AUC F 0.81 0.07
AUC WD 0.95 0.02
AUC R 0.97 0.01
AUC AW 0.94 0.02
Pk F 0.71 0.21
Pk WD 0.62 0.21
Pk R 0.68 0.20
Pk AW 0.76 0.19

6.5.5 Adaptive aggregation

The rational of following experiments is to investigate how to adapt the aggregations AWt
and AEt in the presence of non-stationary environments. Let us recall that the posterior

probability of AWt is defined as follow: PAWt (+|x) = αtPFt + (1 − αt)PWD
t
, where

we have introduced the compact notation PFt , PWD
t

to denote PFt(+|x), PWD
t

(+|x).

Similar definition holds for AEt (aggregation of Ft and EDt , see (6.4)). Perhaps the most

straightforward adaptation strategy is to set the weight at day t + 1 (αt+1) depending

on the performances of Ft and WD
t (or EDt). Operating with different values of αt

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 134

(a) Ranking measured in terms of AP (b) Ranking measured in terms of AUC

(c) Ranking measured in terms of Pk

Figure 6.8: Detection accuracy of AWt , Ft, WD
t and Rt measured using different

performance measures on the 2013 dataset. AUC and AP are measures of global ranking
while Pk is a measure of ranking in the top k transactions with the largest probability

of being fraudulent.

corresponds to cutting the plane (PFt ,PWD
t

) using straight lines having different angular

coefficient (see Figure 6.10).

In our aggregations we would like to give a larger weight to the probability that is more

accurate, so if PFt is more accurate than PWD
t
(or PEDt), at day t+1 we want αt+1 > 0.5.

In order to define the weight αt+1 we have first to decide how to measure the accuracy

of Ft when the classifier generating the alerts (and requesting feedbacks) is AWt .7

Let FAWt be the feedbacks requested by AWt and FFt be the feedbacks requested by

Ft (see Figure 6.9). Let Y+
t (resp. Y−t) be the subset of fraudulent (resp. genuine)

transactions in day t, we define the following sets: CORRFt = FAWt ∩FFt∩Y
+
t , ERRFt =

FAWt ∩ FFt ∩ Y−t , and MISSFt = FAWt ∩ {Bt \ FFt} ∩ Y+
t . In the example of Figure 6.9

we have |CORRFt | = 4, |ERRFt | = 2 and |MISSFt | = 3. We can now compute some

accuracy measures of Ft in the feedbacks requested by AWt :8

• accFt = 1− |ERRFt |
k

• accMissFt = 1− |ERRFt |+|MISSFt |
k

• precisionFt =
|CORRFt |

k

7We cannot compute Pk of Ft and WD
t because feedbacks are requested by AWt .

8These accuracy measures are inspired by standard classification metrics presented in Section 2.1.4

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 135

• recallFt =
|CORRFt |
|FAWt

∩Y+
t |

• aucFt = probability that fraudulent feedbacks rank higher than genuine feedbacks

in FAWt according to PFt .

• probDifFt = difference between the mean of PFt calculated on the frauds and the

mean on the genuine in FAWt .

FAW
t

FFt

FWD
t

Bt

Figure 6.9: Feedbacks requested by AWt (FAW
t
) are a subset of all the transactions of

day t (Bt). FFt
(FWD

t
) denotes the feedbacks requested by Ft (WD

t). The symbol +
is used for frauds and − for genuine transactions.

Similarly, we can compute the accuracy of classifier WD
t (or EDt) in the feedbacks re-

quested by AWt . For example, in Figure 6.9 we have |CORRWD
t
| = 3, |ERRWD

t
| = 5 and

|MISSWD
t
| = 4. By choosing one of the previous accuracy measures we obtain different

ways to combine the probabilities and adapt to CD at the aggregation level. Let’s imag-

ine we choose aucFt as metric for Ft and similarly aucWD
t

for WD
t , then we compute

αt+1 as follows:

αt+1 =
aucFt

aucFt + aucWD
t

(6.7)

Using (6.7) ensures that αt+1 ∈ [0, 1]. In Table 6.11 we present the average Pk of classifier

AWt when δ = 15 with adaptive αt, i.e. αt changes everyday according to one of the

accuracy measures presented before.

We have also considered the ideal case in which we could use everyday the value of αt
returning the best results, by testing different values αt ∈ {0.1, . . . , 0.9} and selecting α∗t
as the one allowing the aggregation to have the highest Pk. Note that in a real scenario it

is not possible to compute α∗t since we cannot ask feedbacks for more than one classifier

and all the feedbacks are available only at the end of the day. Table 6.11 reports results

obtained with α∗t under the name best for α adaptation. In general, the performances

increase with α∗t is marginal w.r.t. all the other strategies considered. Also, it appears

that adapting the weight is not significantly better than keeping everyday αt = 0.5.

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 136

Table 6.11: Average Pk of AWt with adaptive αt (δ = 15).

(a) dataset 2013
α adaptation mean sd
best(α∗t) 0.73 0.21
probDif 0.70 0.22
acc 0.72 0.21
accMiss 0.72 0.21
precision 0.72 0.21
recall 0.71 0.21
auc 0.72 0.21
none(αt = 0.5) 0.72 0.20

(b) dataset 2014
α adaptation mean sd
best(α∗t) 0.72 0.24
probDif 0.68 0.26
acc 0.71 0.24
accMiss 0.70 0.24
precision 0.71 0.24
recall 0.70 0.25
auc 0.71 0.24
none(αt = 0.5) 0.71 0.24

(c) dataset 2015
α adaptation mean sd
best(α∗t) 0.76 0.19
probDif 0.73 0.21
acc 0.76 0.19
accMiss 0.75 0.19
precision 0.75 0.19
recall 0.74 0.20
auc 0.75 0.19
none(αt = 0.5) 0.76 0.19

6.5.6 Final strategy selection and classification model analysis

The aim of this section is to select the final strategy for the FDS, make an analysis

of the time complexity of the proposed solution and understand which features of the

dataset are the most informative. In the previous experiments we saw that aggregating a

feedback classifier (Ft) with a delayed classifier (WD
t or EDt) using (6.3) or (6.4) is often

the best solution. Overall we found the best performances using the configurations of

Table 6.7: δ = 15,M = 16 and αt = 0.5. If we have to choose between the sliding window

or ensemble approach we would recommend the second. As shown in Figure 6.11(b), the

ensemble EDt has lower training time than the sliding window, because the first trains

everyday a modelMt using only transactions from Dt−d. On the contrary, in the sliding

window a modelWD
t is built using transactions from {Dt−δ, . . . ,Dt−(δ+M−1)}, henceWD

t

is a trained on a much larger training set.

Despite the large difference in the training set size between the ensemble and sliding

window for the delayed classifier (see Figure 6.11(a)), the difference in the training time

is smaller (see Figure 6.11(b)), because in WD
t and EDt each tree of the Random Forest

uses a balanced bootstrap sample of the original training set (see Section 6.3.3). The

training time of Ft is negligible since it is trained on few feedbacks samples. As a

consequence, the training time of aggregations AWt and AEt are essentially equivalent to

the one of the delayed classifier WD
t and EDt .

The RF algorithm can be easily parallelized by distributing the training of each decision

tree on multiple cores/machines. In this way it is possible to drastically reduce the

computing time requested for training the FDS. In the ideal case of no overhead due to

parallelization, the theoretical speedup is equivalent to the number of cores/machines

used for training the RF.

Louppe [245] derives three bounds for the time complexity of RF training procedure: i)

best O(qmNb log2Nb), ii) worst O(qmN2
b logNb) and iii) average O(qmNb log2Nb), where

Nb is the number of boostrap samples in each tree, m the number of trees in the forest

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 137

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●
●

●●

●

●

●

●
● ●

●●●

●

●●●●●
●

●

●●●●●●●●●●●●

●

●●●

●

●

●

●

●●
●●
●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●
●●

●●●●

●

●

●

●

●●●●●●
●
●●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●●●●●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

● ●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
PF(+|x)

P
W

D
(+

|x
) Class

●

●

+
−

Alert
● FALSE

TRUE

 Pk: 0.91 alpha: 0.599

(a) 6th of October 2013

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●●
●

●

●

●

●

●
●

●●●
●

●

●●●●

●

●●●●●●●

●

●●

●

●

●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●

●

●●●●●●

●

●●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●●

●

●●

●

●

●

●
●●● ● ● ●

●●●

●●●●

●

●●●●●

●

●●
●

●● ●●●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
PF(+|x)

P
W

D
(+

|x
) Class

●

●

+
−

Alert
● FALSE

TRUE

 Pk: 0.99 alpha: 0.789

(b) 7th of October 2013

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
PF(+|x)

P
W

D
(+

|x
) Class

●

●

+
−

Alert
● FALSE

TRUE

 Pk: 0.6 alpha: 0.192

(c) 8th of October 2013

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
PF(+|x)

P
W

D
(+

|x
) Class

●

●

+
−

Alert
● FALSE

TRUE

 Pk: 0.86 alpha: 0.554

(d) 9th of October 2013

Figure 6.10: Posterior probabilities PFt(+|x) and PWD
t

(+|x) for different days. Feed-
back transactions are denoted with triangles and red color is used for frauds. In this
example, feebacks are requested by AWt with αt computed as in (6.7). Operating with
different values of αt corresponds to cutting the plane (PFt

,PWD
t

) using straight lines
having as angular coefficient −αt

(1−αt)
.

and q the number of features used to split each tree of the RF (q ≤ n). The best case

corresponds to the case when samples are always partitioned at the tree node into two

balanced subsets of N
2 samples. The worst corresponds to the case of splits that create

a subset with only one sample and the other subset with the remaining N − 1 instances.

The average corresponds to the average time complexity. In all our experiments only the

term Nb is changing between the different classifiers, while m = 100 and q = 7.9 In the
9In the randomForest package [222], the default value of q is obtained as q =

√
n.

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 138

●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●0e+00

1e+06

2e+06

3e+06

delayed feedback

 Classifier

 T
ra

in
in

g
se

t s
iz

e

adaptation
sliding
ensemble

(a) Training set size

●●
●
●

● ●●0

100

200

300

400

delayed feedback

 Classifier

 T
ra

in
in

g
tim

e

adaptation
sliding
ensemble

(b) Training time

Figure 6.11: Training set size and time (in seconds) to train a RF for the feedback
(Ft) and delayed classifiers (WD

t and EDt) in the 2013 dataset. All the simulations were
run using a single core in order to minimize the computing resources requested to the

university cluster as in Section 5.1.3.

case of BRF, Nb = 2N+ where N+ is the number of frauds available for training (see

Section 6.3.3).

Finally, in Figure 6.12 we plot a measure of feature relevance extracted from the BRF

model of WD
t . The most informative feature is RISK_TERM_MIDUID which mea-

sures the risk associated to a terminal identifier (MIDUID). Within the top 10 most

informative features we see variables measuring the amount of the transaction (e.g.

SUM_AMT_HIS) and features measuring the risk associated to the country and con-

tinent of the terminal (e.g. RISK_TERM_COUNTRY). All variables with the name

starting with RISK are features that were originally provided as categorical variables

and that have been converted into numerical one by means of the transform presented

in Section 5.1.3.

6.6 Discussion

Let us now discuss the accuracy improvements achieved by classifiers AWt and AEt pro-

posed in Section 6.3.2. First of all, we notice that the classifier learned on recent feedbacks

is more accurate that those trained on delayed samples. This is made explicit by Ta-

ble 6.3 showing that Ft often outperforms WD
t (and EDt), and Wt (and Et). We deem

that Ft outperforms WD
t (resp. EDt) since WD

t (resp. EDt) are trained on less recent

supervised couples. As far as the improvement with respect toWt (and Et) is concerned,
our interpretation is that this is due to the fact thatWt (and Et) are trained on the entire

supervised dataset, then weakening the specific contribution of feedbacks.

Our results instead show that aggregation prevents the large amount of delayed super-

vised samples to dominate the small set of immediate feedbacks. This boils down to

assign larger weights to the most recent than to the old samples, which is a golden rule

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 139

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

TX_ACCEPTED
HAD_REFUSED

NB_REFUSED_HIS
TX_INTL

HAD_TRX_SAME_SHOP
TX_3D_SECURE

IS_NIGHT
HAD_LOT_NB_TX

RISK_GENDER
NB_TRX_SAME_SHOP_HIS

RISK_CARD_BRAND
RISK_D_AGE

RISK_LANGUAGE
HAD_TEST

RISK_D_AMT
RISK_TERM_MCC_GROUP

TX_HOUR
RISK_BROKER

RISK_TERM_MCCG
RISK_LAST_COUNTRY_HIS

AGE
RISK_D_SUM_AMT

RISK_TERM_REGION
RISK_TERM_MCC

NB_TRX_HIS
RISK_TERM_COUNTRY

AMOUNT
RISK_TERM_CONTINENT

MIN_AMT_HIS
SUM_AMT_HIS

RISK_LAST_MIDUID_HIS
RISK_TERM_MIDUID

0 20 40 60

 Feature importance

RF model day 20130906

Figure 6.12: Average feature importance measured by the mean decrease in accuracy
calculated with the Gini index in the RF model of WD

t in the 2013 dataset. The
randomForest package [222] available in R use the Gini index as splitting criterion.
As stated in the package documentation: “The mean decrease in accuracy measure is
computed from permuting the Out Of Bag (OOB) data: For each tree, the error rate on
the OOB portion of the data is recorded. Then the same is done after permuting each
predictor variable. The difference between the two are then averaged over all trees, and

normalized by the standard deviation of the differences”.

when learning in non-stationary environments. The aggregation AWt with αt = 0.5 is

indeed an effective way to attribute higher importance to the information included in

the feedbacks. At the same time AEt with αt = 0.5 is a way to balance the contribution

of Ft and the remaining M models of Et.

Another motivation of the accuracy improvement with the aggregations is that classifiers

trained on feedbacks and delayed samples address two different classification tasks (see

Section 6.3). In particular Ft learns to discriminate those samples that have high risk

of being frauds, i.e. those transactions yielding a large value of the posterior probability

of the classifier used to generate alerts. On the contrary, classifiers trained on delayed

samples rely on heterogeneous samples that were not selected depending on the posterior

of the classifier, and includes both frauds and genuine transactions that are not considered

risky. For this reason too, it is not convenient to pool the two types of supervised

samples together. Finally, we notice that a constant and equal weight (αt = 0.5) in the

aggregations AWt and AEt is often performing as well as adaptive weighting strategies

presented in Section 6.5.5.

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 140

The interaction between the FDSs (raising alerts) and the investigators (providing true

labels) recalls solutions where the classifier interact with an oracle for additional labels

typical of Active Learning [246]. The goal of Active Learning is to minimize the request of

labeled data asked to oracles, by determining which are the most informative instances

to query. Unfortunately, in a FDS, we have a small budget devoted to fraud alert

investigation, i.e. the money that companies dedicate to fraud investigations is limited.

The few investigators available have to focus on the most suspicious transactions with

the goal of detecting the largest number of frauds. We cannot demand the investigators

to check genuine transactions for the sake of obtaining informative patterns. Validation

of transactions with low risk would come at the cost of not controlling highly risky

transactions with a consequent impact on the detection accuracy. In the ideal case of

perfect detection all transactions labeled by investigators should be of class fraud.

In our formulation (Section 6.2) we select transactions to alert using the probability of the

samples to be fraudulent. Alternatively, Baesens et al. [10] recommend generating alerts

for transactions with expected fraud loss (fraud probability× transaction amount) greater

than a certain threshold. Similarly, Fan et al. [126] suggest to alert only transactions

having the expected fraud loss higher than the overheads (cost of reviewing an alert,

i.e. cost of investigation). In this work we define the alerts without considering the

transactions amount, because we want to give equal importance to frauds of small and

large amount. If we detect frauds of small amounts, we can block the card and prevent

larger ones before they occur, because fraudsters typically try to steal money with small

amounts first and then, if successful, with larger ones.

It is worth to remark that the formulation proposed in Section 6.2 is still a simplified

description of the processes regulating companies analyzing credit cards transactions.

For instance, it is typically not possible to extract the alerts At by ranking the whole

set Bt, since transactions have to be immediately passed to investigators; similarly, de-

layed supervised couples Dt−δ do not come all at once, but are provided over time.

Notwithstanding, we deem that the most important aspects of the problem (i.e. the

Alert-Feedback Interaction and the time-varying nature of the stream) are already con-

tained in our formulation and that further details would unnecessarily make the problem

setting complex.

A limitation of the current study is that we report as feedbacks only those transactions

generating an alert. However, when the investigators call a cardholder, they typically

check the status of also previous transactions made by the same card. This means that

one alert can generate multiple supervised transactions (|Ft| ≥ |At|). In this setting,

it is more interesting measuring alert precision at the card level instead of the transac-

tion level, i.e. measuring how many fraudulent cards are detected in the k cards that

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 141

investigators are able to check. Preliminary results, not included in this chapter, seem

to confirm that, also in terms of alert precision measured at the card level, the best

performances are obtained by aggregating two classifiers one trained on feedbacks and

the other on delayed samples.

6.7 Conclusion

In this chapter we formalize a framework that reproduces the working conditions of

real-world FDSs. In a real-world fraud-detection scenario, the only recent supervised-

information is provided on the basis of the alerts generated by the FDS and feedbacks

provided by investigators, i.e. Alert-Feedback Interaction (AFI). All the other supervised

samples are available with a much larger delay.

Our intuition is that: i) AFI has to be explicitly considered in order to improve alert

precision and ii) feedbacks and delayed samples have to be separately handled when

training a realistic FDS. To this purpose, we have considered two general approaches for

fraud detection: a sliding window and an ensemble of classifiers. We have then compared

FDSs that separately learn on feedbacks and delayed samples against FDSs that pool all

the available supervised information together. Experiments run on real-world streams of

transactions show that the former strategy provides much more precise alerts than the

latter, and that it also adapts more promptly in concept-drifting environments.

The majority of the works presented in the literature (e.g. [18, 61]) assume that we have

the labels all transactions (ignoring AFI) and use AUC as accuracy measure. We claim

that in a real world scenario, the main goal of a FDS is to return accurate alerts, i.e. high

Pk (precision within the k transactions that we report as alert to the investigators). In

this chapter we have showed that in order to get precise alerts (high Pk) it is mandatory

to give large importance to feedbacks samples. Strategies lowering their influence in

the learning process (e.g. SSB correction techniques and Wt or Et classifiers) are often

returning less precise alerts (lower Pk).

The feedback classifier Ft provides accurate ranking of the most suspicious transactions

(high Pk), but it is not the best option when the goal is to achieve a good ranking of all

transactions (low AUC). Classifier trained on everyday transactions (e.g. WD
t , EDt , Rt)

have lower Pk, but return a better global ranking (higher AUC). By increasing δ, the

number of days in which we receive feedbacks, Ft has better performances in terms of

Pk. When Ft has higher Pk also its aggregation AWt and AEt have higher accuracy.

Adaptation techniques are important in the presence of CD, this is made clear by the

poor performances of the static classifier St which use the same model along the stream.

Chapter 6. Concept-Drift Adaptation with Alert-Feedback Interaction 142

Aggregating Ft and WD
t (or EDt) with AWt (or AEt) is often the best solution to achieve

high Pk even in the presence of abrupt CD (see results from Section 6.5.2). We have

also tested several methods to compute the weight αt used in the aggregations, but it

appears that a simple average (αt = 0.5) is often the best solution. In the future works

we want to study non-linear aggregation of classifiers used in AWt and AEt , perhaps

better performances can be achieve by using a ranking algorithm receiving as input the

posterior probabilities and the class of the transaction.

Currently, unsupervised (non-feedback) transactions between t and t− δ are not used in

the learning process. We think that is worth testing semi-supervised learning algorithms

to exploit both supervised (feedbacks) and unsupervised samples occurring between t

and t − δ. Another direction worth investigating is to use more than k transactions for

training Ft if the ranking is accurate (when Pk ≈ 1). When Ft has high Pk we expect

that the ranking produced by the posterior probability PFt is accurate not only in the

top k transactions, but also let’s say in the top k+γ. In this case we could train Ft using
k+ γ samples, where transactions ranked between k and k+ γ are labeled as fraudulent.

Finally, we can say that the results presented in this chapter are in line with the per-

formance of our industrial partner (sometimes even better). However, for confidentiality

reason, we are not allowed to disclose figures regarding the performance of our partner.

Appendix B presents the software modules of the proposed FDS.

Chapter 7

Conclusions and Future Perspectives

Fraud detection is a particularly challenging and complex task. Fraudulent activities

are rare events that are hard to model and in constant evolution. The large volume of

transactions happening everyday demands automatic tools to support investigation, and

the human resources devoted to investigations have to concentrate on the most suspicious

cases. This thesis investigated how machine learning algorithms could be used to address

some of these issues. In particular, we focused on the design of a framework that is able

to report the riskiest transactions to investigators by means of algorithms that can deal

with unbalanced and evolving data streams. This chapter summarizes the main results

of the thesis, discusses open issues and presents future research directions.

7.1 Summary of contributions

A standard solution to deal with classification problems having unbalanced class dis-

tribution (like fraud detection) is to rebalance the classes before training a model. A

popular rebalancing technique in the machine learning community is undersampling. In

Chapter 4 we show the conditions under which undersampling is expected to improve

the ranking of fraudulent and genuine transactions given by the posterior probability of

a classifier. We also study the effect of class-separability on probability calibration and

how to set a threshold to make predictions. It emerges that, without control on the data

distribution, it is not possible to know beforehand whether undersampling is beneficial.

For this reason in Section 4.3 we propose a racing algorithm to select rapidly the best

sampling technique when multiple solutions are available. The racing algorithm was

made available open source as a software package for the R language [25] (see package

unbalanced [24] presented in Appendix A).

143

Chapter 7. Conclusions and Future Perspectives 144

In order to deal with the non-stationarity distribution of credit cards transactions, Chap-

ter 5 investigates multiple strategies for concept drift adaptation in the presence of skewed

distribution. We notice that updating regularly the FDS is a much better alternative

than using the same model over all the year. When choosing the samples to train a

classifier it is important to retain historical transactions as well as forget outdated sam-

ples for the model to be precise. Also, resampling methods (notably undersampling)

significantly improve the performances of a FDS. Propagation of fraudulent transactions

along the stream is another effective way to rebalance the class distribution. However,

the latter solution leads to computational overheads and it can be avoided without loss

of accuracy by adopting a FDS based on Hellinger Distance Decision Tree.

Typically, fraud alerts generated by a FDS are checked by human investigators that

annotate alerted transactions as genuine or fraudulent. Feedbacks from investigators

provide recent supervised samples that are highly informative. In Chapter 6 we present

a prototype of a FDS that is able to include investigators’ feedbacks in the learning

process. We show that, for the FDS to produce accurate alerts, feedbacks have to receive

larger weights than the other supervised samples available. Combining two classifiers,

one trained on feedbacks and one trained on delayed samples, is often the best way to

provide accurate alerts in the presence of concept drift.

With this thesis we also made available to the machine learning community a dataset

containing observations of credit card transactions. This dataset has been used in [28]

and it includes examples of fraudulent samples, information that is rarely available.1

7.2 Learned lessons

In the following we summarize what we have learned during this PhD project with the

intent of providing the reader and practitioners with some take home messages:

• As shown in Chapter 4, rebalancing a training set with undersampling is not guar-

anteed to improve performances, several factors influence the final effectiveness

of undersampling and most of them cannot be controlled (e.g. the variance of a

classifier and the samples where the conditions (4.20) is satisfied).

• The optimal degree of sampling depends on the datasets considered. In Section 4.1

we show that the right amount of sampling with undersampling (defined by β) is

dataset specific. When sampling is too aggressive we have less points for which

undersampling is beneficial. Characteristics of the classification task, such as class
1Dataset available at http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata.

http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata

Chapter 7. Conclusions and Future Perspectives 145

separability and imbalance ratio, also influence the performance of the classifier

and the effectiveness of sampling methods.

• The best technique for unbalanced classification does not exist and the best for

a given dataset can vary with the algorithm and accuracy measure adopted (see

Section 4.3). Adaptive selection strategies (e.g. F-Race [26]) can be effective to

rapidly provide an answer on which technique to use.

• The data stream defined by credit card transactions has non-stationary distri-

butions, i.e. change in fraudulent and genuine behavior severely affect the perfor-

mances of a FDS. This is made clear by the poor performances of static approaches

as shown in Section 5.1.3. Updating the FDS is often a good idea and retaining

historical transactions can improve predictive accuracy.

• For a real-world FDS it is mandatory to produce precise alerts, i.e. provide an

accurate ranking of transactions with the highest risk of being fraudulent. As

explained in Section 6.2, investigators trust and follow the alerts of a Data Driven

Model as long as it does not generate too many false alerts. Poor alert precision

(low Pk) means also few recent fraudulent transactions and the FDS has to relay

only on old fraudulent pattern for the detection.

• The best learning algorithm for a FDS depends on the accuracy measure that we

want to maximize. As shown in Chapter 6, a classifier trained only on feedback

samples (Ft) can provide more precise alerts (higher Pk) than one trained on all

recent transactions (Rt). However, the latter becomes a much better choice when

using standard classification measures such as AUC.

7.3 Open issues

In this section we want to discuss some open issues in fraud detection that we believe

are worth investigating, such as: i) defining a good performance measure, ii) modeling

Alert-Feedback Interaction and iii) using the supervised and unsupervised information

available with AFI.

Despite everybody agreeing on the fact that missing a fraud is much worse than generat-

ing a false alert, there is no agreement on which is the best way to measure fraud detection

performance. Indeed, the machine learning community has proposed several cost mea-

sures, some are transaction-dependent [35, 70, 71], others are class-dependent [2, 247].

Other works avoid using cost-based accuracy measure by making the implicit assumption

that it is more important to provide correct predictions [18, 64].

Chapter 7. Conclusions and Future Perspectives 146

We think that there is not a correct and wrong way to measure detection performances,

companies have different ideas about what is the best figure of merit. However, if a

cost-based measure is preferred then we recommend using normalized cost [63] instead of

savings [70], because the second can be negative which is counter intuitive.2 Alternatively

one should use a benefit matrix as proposed by Elkan [35]. When using standard clas-

sification metrics, we suggest AUC estimation based on the Mann-Whitney (Wilcoxon)

statistics [18] (see Section 2.2.3). In this thesis we deem that, from an investigator per-

spective, the most relevant measure is the alert precision, denoted as Pk, i.e. precision

within the k most risky transaction [20].

Chapter 6 has proposed a framework that is able to exploit investigators’ feedbacks to

improve detection performance. In our formulation, feedbacks are available at the end

of the day altogether, while in reality, the feedback mechanism is much more complex.

Feedbacks are provided during the day as soon as investigators call the cardholder. More-

over, investigators check all previous transactions of one card once it is found to be victim

of fraud. This means that we could have more the one feedback transaction per alert

generated and the model trained on feedbacks should learn online, i.e. as soon as feed-

backs are received. Additionally, feedbacks can be provided with a delay of more than 24

hours and historical transactions could receive their labels after months. Despite these

practical constraints we deem that the framework proposed in Chapter 6 is able to meet

essential working conditions of a real-world FDS presented in Section 2.2.1.

Improvements of the FDS presented in Chapter 6 could come from using all available

transactions, not only supervised samples. For example, semi-supervised strategies could

exploit also unlabeled data (non-feedback transactions in the first δ days) to improve the

detection. Alternatively, even if investigators require the FDS to provide accurate alerts,

we could use few alerts (e.g. 5%) to query unrisky, but interesting samples for the sake

of obtaining more precise alerts. This last option would allow exploring a small part of

unsupervised samples as in active learning.

7.4 The Future: going towards Big Data solutions

In this section we will discuss future research directions that in the meantime led to the

definition of a new research project called BruFence sponsored by Innoviris.3 BruFence

is a three years joint project between three research groups of two universities and three

companies based in Brussels, Belgium. The partners of the project are: Machine Learning
2In some cases, given the small number of frauds, the cost of predicting all transactions as genuine

can be lower than the cost registered by a classification algorithm, leading to negative savings.
3Innoviris is the Brussels institute for the encouragement of scientific research and innovation.

Chapter 7. Conclusions and Future Perspectives 147

Group from Université Libre de Bruxelles, Machine Learning Group from Université

Catholique de Louvain, QualSec from Université Libre de Bruxelles, Worldline S.A.,

Steria and NViso.

The goal of the project is the design of mechanisms based on machine learning and

big data mining techniques that allow to automatically detect attacks and fraudulent

behaviors in large amounts of transactions. BruFence aims at developing a real-time

framework that is able to compare in parallel a large number of alternative models

in terms of nature (expert-based or data driven), features (e.g. history or customer

related), data (e.g. supervised or unsupervised), predictive methods (e.g. decision trees,

neural networks), scalability (e.g. conventional versus Map/Reduce implementation)

and quality criteria (e.g. readability vs. accuracy). The framework is expected to be

scalable with respect to the amount of data and resources available. The project will also

investigate the exploitation of network data (social networks, communication networks,

etc.) for fraud, privacy and security purposes. The use of network data is currently a

highly studied field, subject of much recent work in various areas of science [10].

Currently the IT infrastructure used for the FDS is based on classical data warehouse

architectures. These architectures are well designed for business reporting but not for

applying analytics to big volume of data. In this context, it is infeasible to do analyt-

ics directly on the whole historical data set with standard machine learning algorithms.

Though an easy solution consists in using only a portion of data for training the algo-

rithms, this has detrimental effects on the resulting predictive accuracy.

Companies that want to stay at the cutting edge of security technology (like the sponsors

of this project) are more and more interested to enter the big data paradigm. However,

though the introduction of big data technologies (e.g. Hadoop4, Spark5) in the everyday

business process is claimed to be straightforward by many vendors, in practice it de-

mands a major redesign of existing functionalities. This is particularly true for analytics

and business intelligence applications, where the number of off-the-shelf solutions is still

limited and the required data processing is not trivial. A major goal of the project will

be to adapt and, when necessary, rewrite machine learning and adaptive functionalities

to make them scalable for huge amounts of transactional and log data. In particular

we will target problems characterized by large amounts of noise, large dimensionality,

non-stationarity and demanding a rapid and accurate identification of threatening or

fraudulent configurations.

As shown by Van Vlasselaer et al. [61], network data is a powerful source of information

in order to improve the detection of fraudulent behaviors. The rationale is that network
4http://hadoop.apache.org/
5http://spark.apache.org/

http://hadoop.apache.org/
http://spark.apache.org/

Chapter 7. Conclusions and Future Perspectives 148

connectivity provides information that can improve the accuracy of the prediction model.

For example, it is well known that fraudulent activities are linked to each other. Knowing

that a merchant is targeted by many fraudsters may provide useful information on the

likelihood that a transaction on the same shop is fraudulent. The project will investigate,

develop, and compare different predictive models in order to determine to which extent

prediction accuracy can be improved by using internal and external network data. The

project will also investigate and compare different predictive models (graph-based semi-

supervised classification [248]) for private information discovery (information not publicly

available), in order to determine to which extent, hidden information can be inferred from

the network (e.g. age and sex of the cardholder if not available). Eventually, we will

develop new measures identifying the most critical or vulnerable connected nodes whose

removal results in splitting the network. This can be done with traffic information or

without traffic data.

Credit card fraud detection has traditionally focused on looking for factors such as trans-

action amount, point of sales, location, etc. available inside the organization. As shown

in Section 2.2.2, from these basic variables it is possible to compute new aggregate fea-

tures to model the behavior of the cardholder. Typically, companies use a small sample

of historical transactions for each cardholder to build account-level variables. Because

it is computationally demanding to compute aggregates, these features are usually cal-

culated offline and then added to the feature vector representing the transaction when

it is authorized. Using a small part of the information available may translate into a

loss of predictive accuracy. The introduction of big data technologies allows overcoming

these issues, i.e. computing aggregates in real time and using a larger set of historical

transactions.

The Big Data solution that we envisage will be able to process massive amounts of

structured and unstructured data from a hybrid of sources as well. This will enable the

exploitation of both existing in-house and public data (i.e. social media, websites, blogs).

Models and algorithms will take advantage of these richer sources to build more accurate

detection models. For example, social media can used to check whether a cardholder is

traveling and validate a transaction from an unusual location.

The project will deliver an online learning framework that is able to process the data

stream where the account-level information and the network of transactions are con-

sidered. The learning process will have to handle the unbalanced nature of the data

in real time without having to store/recall previous transactions as in Dal Pozzolo et

al. [19]. The algorithms will be implemented using scalable architecture that will allow

the integration of existing and external sources of information.

Chapter 7. Conclusions and Future Perspectives 149

7.5 Added value for the company

In this section we want to discuss how the results of Doctiris project (presented in

Section 1.7) could be valorized by the industrial partner Worldline S.A.

The FDS in production at Worldline is currently adopting a static approach (see Section

5.1.2), i.e. a classification model updated once/twice a year. The results of Chapter 5

show to the company that there is a clear performance gain when the model is updated

more frequently, e.g. once a week or every 15 days. The work done in Chapter 5 allows

Worldline to assess the performance of several learning strategies in the presence of CD

and to test different CD adaptation methods.

We also used different classification algorithms not yet explored by Worldline. In par-

ticular, Random Forest has emerged as the best algorithm in many simulations and now

the company has it in production. During the project we also investigated new ways to

create aggregated features in order to include user behavior at the transaction level (see

the transformation proposed in Section 5.1.3).

The unbalanced problem had never been theoretically studied before in Worldline. The

results of Chapter 4 showed that, in case of fraud detection, the performance of a clas-

sifier can be significantly improved when sampling methods are used to rebalance the

two classes. Given the large imbalance ratio and number of transactions, undersam-

pling should perhaps be favored w.r.t. oversampling techniques. At the same time

it is important to calibrate the probability in order to provide an accurate ranking of

the transactions after sampling the dataset (see Section 4.2). Additionally, the racing

strategy proposed in Section 4.3 gives Worldline a new tool for selecting efficiently the

unbalanced method that best fits the data.

Finally, in Chapter 6 we provide evidence that alerted transactions can be very infor-

mative for obtaining accurate FDS. Currently, the FDS in production at Worldline is

not able to trace if an historical transaction has been checked in a fraud investigation or

not. In this setting, it is not possible to distinguish between feedback and non-feedback

samples. As shown in Section 6.5, higher performances can be achieved by combining

classifiers separately trained on feedback and delayed transactions.

7.6 Concluding remarks

The Doctiris PhD project was an unique opportunity to work on real-world fraud detec-

tion data that, because of its high sensitivity, is scarcely available. Moreover, this type of

data is very interesting because it combines several challenges such as class overlap, class

Chapter 7. Conclusions and Future Perspectives 150

imbalance and mislabeled samples among others. The collaboration with the industrial

partner was particularly fruitful because in the company we had a supervisor, Dr. Olivier

Caelen, who carefully guided our work.

As shown in Chapter 6, in real working conditions we have constraints that define new

challenges. For example, the limited number of transactions verified by investigators

allows only few recent supervised samples, while in the literature most works assume

to know the labels of all transactions. Also, the figure of merit that is interesting for a

company may differ from standard accuracy measures.

Typically, companies are interested in more practical than theoretical results, e.g. “as

long as the algorithm works well there is no need to question its design or implementa-

tion”. On the contrary, the academic world is sometimes addressing complex problems

that have few practical applications. We believe that both worlds, industry and univer-

sity, should look at each other and exchange ideas in order to have a much larger impact

on society. For all these reasons, we hope that the Doctiris initiative will be followed

by many others and will pave the way of more collaborations between companies and

universities in the Brussels region.

Appendix A

The unbalanced package

This appendix presents a new software package called unbalanced [24] available for

the R language [25]. It implements some techniques for unbalanced classification tasks

presented in Section 3.1.1 and provides a racing strategy [227] to adaptively select the

best methods for a given dataset, classification algorithms and accuracy measure adopted.

A.1 Methods for unbalanced classification

The unbalanced package includes some of the most well-known sampling and distance-

based methods for unbalanced classification task. Within the family of sampling meth-

ods, we have functions for random undersampling (ubUnder) and oversampling (ubOver)

[91]. The package contains also a function called ubSMOTE that implements SMOTE [92].

Other distance-based methods available in unbalanced are OSS [100] (ubOSS), CNN [98]

(ubCNN), ENN [101] (ubENN), NCL [89] (ubNCL) and Tomek Link [96] (ubTomek). All

these methods can be called by a wrapper function ubBalance that allows testing all these

strategies by simpling changing the argument type.

The package includes the ubIonosphere datasets, which is a modification of the Ionosphere

dataset contained in mlbench package. It has only numerical input variables, i.e. the first

two variables are removed. The Class variable, originally taking values bad and good, has

been transformed into a factor where 1 denotes the minority (bad) and 0 the majority

class (good). This variable is our target and it is in the last column of the dataset. In the

following we will also called the minority class as positive and the majority as negative.

For example, let’s apply oversampling to the Ionosphere dataset to have a balanced

dataset.

151

Appendix A. The unbalanced package 152

library(unbalanced)

data(ubIonosphere)

n <- ncol(ubIonosphere)

output <- ubIonosphere[,n]

input <- ubIonosphere[,-n]

set.seed(1234)

1-option using ubOver function

data <- ubOver(X=input, Y=output, k=0)

2-option using ubBalance function

#data <- ubBalance(X=input, Y=output, type="ubOver", k=0)

#oversampled dataset

overData <- data.frame(data$X, Class=data$Y)

#check the frequency of the target variable after oversampling

summary(overData$Class)

0 1

225 225

In this case we replicate the minority class until we have as many positive as negative

instances. Alternativelly, we can balance the dataset using undersampling (i.e. removing

observations from the majority class):

using ubUnder function

data <- ubUnder(X=input, Y=output, perc=50, method="percPos")

#undersampled dataset

underData <- data.frame(data$X, Class=data$Y)

#check the frequency of the target variable after oversampling

summary(underData$Class)

0 1

126 126

Another well-know method for unbalanced distribution is SMOTE, which oversample the

minority class by creating new synthetic observations. Let’s compare the performances

Appendix A. The unbalanced package 153

of two randomForest classifiers, one trained on the original unbalanced dataset and a

second trained on a dataset obtained after applying SMOTE.

set.seed(1234)

#keep half for training and half for testing

N <- nrow(ubIonosphere)

N.tr <- floor(0.5*N)

X.tr <- input[1:N.tr,]

Y.tr <- output[1:N.tr]

X.ts <- input[(N.tr+1):N,]

Y.ts <- output[(N.tr+1):N]

#use the original unbalanced training set to build a model

unbalTrain <- data.frame(X.tr, Class=Y.tr)

library(randomForest)

model1 <- randomForest(Class ~ ., unbalTrain)

#predict on the testing set

preds <- predict(model1, X.ts, type="class")

confusionMatrix1 <- table(prediction=preds, actual=Y.ts)

print(confusionMatrix1)

actual

prediction 0 1

0 131 2

1 6 37

#rebalance the training set before building a model

#balanced <- ubBalance(X=X.tr, Y=Y.tr, type="ubOver", k=0)

balanced <- ubBalance(X=X.tr, Y=Y.tr, type="ubSMOTE", percOver=250)

balTrain <- data.frame(balanced$X, Class=balanced$Y)

#use the balanced training set

model2 <- randomForest(Class ~ ., balTrain)

#predict on the testing set

preds <- predict(model2, X.ts, type="class")

confusionMatrix2 <- table(prediction=preds, actual=Y.ts)

print(confusionMatrix2)

Appendix A. The unbalanced package 154

actual

prediction 0 1

0 128 0

1 9 39

#we can now correctly classify more minority class instances

Using SMOTE we alter the original class distribution and we are able to increase the

number of minority instances correctly classified. After smoting the dataset we have no

false negatives, but a larger number of false positives. In unbalanced classification, it

often desired to correctly classify all minority instances (reducing the number of false

negatives), because the cost of missing a positive instances (a false negative) is much

higher than the cost of missing a negative instance (a false positive).

A.2 Racing for strategy selection

The variety of approaches available in the unbalanced package allows the user to test

multiple unbalanced methods. In a real situation where we have no prior information

about the data distribution, it is difficult to decide which unbalanced strategy to use.

In this case testing all alternatives is not an option either because of the associated

computational cost.

As shown in Section 4.3, a possible solution comes from the adoption of the Racing

algorithm. Racing is available in unbalanced with the ubRacing function and its im-

plementation is a modification of the race function available in the race package. The

function ubRacing compares the 8 unbalanced methods (ubUnder, ubOver, ubSMOTE,

ubOSS, ubCNN, ubENN, ubNCL, ubTomek) against the unbalanced distribution, so we

have 9 candidates starting the race. In the following we will use a highly unbalanced

dataset containing credit card transactions used in [28].

set.seed(1234)

load the dataset

load(url("http://www.ulb.ac.be/di/map/adalpozz/data/creditcard.Rdata"))

#configuration of the sampling method used in the race

ubConf <- list(type="ubUnder", percOver=200, percUnder=200,

k=2, perc=50, method="percPos", w=NULL)

Appendix A. The unbalanced package 155

Race with 10 trees in the Random Forest to speed up results

results <- ubRacing(Class ~., creditcard, "randomForest", positive=1,

metric="auc", ubConf=ubConf, ntree=10)

Racing for unbalanced methods selection in 10 fold CV

Number of candidates...9

Max number of folds in the CV.................................10

Max number of experiments....................................100

Statistical test...................................Friedman test

##

Markers:

x No test is performed.

- The test is performed and

some candidates are discarded.

= The test is performed but

no candidate is discarded.

##

+-+-----------+-----------+-----------+-----------+-----------+

| | Fold| Alive| Best| Mean best| Exp so far|

+-+-----------+-----------+-----------+-----------+-----------+

|x| 1| 9| 4| 0.9541| 9|

|=| 2| 9| 4| 0.954| 18|

|-| 3| 2| 4| 0.9591| 27|

|=| 4| 2| 4| 0.963| 29|

|=| 5| 2| 4| 0.9651| 31|

|-| 6| 1| 4| 0.9646| 33|

+-+-----------+-----------+-----------+-----------+-----------+

Selected candidate: ubSMOTE metric: auc mean value: 0.9646

The best method according to the F-race is SMOTE. Please note that it is possible

to change the type of statistical test used to remove candidates in the race with the

argument stat.test. When we set stat.test = "no", no statistical test is performed and

the race terminates when all the folds of the cross validation are explored.

Appendix A. The unbalanced package 156

A.3 Summary

With the unbalanced package we have made available some of the most well-known

methods for unbalanced distribution. All these methods can be called from ubBalance

that is a wrapper to the method-specific functions. Depending on the type of dataset,

classification algorithm and accuracy measure adopted, we may have different strategies

that return the best accuracy.

This consideration has led us to adopt the racing strategy where different candidates

(unbalanced methods) are tested simultaneously. This algorithm is implemented in the

ubRacing function which selects the best candidate without having to explore the whole

dataset.

Appendix B

FDS software modules

This appendix presents the software modules of the FDS prototype presented in Chap-

ter 6. The software is divided in three main modules (see Figure B.1): i) Model training,

ii) Scoring and iii) Review. The following sections present the role of each module. These

modules are all implemented in the R language [25].

Train_Model,

Transac'ons)
stream)

Predic/on, Fraud)Score) CMT)

Inves'gators)Feedbacks)

Delayed)
transac'ons)

Model)training) Scoring)

Review)

Figure B.1: Software modules of the FDS prototype presented in Chapter 6.

B.1 Model training

This module is used to train predictive models that are capable of estimating the prob-

ability of a transaction to be fraudulent. In particular, everyday it learns two models,

one on delayed transactions Dt−δ and one on feedbacks Ft (see Section 6.3.2). The mod-

ule implements two standard CD adaptation techniques (see Section 6.3.1): i) a sliding

window classifier and ii) an ensemble of classifiers. Regardless of the CD adaptation

strategy adopted, the module runs at midnight so that the resulting predictive models

(Ft and WD
t or EDt) are used to score transactions occurring the next day (t + 1). The

main function of this module is Train_Model which receives in input some supervised

157

Appendix B. FDS software modules 158

transactions (feedbacks or delayed samples) and returns a predictive model built using

the randomForest [222] package as explained in Section 6.3.3.

B.2 Scoring

In the scoring module all transactions arriving at day t+ 1 are scored by the Prediction

function. In the Prediction function, each transaction is first scored by both the feedback

classifier (with PFt(+|x)) and the delayed classifier (with PWD
t

(+|x) or PEDt (+|x)). Then,

the final fraud score is computed using (6.3) or (6.4) depending on the CD adaptation

strategy used in module B.1. This module is the most critical because transactions arrive

as a continuous stream and have to be scored in Near Real Time (see Section 2.2.1), i.e.

the Prediction function receives in input transactions that have been authorized and has

to score them within a little time span. Note that the feature vector of transactions

entering this module contains already the aggregates features presented in Section 2.2.2.

Aggregated feature are computed offline in a distinct module.

B.3 Review

In this module, transactions are made available to the investigators in a dashboard

called Case Management Tool (CMT), where for each transaction they can see the fraud

score returned by the Prediction function, and the feature vector containing the original

variable such as CARD_ID, the shop, currency, and also the aggregated variable. In

the CMT transactions are sorted according to their fraud score so that investigators can

review the most suspicious one at the time they access the CMT. After verification a

transaction is flagged as checked and it becomes a feedback. Transactions that are not

reviewed by the investigators remain unlabeled for δ days and then, if not reported as

fraudulent by the cardholders, are labeled as genuine. Alter δ days, transactions that

have not been checked are used as delayed supervised samples in module B.1.

Appendix C

Bias and Variance of an estimator

This appendix presents two measures to assess the quality of an estimator, namely Bias

and Variance. Then we show a Bias–Variance decomposition for the mean squared error.

Definition 1 (Bias of an estimator). An estimator θ̂ of θ has bias

Bias[θ̂] = E[θ̂]− θ

In particular, θ̂ is said to be unbiased if E[θ̂] = θ and biased otherwise.

Definition 2 (Variance of an estimator). The variance of an estimator θ̂ is the variance

of its sampling distribution

V ar[θ̂] = E[(θ̂ − E[θ̂])2]

For any random variable x we can write

V ar[x] = E[x2]− E[x]2 ⇐⇒ E[x2] = V ar[x] + E[x]2 (C.1)

Since θ is deterministic E[θ] = θ and V ar[θ] = 0. Therefore, using (C.1) we can decom-

pose the Mean Squared Error (MSE) in terms of Bias and Variance of θ̂:

MSE = E
[
(θ − θ̂)2

]
= E[θ2 + θ̂

2 − 2θθ̂] (C.2)

= E[θ2] + E[θ̂
2
]− E[2θθ̂] (C.3)

= V ar[θ] + E[θ]2 + V ar[θ̂] + E[θ̂]2 − 2θE[θ̂] (C.4)

= 0 + V ar[θ̂] + (θ − E[θ̂])2 (C.5)

= V ar[θ̂] + E[θ − θ̂]2 (C.6)

= V ar[θ̂] +Bias[θ̂]2 (C.7)

159

Bibliography

[1] D.J. Newman A. Asuncion. UCI machine learning repository, 2007. URL http:

//archive.ics.uci.edu/ml/.

[2] R.J. Bolton and D.J. Hand. Statistical fraud detection: A review. Statistical

Science, pages 235–249, 2002.

[3] Piotr Juszczak, Niall M Adams, David J Hand, Christopher Whitrow, and David J

Weston. Off-the-peg and bespoke classifiers for fraud detection. Computational

Statistics & Data Analysis, 52(9):4521–4532, 2008.

[4] Sam Maes, Karl Tuyls, Bram Vanschoenwinkel, and Bernard Manderick. Credit

card fraud detection using bayesian and neural networks. In Proceedings of the 1st

international naiso congress on neuro fuzzy technologies, 2002.

[5] Jon TS Quah and M Sriganesh. Real-time credit card fraud detection using com-

putational intelligence. Expert Systems with Applications, 35(4):1721–1732, 2008.

[6] Tej Paul Bhatla, Vikram Prabhu, and Amit Dua. Understanding credit card frauds.

Cards business review, 1(6), 2003.

[7] Christopher M Bishop et al. Pattern recognition and machine learning, volume 4.

springer New York, 2006.

[8] Linda Delamaire, HAH Abdou, and John Pointon. Credit card fraud and detection

techniques: a review. Banks and Bank Systems, 4(2):57–68, 2009.

[9] Raymond Anderson. The Credit Scoring Toolkit: Theory and Practice for Retail

Credit Risk Management and Decision Automation. Oxford University Press, 2007.

[10] Bart Baesens, Veronique Van Vlasselaer, and Wouter Verbeke. Fraud Analytics

Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data

Science for Fraud Detection. John Wiley & Sons, 2015.

[11] Richard J Bolton and David J Hand. Unsupervised profiling methods for fraud

detection. Credit Scoring and Credit Control VII, pages 235–255, 2001.

161

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/

Bibliography 162

[12] The nilson report, August 2013. URL http://www.nilsonreport.com/. [Issue

1023 | Aug 2013].

[13] Lexis Nexis. True cost of fraud 2014 study. URL http://www.lexisnexis.com/

risk/insights/true-cost-fraud.aspx.

[14] European Central Bank. Report on card fraud available: https://www.ecb.

europa.eu/press/pr/date/2014/html/pr140225.en.html.

[15] Cybersource. 2015 uk fraud report series: Part 2, 2015. URL http://www.

cybersource.com/. [Online; accessed July-2015].

[16] Wikipedia. 3-d secure, 2015. URL http://en.wikipedia.org/wiki/3-D_Secure.

[Online; accessed July-2015].

[17] Jose M Pavía, Ernesto J Veres-Ferrer, and Gabriel Foix-Escura. Credit card inci-

dents and control systems. International Journal of Information Management, 32

(6):501–503, 2012.

[18] Andrea Dal Pozzolo, Olivier Caelen, Yann-Ael Le Borgne, Serge Waterschoot, and

Gianluca Bontempi. Learned lessons in credit card fraud detection from a practi-

tioner perspective. Expert Systems with Applications, 41(10):4915–4928, 2014.

[19] Andrea Dal Pozzolo, Reid A. Johnson, Olivier Caelen, Serge Waterschoot, Nitesh V

Chawla, and Gianluca Bontempi. Using hddt to avoid instances propagation in

unbalanced and evolving data streams. In Neural Networks (IJCNN), 2014 Inter-

national Joint Conference on, pages 588–594. IEEE, 2014.

[20] Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen, Cesare Alippi, and Gi-

anluca Bontempi. Credit card fraud detection and concept-drift adaptation with

delayed supervised information. In Neural Networks (IJCNN), 2015 International

Joint Conference on. IEEE, 2015.

[21] Haibo He and Edwardo A Garcia. Learning from imbalanced data. Knowledge and

Data Engineering, IEEE Transactions on, 21(9):1263–1284, 2009.

[22] G. Batista, A. Carvalho, and M. Monard. Applying one-sided selection to unbal-

anced datasets. MICAI 2000: Advances in Artificial Intelligence, pages 315–325,

2000.

[23] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid

Bouchachia. A survey on concept drift adaptation. ACM Computing Surveys

(CSUR), 46(4):44, 2014.

http://www.nilsonreport.com/
http://www.lexisnexis.com/risk/insights/true-cost-fraud.aspx
http://www.lexisnexis.com/risk/insights/true-cost-fraud.aspx
https://www.ecb.europa.eu/press/pr/date/2014/html/pr140225.en.html
https://www.ecb.europa.eu/press/pr/date/2014/html/pr140225.en.html
http://www.cybersource.com/
http://www.cybersource.com/
http://en.wikipedia.org/wiki/3-D_Secure

Bibliography 163

[24] Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi. unbalanced: Racing

For Unbalanced Methods Selection., 2015. URL http://CRAN.R-project.org/

package=unbalanced. R package version 2.0.

[25] R Development Core Team. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria, 2011. URL

http://www.R-project.org/. ISBN 3-900051-07-0.

[26] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for

configuring metaheuristics. In Proceedings of the genetic and evolutionary compu-

tation conference, pages 11–18, 2002.

[27] Andrea Dal Pozzolo, Olivier Caelen, Serge Waterschoot, and Gianluca Bontempi.

Racing for unbalanced methods selection. In Proceedings of the 14th International

Conference on Intelligent Data Engineering and Automated Learning. IDEAL,

2013.

[28] Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson, and Gianluca Bontempi.

Calibrating probability with undersampling for unbalanced classification. In 2015

IEEE Symposium on Computational Intelligence and Data Mining. IEEE, 2015.

[29] Tom M Mitchell. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45, 1997.

[30] Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical learning theory,

volume 1. Wiley New York, 1998.

[31] Trevor Hastie, Robert Tibshirani, Jerome Friedman, T Hastie, J Friedman, and

R Tibshirani. The elements of statistical learning, volume 2. Springer, 2009.

[32] Lennart Ljung. System identification: Theory for the user. PTR Prentice Hall

Information and System Sciences Series, 198, 1987.

[33] Andrew R Webb. Statistical pattern recognition. John Wiley & Sons, 2003.

[34] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John

Wiley & Sons, 2012.

[35] C. Elkan. The foundations of cost-sensitive learning. In International Joint Con-

ference on Artificial Intelligence, volume 17, pages 973–978, 2001.

[36] Trevor. Hastie, Robert. Tibshirani, and J Jerome H Friedman. The elements of

statistical learning, volume 1. Springer New York, 2001.

[37] Pedro Domingos. A unified bias-variance decomposition for zero-one and squared

loss. AAAI/IAAI, 2000:564–569, 2000.

http://CRAN.R-project.org/package=unbalanced
http://CRAN.R-project.org/package=unbalanced
http://www.R-project.org/

Bibliography 164

[38] Robert C Holte. Very simple classification rules perform well on most commonly

used datasets. Machine learning, 11(1):63–90, 1993.

[39] Pedro Domingos and Michael Pazzani. On the optimality of the simple bayesian

classifier under zero-one loss. Machine learning, 29(2-3):103–130, 1997.

[40] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification

algorithms: Bagging, boosting, and variants. Machine learning, 36(1-2):105–139,

1999.

[41] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[42] Robert E Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the

margin: A new explanation for the effectiveness of voting methods. Annals of

statistics, pages 1651–1686, 1998.

[43] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[44] Anders Krogh, Jesper Vedelsby, et al. Neural network ensembles, cross validation,

and active learning. Advances in neural information processing systems, 7:231–238,

1995.

[45] Hongyu Guo and Herna L Viktor. Learning from imbalanced data sets with boost-

ing and data generation: the databoost-im approach. ACM SIGKDD Explorations

Newsletter, 6(1):30–39, 2004.

[46] Gary M Weiss. Mining with rarity: a unifying framework. ACM SIGKDD Explo-

rations Newsletter, 6(1):7–19, 2004.

[47] David L Olson and Dursun Delen. Advanced data mining techniques. Springer

Science & Business Media, 2008.

[48] I.H. Witten and E. Frank. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, 2005.

[49] Foster Provost. Machine learning from imbalanced data sets 101. In Proceedings

of the AAAI’2000 Workshop on Imbalanced Data Sets, 2000.

[50] Chao Chen, Andy Liaw, and Leo Breiman. Using random forest to learn imbalanced

data. University of California, Berkeley, 2004.

[51] Nitesh V Chawla, David A Cieslak, Lawrence O Hall, and Ajay Joshi. Automati-

cally countering imbalance and its empirical relationship to cost. Data Mining and

Knowledge Discovery, 17(2):225–252, 2008.

Bibliography 165

[52] Gregory Ditzler, Robi Polikar, and Nitesh Chawla. An incremental learning algo-

rithm for non-stationary environments and class imbalance. In Pattern Recognition

(ICPR), 2010 20th International Conference on, pages 2997–3000. IEEE, 2010.

[53] Tom Fawcett. Roc graphs: Notes and practical considerations for researchers.

Machine learning, 31:1–38, 2004.

[54] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):

861–874, 2006.

[55] Nitesh V Chawla. C4.5 and imbalanced data sets: investigating the effect of sam-

pling method, probabilistic estimate, and decision tree structure. In Proceedings of

the ICML, volume 3, 2003.

[56] Nitesh V Chawla. Data mining for imbalanced datasets: An overview. In Data

mining and knowledge discovery handbook, pages 853–867. Springer, 2005.

[57] Wei Liu, Sanjay Chawla, David A Cieslak, and Nitesh V Chawla. A robust decision

tree algorithm for imbalanced data sets. In SDM, volume 10, pages 766–777. SIAM,

2010.

[58] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc

curves. In Proceedings of the 23rd international conference on Machine learning,

pages 233–240. ACM, 2006.

[59] Ira Cohen and Moises Goldszmidt. Properties and benefits of calibrated classifiers.

In Knowledge Discovery in Databases: PKDD 2004, pages 125–136. Springer, 2004.

[60] Glenn W Brier. Verification of forecasts expressed in terms of probability. Monthly

weather review, 78(1):1–3, 1950.

[61] Véronique Van Vlasselaer, Cristian Bravo, Olivier Caelen, Tina Eliassi-Rad, Le-

man Akoglu, Monique Snoeck, and Bart Baesens. Apate: A novel approach for

automated credit card transaction fraud detection using network-based extensions.

Decision Support Systems, 2015.

[62] M Krivko. A hybrid model for plastic card fraud detection systems. Expert Systems

with Applications, 37(8):6070–6076, 2010.

[63] Christopher Whitrow, David J Hand, Piotr Juszczak, D Weston, and Niall M

Adams. Transaction aggregation as a strategy for credit card fraud detection.

Data Mining and Knowledge Discovery, 18(1):30–55, 2009.

[64] Siddhartha Bhattacharyya, Sanjeev Jha, Kurian Tharakunnel, and J Christopher

Westland. Data mining for credit card fraud: A comparative study. Decision

Support Systems, 50(3):602–613, 2011.

Bibliography 166

[65] Sanjeev Jha, Montserrat Guillen, and J Christopher Westland. Employing trans-

action aggregation strategy to detect credit card fraud. Expert systems with appli-

cations, 39(16):12650–12657, 2012.

[66] D.J. Hand. Measuring classifier performance: a coherent alternative to the area

under the roc curve. Machine learning, 77(1):103–123, 2009.

[67] Donald Bamber. The area above the ordinal dominance graph and the area below

the receiver operating characteristic graph. Journal of mathematical psychology,

12(4):387–415, 1975.

[68] Yusuf Sahin, Serol Bulkan, and Ekrem Duman. A cost-sensitive decision tree

approach for fraud detection. Expert Systems with Applications, 40(15):5916–5923,

2013.

[69] Nader Mahmoudi and Ekrem Duman. Detecting credit card fraud by modified

fisher discriminant analysis. Expert Systems with Applications, 42(5):2510–2516,

2015.

[70] Alejandro Correa Bahnsen, Djamila Aouada, and Björn Ottersten. Example-

dependent cost-sensitive decision trees. Expert Systems with Applications, 2015.

[71] Alejandro Correa Bahnsen, Aleksandar Stojanovic, Djamila Aouada, and Bjorn

Ottersten. Cost sensitive credit card fraud detection using bayes minimum risk. In

Machine Learning and Applications (ICMLA), 2013 12th International Conference

on, volume 1, pages 333–338. IEEE, 2013.

[72] Ekrem Duman and M Hamdi Ozcelik. Detecting credit card fraud by genetic

algorithm and scatter search. Expert Systems with Applications, 38(10):13057–

13063, 2011.

[73] G. Fan and M. Zhu. Detection of rare items with target. Statistics and Its Interface,

4:11–17, 2011.

[74] Mu Zhu. Recall, precision and average precision. Department of Statistics and

Actuarial Science, University of Waterloo, Waterloo, 2, 2004.

[75] David J Hand and Martin J Crowder. Overcoming selectivity bias in evaluating

new fraud detection systems for revolving credit operations. International Journal

of Forecasting, 28(1):216–223, 2012.

[76] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Editorial: special

issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newslet-

ter, 6(1):1–6, 2004.

Bibliography 167

[77] B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-

proportionate example weighting. In Data Mining, ICDM, pages 435–442. IEEE,

2003.

[78] P. Domingos. Metacost: a general method for making classifiers cost-sensitive.

In Proceedings of the fifth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 155–164. ACM, 1999.

[79] Nathalie Japkowicz. Concept-learning in the presence of between-class and within-

class imbalances. In Advances in Artificial Intelligence, pages 67–77. Springer,

2001.

[80] Taeho Jo and Nathalie Japkowicz. Class imbalances versus small disjuncts. ACM

SIGKDD Explorations Newsletter, 6(1):40–49, 2004.

[81] Gary M Weiss. Learning with rare cases and small disjuncts. In ICML, pages

558–565, 1995.

[82] Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A systematic

study. Intelligent data analysis, 6(5):429–449, 2002.

[83] Nathalie Japkowicz. Class imbalances: are we focusing on the right issue. In

Workshop on Learning from Imbalanced Data Sets II, volume 1723, page 63, 2003.

[84] Ronaldo C Prati, Gustavo EAPA Batista, and Maria Carolina Monard. Class

imbalances versus class overlapping: an analysis of a learning system behavior. In

MICAI 2004: Advances in Artificial Intelligence, pages 312–321. Springer, 2004.

[85] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[86] Robert C Holte, Liane E Acker, and Bruce W Porter. Concept learning and the

problem of small disjuncts. In Proceedings of the Eleventh International Joint

Conference on Artificial Intelligence, volume 1, 1989.

[87] Haibo He and Yunqian Ma. Imbalanced learning: foundations, algorithms, and

applications. John Wiley & Sons, 2013.

[88] Gary M Weiss and Foster Provost. The effect of class distribution on classifier

learning: an empirical study. Rutgers Univ, 2001.

[89] J. Laurikkala. Improving identification of difficult small classes by balancing class

distribution. Artificial Intelligence in Medicine, pages 63–66, 2001.

[90] Andrew Estabrooks, Taeho Jo, and Nathalie Japkowicz. A multiple resampling

method for learning from imbalanced data sets. Computational Intelligence, 20(1):

18–36, 2004.

Bibliography 168

[91] C. Drummond and R.C. Holte. C4.5, class imbalance, and cost sensitivity: why

under-sampling beats over-sampling. In Workshop on Learning from Imbalanced

Datasets II, 2003.

[92] NV Chawla, KW Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote:

synthetic minority over-sampling technique. Journal of Artificial Intelligence Re-

search (JAIR), 16:321–357, 2002.

[93] BX Wang and N Japkowicz. Imbalanced data set learning with synthetic samples.

In Proc. IRIS Machine Learning Workshop, page 19, 2004.

[94] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new over-

sampling method in imbalanced data sets learning. In Advances in intelligent

computing, pages 878–887. Springer, 2005.

[95] Haibo He, Yang Bai, Edwardo Garcia, Shutao Li, et al. Adasyn: Adaptive synthetic

sampling approach for imbalanced learning. In Neural Networks, 2008. IJCNN

2008.(IEEE World Congress on Computational Intelligence). IEEE International

Joint Conference on, pages 1322–1328. IEEE, 2008.

[96] I. Tomek. Two modifications of cnn. IEEE Trans. Syst. Man Cybern., 6:769–772,

1976.

[97] S. Suman, K. Laddhad, and U. Deshmukh. Methods for handling highly skewed

datasets. Part I-October, 3, 2005.

[98] P. E. Hart. The condensed nearest neighbor rule. IEEE Transactions on Informa-

tion Theory, 1968.

[99] D.R. Wilson and T.R. Martinez. Reduction techniques for instance-based learning

algorithms. Machine learning, 38(3):257–286, 2000.

[100] Miroslav Kubat, Stan Matwin, et al. Addressing the curse of imbalanced training

sets: one-sided selection. In ICML, volume 97, pages 179–186. Nashville, USA,

1997.

[101] D.L. Wilson. Asymptotic properties of nearest neighbor rules using edited data.

Systems, Man and Cybernetics, (3):408–421, 1972.

[102] J.R. Quinlan. C4.5: programs for machine learning, volume 1. Morgan kaufmann,

1993.

[103] David A Cieslak and Nitesh V Chawla. Learning decision trees for unbalanced

data. In Machine Learning and Knowledge Discovery in Databases, pages 241–256.

Springer, 2008.

Bibliography 169

[104] Sofia Visa and Anca Ralescu. Issues in mining imbalanced data sets-a review

paper. In Proceedings of the sixteen midwest artificial intelligence and cognitive

science conference, pages 67–73. sn, 2005.

[105] Inderjeet Mani and I Zhang. knn approach to unbalanced data distributions: a case

study involving information extraction. In Proceedings of Workshop on Learning

from Imbalanced Datasets, 2003.

[106] Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina Monard. A study

of the behavior of several methods for balancing machine learning training data.

ACM SIGKDD Explorations Newsletter, 6(1):20–29, 2004.

[107] Rong Yan, Yan Liu, Rong Jin, and Alex Hauptmann. On predicting rare classes

with svm ensembles in scene classification. In Acoustics, Speech, and Signal Pro-

cessing, 2003. Proceedings.(ICASSP’03). 2003 IEEE International Conference on,

volume 3, pages III–21. IEEE, 2003.

[108] Gang Wu and Edward Y Chang. Class-boundary alignment for imbalanced dataset

learning. In ICML 2003 workshop on learning from imbalanced data sets II, Wash-

ington, DC, pages 49–56, 2003.

[109] Jérôme Callut and Pierre Dupont. F β support vector machines. In Neural Net-

works, 2005. IJCNN’05. Proceedings. 2005 IEEE International Joint Conference

on, volume 3, pages 1443–1448. IEEE, 2005.

[110] Xuchun Li, Lei Wang, and Eric Sung. Adaboost with svm-based component clas-

sifiers. Engineering Applications of Artificial Intelligence, 21(5):785–795, 2008.

[111] Wei Liu and Sanjay Chawla. Class confidence weighted knn algorithms for im-

balanced data sets. In Advances in Knowledge Discovery and Data Mining, pages

345–356. Springer, 2011.

[112] Bing Liu, Wynne Hsu, and Yiming Ma. Mining association rules with multiple min-

imum supports. In Proceedings of the fifth ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 337–341. ACM, 1999.

[113] Florian Verhein and Sanjay Chawla. Using significant, positively associated and

relatively class correlated rules for associative classification of imbalanced datasets.

In Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference on,

pages 679–684. IEEE, 2007.

[114] Gary M Weiss. Foundations of imbalanced learning. H. He, & Y. Ma, Imbalanced

Learning: Foundations, Algorithms, and Applications, pages 13–41, 2013.

Bibliography 170

[115] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm.

In ICML, volume 96, pages 148–156, 1996.

[116] X.Y. Liu, J. Wu, and Z.H. Zhou. Exploratory undersampling for class-imbalance

learning. Systems, Man, and Cybernetics, Part B: Cybernetics, 39(2):539–550,

2009.

[117] Shuo Wang, Ke Tang, and Xin Yao. Diversity exploration and negative correla-

tion learning on imbalanced data sets. In Neural Networks, 2009. IJCNN 2009.

International Joint Conference on, pages 3259–3266. IEEE, 2009.

[118] Fernando Vilariño, Panagiota Spyridonos, Jordi Vitrià, and Petia Radeva. Experi-

ments with svm and stratified sampling with an imbalanced problem: Detection of

intestinal contractions. In Pattern Recognition and Image Analysis, pages 783–791.

Springer, 2005.

[119] Pilsung Kang and Sungzoon Cho. Eus svms: Ensemble of under-sampled svms

for data imbalance problems. In Neural Information Processing, pages 837–846.

Springer, 2006.

[120] Yang Liu, Aijun An, and Xiangji Huang. Boosting prediction accuracy on imbal-

anced datasets with svm ensembles. In Advances in Knowledge Discovery and Data

Mining, pages 107–118. Springer, 2006.

[121] Benjamin X Wang and Nathalie Japkowicz. Boosting support vector machines for

imbalanced data sets. Knowledge and Information Systems, 25(1):1–20, 2010.

[122] N. Chawla, A. Lazarevic, L. Hall, and K. Bowyer. Smoteboost: Improving predic-

tion of the minority class in boosting. Knowledge Discovery in Databases: PKDD

2003, pages 107–119, 2003.

[123] Mahesh V Joshi, Vipin Kumar, and Ramesh C Agarwal. Evaluating boosting

algorithms to classify rare classes: Comparison and improvements. In Data Mining,

2001. ICDM 2001, Proceedings IEEE International Conference on, pages 257–264.

IEEE, 2001.

[124] David Mease, Abraham J Wyner, and Andreas Buja. Boosted classification trees

and class probability/quantile estimation. The Journal of Machine Learning Re-

search, 8:409–439, 2007.

[125] Yanmin Sun, Mohamed S Kamel, Andrew KC Wong, and Yang Wang. Cost-

sensitive boosting for classification of imbalanced data. Pattern Recognition, 40

(12):3358–3378, 2007.

Bibliography 171

[126] Wei Fan, Salvatore J Stolfo, Junxin Zhang, and Philip K Chan. Adacost: misclas-

sification cost-sensitive boosting. In ICML, pages 97–105, 1999.

[127] Hamed Masnadi-Shirazi and Nuno Vasconcelos. Risk minimization, probability

elicitation, and cost-sensitive svms. In ICML, pages 759–766, 2010.

[128] Matjaz Kukar, Igor Kononenko, et al. Cost-sensitive learning with neural networks.

In ECAI, pages 445–449, 1998.

[129] Charles X Ling, Qiang Yang, Jianning Wang, and Shichao Zhang. Decision trees

with minimal costs. In Proceedings of the twenty-first international conference on

Machine learning, page 69. ACM, 2004.

[130] Jeffrey P Bradford, Clayton Kunz, Ron Kohavi, Cliff Brunk, and Carla E Brodley.

Pruning decision trees with misclassification costs. In Machine Learning: ECML-

98, pages 131–136. Springer, 1998.

[131] C.X. Ling and V.S. Sheng. Cost-sensitive learning and the class imbalance problem.

Encyclopedia of Machine Learning, 2008.

[132] Marcus A Maloof, Pat Langley, Stephanie Sage, and T Binford. Learning to detect

rooftops in aerial images. 1997.

[133] Corinna Cortes, Mehryar Mohri, Michael Riley, and Afshin Rostamizadeh. Sam-

ple selection bias correction theory. In Algorithmic learning theory, pages 38–53.

Springer, 2008.

[134] Marco Saerens, Patrice Latinne, and Christine Decaestecker. Adjusting the outputs

of a classifier to new a priori probabilities: a simple procedure. Neural computation,

14(1):21–41, 2002.

[135] Mark G Kelly, David J Hand, and Niall M Adams. The impact of changing pop-

ulations on classifier performance. In Proceedings of the fifth ACM SIGKDD in-

ternational conference on Knowledge discovery and data mining, pages 367–371.

ACM, 1999.

[136] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by

weighting the log-likelihood function. Journal of statistical planning and inference,

90(2):227–244, 2000.

[137] David J Hand et al. Classifier technology and the illusion of progress. Statistical

science, 21(1):1–14, 2006.

[138] Keisuke Yamazaki, Motoaki Kawanabe, Sumio Watanabe, Masashi Sugiyama, and

Klaus-Robert Müller. Asymptotic bayesian generalization error when training and

Bibliography 172

test distributions are different. In Proceedings of the 24th international conference

on Machine learning, pages 1079–1086. ACM, 2007.

[139] Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert Müller. Covariate shift

adaptation by importance weighted cross validation. The Journal of Machine

Learning Research, 8:985–1005, 2007.

[140] James J Heckman. Sample selection bias as a specification error. Econometrica:

Journal of the econometric society, pages 153–161, 1979.

[141] Jose G Moreno-Torres, Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V Chawla,

and Francisco Herrera. A unifying view on dataset shift in classification. Pattern

Recognition, 45(1):521–530, 2012.

[142] Bianca Zadrozny and Charles Elkan. Learning and making decisions when costs

and probabilities are both unknown. In Proceedings of the seventh ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 204–213.

ACM, 2001.

[143] Bianca Zadrozny. Learning and evaluating classifiers under sample selection bias.

In Proceedings of the twenty-first international conference on Machine learning,

page 114. ACM, 2004.

[144] Wei Fan, Ian Davidson, Bianca Zadrozny, and Philip S Yu. An improved catego-

rization of classifier’s sensitivity on sample selection bias. In Data Mining, Fifth

IEEE International Conference on, pages 4–pp. IEEE, 2005.

[145] Miroslav Dudík, Steven J Phillips, and Robert E Schapire. Correcting sample

selection bias in maximum entropy density estimation. In Advances in neural

information processing systems, pages 323–330, 2005.

[146] Nitesh V Chawla and Grigoris I Karakoulas. Learning from labeled and unla-

beled data: An empirical study across techniques and domains. J. Artif. Intell.

Res.(JAIR), 23:331–366, 2005.

[147] Masashi Sugiyama. Learning under non-stationarity: Covariate shift adaptation

by importance weighting. In Handbook of Computational Statistics, pages 927–952.

Springer, 2012.

[148] T Ryan Hoens, Robi Polikar, and Nitesh V Chawla. Learning from streaming data

with concept drift and imbalance: an overview. Progress in Artificial Intelligence,

1(1):89–101, 2012.

[149] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D

Lawrence. Dataset shift in machine learning. The MIT Press, 2009.

Bibliography 173

[150] C. Alippi, G. Boracchi, and M. Roveri. Just-in-time classifiers for recurrent con-

cepts. Neural Networks and Learning Systems, IEEE Transactions on, 24(4):620–

634, April. ISSN 2162-237X. doi: 10.1109/TNNLS.2013.2239309.

[151] Stephen Grossberg. Nonlinear neural networks: Principles, mechanisms, and ar-

chitectures. Neural networks, 1(1):17–61, 1988.

[152] Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning with

drift detection. In Advances in artificial intelligence–SBIA 2004, pages 286–295.

Springer, 2004.

[153] Kyosuke Nishida and Koichiro Yamauchi. Detecting concept drift using statistical

testing. In Discovery Science, pages 264–269. Springer, 2007.

[154] Albert Bifet and Ricard Gavalda. Learning from time-changing data with adaptive

windowing. In SDM, volume 7, page 2007. SIAM, 2007.

[155] Cesare Alippi, Giacomo Boracchi, and Manuel Roveri. A just-in-time adaptive

classification system based on the intersection of confidence intervals rule. Neural

Networks, 24(8):791–800, 2011.

[156] Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. Learning in non-

stationary environments: A survey. Computational Intelligence Magazine, IEEE,

10(4):12–25, 2015.

[157] Indrė Žliobaitė. Learning under concept drift: an overview. arXiv preprint

arXiv:1010.4784, 2010.

[158] Ryan Elwell and Robi Polikar. Incremental learning of concept drift in nonsta-

tionary environments. Neural Networks, IEEE Transactions on, 22(10):1517–1531,

2011.

[159] Robi Polikar, L Upda, SS Upda, and Vasant Honavar. Learn++: An incremental

learning algorithm for supervised neural networks. Systems, Man, and Cybernetics,

Part C: Applications and Reviews, 31(4):497–508, 2001.

[160] W Nick Street and YongSeog Kim. A streaming ensemble algorithm (sea) for large-

scale classification. In Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 377–382. ACM, 2001.

[161] Sheng Chen, Haibo He, Kang Li, and Sachi Desai. Musera: multiple selectively

recursive approach towards imbalanced stream data mining. In Neural Networks

(IJCNN), The 2010 International Joint Conference on, pages 1–8. IEEE, 2010.

Bibliography 174

[162] J Zico Kolter and Marcus A Maloof. Dynamic weighted majority: An ensemble

method for drifting concepts. The Journal of Machine Learning Research, 8:2755–

2790, 2007.

[163] Jeffrey C Schlimmer and Richard H Granger Jr. Incremental learning from noisy

data. Machine learning, 1(3):317–354, 1986.

[164] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift

and hidden contexts. Machine learning, 23(1):69–101, 1996.

[165] Ludmila I Kuncheva. Classifier ensembles for changing environments. In Multiple

classifier systems, pages 1–15. Springer, 2004.

[166] Charu C Aggarwal. Data streams: models and algorithms, volume 31. Springer

Science & Business Media, 2007.

[167] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings

of the sixth ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 71–80. ACM, 2000.

[168] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data

streams. In Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 97–106. ACM, 2001.

[169] João Gama, Ricardo Fernandes, and Ricardo Rocha. Decision trees for mining

data streams. Intelligent Data Analysis, 10(1):23–45, 2006.

[170] Jing Gao, Wei Fan, Jiawei Han, and S Yu Philip. A general framework for mining

concept-drifting data streams with skewed distributions. In SDM, 2007.

[171] Jing Gao, Bolin Ding, Wei Fan, Jiawei Han, and Philip S Yu. Classifying data

streams with skewed class distributions and concept drifts. Internet Computing,

12(6):37–49, 2008.

[172] Gregory Ditzler and Robi Polikar. An ensemble based incremental learning frame-

work for concept drift and class imbalance. In Neural Networks (IJCNN), The

2010 International Joint Conference on, pages 1–8. IEEE, 2010.

[173] Gregory Ditzler and Robi Polikar. Incremental learning of concept drift from

streaming imbalanced data. Knowledge and Data Engineering, IEEE Transactions

on, 25(10):2283–2301, 2013.

[174] Ryan Elwell and Robi Polikar. Incremental learning of variable rate concept drift.

In Multiple Classifier Systems, pages 142–151. Springer, 2009.

Bibliography 175

[175] Ryan N Lichtenwalter and Nitesh V Chawla. Adaptive methods for classification

in arbitrarily imbalanced and drifting data streams. In New Frontiers in Applied

Data Mining, pages 53–75. Springer, 2010.

[176] Sheng Chen and Haibo He. Towards incremental learning of nonstationary imbal-

anced data stream: a multiple selectively recursive approach. Evolving Systems, 2

(1):35–50, 2011.

[177] Sheng Chen and Haibo He. Sera: selectively recursive approach towards nonsta-

tionary imbalanced stream data mining. In Neural Networks, 2009. IJCNN 2009.

International Joint Conference on, pages 522–529. IEEE, 2009.

[178] ShuoWang, Leandro L Minku, and Xin Yao. Online class imbalance learning and its

application in fault detection. International Journal of Computational Intelligence

and Applications, 12(04), 2013.

[179] Nikunj C Oza. Online bagging and boosting. In Systems, man and cybernetics,

volume 3, pages 2340–2345. IEEE, 2005.

[180] R. Brause, T. Langsdorf, and M. Hepp. Neural data mining for credit card fraud

detection. In Tools with Artificial Intelligence, Proceedings, pages 103–106. IEEE,

1999.

[181] P.K. Chan, W. Fan, A.L. Prodromidis, and S.J. Stolfo. Distributed data mining

in credit card fraud detection. Intelligent Systems and their Applications, 14(6):

67–74, 1999.

[182] Dimitris K Tasoulis, Niall M Adams, and David J Hand. Unsupervised clustering

in streaming data. In ICDM Workshops, pages 638–642, 2006.

[183] F. Provost, T. Fawcett, et al. Analysis and visualization of classifier performance:

Comparison under imprecise class and cost distributions. In Proceedings of the

third international conference on knowledge discovery and data mining, pages 43–

48. Amer Assn for Artificial, 1997.

[184] D.J. Weston, D.J. Hand, N.M. Adams, C. Whitrow, and P. Juszczak. Plastic

card fraud detection using peer group analysis. Advances in Data Analysis and

Classification, 2(1):45–62, 2008.

[185] Agus Sudjianto, Sheela Nair, Ming Yuan, Aijun Zhang, Daniel Kern, and Fernando

Cela-Díaz. Statistical methods for fighting financial crimes. Technometrics, 52(1),

2010.

[186] Naeem Siddiqi. Credit risk scorecards: developing and implementing intelligent

credit scoring, volume 3. Wiley. com, 2005.

Bibliography 176

[187] Tom Fawcett and Foster Provost. Adaptive fraud detection. Data mining and

knowledge discovery, 1(3):291–316, 1997.

[188] Corinna Cortes and Daryl Pregibon. Signature-based methods for data streams.

Data Mining and Knowledge Discovery, 5(3):167–182, 2001.

[189] Haixun Wang, Wei Fan, Philip S Yu, and Jiawei Han. Mining concept-drifting

data streams using ensemble classifiers. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 226–235.

ACM, 2003.

[190] EWT Ngai, Yong Hu, YH Wong, Yijun Chen, and Xin Sun. The application of

data mining techniques in financial fraud detection: A classification framework and

an academic review of literature. Decision Support Systems, 50(3):559–569, 2011.

[191] Sushmito Ghosh and Douglas L Reilly. Credit card fraud detection with a neural-

network. In System Sciences, 1994. Proceedings of the Twenty-Seventh Hawaii

International Conference on, volume 3, pages 621–630. IEEE, 1994.

[192] Emin Aleskerov, Bernd Freisleben, and Bharat Rao. Cardwatch: A neural network

based database mining system for credit card fraud detection. In Computational

Intelligence for Financial Engineering (CIFEr), 1997., Proceedings of the IEEE/I-

AFE 1997, pages 220–226. IEEE, 1997.

[193] J.R. Dorronsoro, F. Ginel, C. Sgnchez, and CS Cruz. Neural fraud detection in

credit card operations. Neural Networks, 8(4):827–834, 1997.

[194] D. Sánchez, MA Vila, L. Cerda, and JM Serrano. Association rules applied to

credit card fraud detection. Expert Systems with Applications, 36(2):3630–3640,

2009.

[195] Tian-Shyug Lee, Chih-Chou Chiu, Yu-Chao Chou, and Chi-Jie Lu. Mining the

customer credit using classification and regression tree and multivariate adaptive

regression splines. Computational Statistics & Data Analysis, 50(4):1113–1130,

2006.

[196] Krishna M Gopinathan, Louis S Biafore, William M Ferguson, Michael A Lazarus,

Anu K Pathria, and Allen Jost. Fraud detection using predictive modeling, Octo-

ber 6 1998. US Patent 5,819,226.

[197] B Fryer. Visa cracks down on fraud. InformationWeek, 594:87, 1996.

[198] P. Viola and M. Jones. Fast and robust classification using asymmetric adaboost

and a detector cascade. Advances in Neural Information Processing System, 14,

2001.

Bibliography 177

[199] K. Ting. An empirical study of metacost using boosting algorithms. Machine

Learning: ECML 2000, pages 413–425, 2000.

[200] G.K.J. Shawe-Taylor. Optimizing classifiers for imbalanced training sets. Advances

in Neural Information Processing Systems 11, 11:253, 1999.

[201] Andrew Fast, Lisa Friedland, Marc Maier, Brian Taylor, David Jensen, Henry G

Goldberg, and John Komoroske. Relational data pre-processing techniques for

improved securities fraud detection. In Proceedings of the 13th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 941–949.

ACM, 2007.

[202] Yufeng Kou, Chang-Tien Lu, Sirirat Sirwongwattana, and Yo-Ping Huang. Survey

of fraud detection techniques. In Networking, sensing and control, 2004 IEEE

international conference on, volume 2, pages 749–754. IEEE, 2004.

[203] Clifton Phua, Vincent Lee, Kate Smith, and Ross Gayler. A comprehensive survey

of data mining-based fraud detection research. arXiv preprint arXiv:1009.6119,

2010.

[204] Vladimir Zaslavsky and Anna Strizhak. Credit card fraud detection using self-

organizing maps. Information and Security, 18:48, 2006.

[205] Dominik Olszewski. Fraud detection using self-organizing map visualizing the user

profiles. Knowledge-Based Systems, 70:324–334, 2014.

[206] F.E. Grubbs. Procedures for detecting outlying observations in samples. Techno-

metrics, 11(1):1–21, 1969.

[207] V. Barnett and T. Lewis. Outliers in statistical data. Wiley Series in Probability

and Mathematical Statistics. Applied Probability and Statistics, Chichester: Wiley,

1984, 2nd ed., 1, 1984.

[208] Longin Jan Latecki, Aleksandar Lazarevic, and Dragoljub Pokrajac. Outlier de-

tection with kernel density functions. In Machine Learning and Data Mining in

Pattern Recognition, pages 61–75. Springer, 2007.

[209] Feng Jiang, Yuefei Sui, and Cungen Cao. Outlier detection based on rough mem-

bership function. In Rough Sets and Current Trends in Computing, pages 388–397.

Springer, 2006.

[210] Michael H Cahill, Diane Lambert, Jost C Pinheiro, and Don X Sun. Detecting

fraud in the real world. Computing Reviews, 45(7):447, 2004.

Bibliography 178

[211] Charu C Aggarwal and Philip S Yu. Outlier detection for high dimensional data.

In ACM Sigmod Record, volume 30, pages 37–46. ACM, 2001.

[212] Zengyou He, Shengchun Deng, and Xiaofei Xu. An optimization model for outlier

detection in categorical data. In Advances in Intelligent Computing, pages 400–409.

Springer, 2005.

[213] Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi. When is under-

sampling effective in unbalanced classification tasks? In Machine Learning and

Knowledge Discovery in Databases. Springer, 2015.

[214] Jerzy Stefanowski. Overlapping, rare examples and class decomposition in learning

classifiers from imbalanced data. In Emerging Paradigms in Machine Learning,

pages 277–306. Springer, 2013.

[215] Gustavo EAPA Batista, Ronaldo C Prati, and Maria C Monard. Balancing strate-

gies and class overlapping. In Advances in Intelligent Data Analysis VI, pages

24–35. Springer, 2005.

[216] Vicente García, Jose Sánchez, and Ramon Mollineda. An empirical study of the

behavior of classifiers on imbalanced and overlapped data sets. In Progress in

Pattern Recognition, Image Analysis and Applications, pages 397–406. Springer,

2007.

[217] Vicente García, Ramón Alberto Mollineda, and José Salvador Sánchez. On the

k-nn performance in a challenging scenario of imbalance and overlapping. Pattern

Analysis and Applications, 11(3-4):269–280, 2008.

[218] Jason Van Hulse and Taghi Khoshgoftaar. Knowledge discovery from imbalanced

and noisy data. Data & Knowledge Engineering, 68(12):1513–1542, 2009.

[219] D Anyfantis, M Karagiannopoulos, S Kotsiantis, and P Pintelas. Robustness

of learning techniques in handling class noise in imbalanced datasets. In Artifi-

cial intelligence and innovations 2007: From theory to applications, pages 21–28.

Springer, 2007.

[220] Damien Brain and Geoffrey I Webb. The need for low bias algorithms in classifi-

cation learning from large data sets. In Principles of Data Mining and Knowledge

Discovery, pages 62–73. Springer, 2002.

[221] HO Hartley and A Ross. Unbiased ratio estimators. 1954.

[222] Andy Liaw and Matthew Wiener. Classification and regression by randomforest.

R News, 2(3):18–22, 2002. URL http://CRAN.R-project.org/doc/Rnews/.

http://CRAN.R-project.org/doc/Rnews/

Bibliography 179

[223] Alexandros Karatzoglou, Alex Smola, Kurt Hornik, and Achim Zeileis. kernlab-an

s4 package for kernel methods in r. 2004.

[224] Jarek Tuszynski. caTools: Tools: moving window statistics, GIF, Base64, ROC

AUC, etc., 2013. URL http://CRAN.R-project.org/package=caTools. R pack-

age version 1.16.

[225] David H Wolpert. The lack of a priori distinctions between learning algorithms.

Neural computation, 8(7):1341–1390, 1996.

[226] David H Wolpert and William G Macready. No free lunch theorems for optimiza-

tion. Evolutionary Computation, IEEE Transactions on, 1(1):67–82, 1997.

[227] O. Maron and A.W. Moore. Hoeffding races: Accelerating model selection search

for classification and function approximation. Robotics Institute, page 263, 1993.

[228] David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, and

Friedrich Leisch. e1071: Misc Functions of the Department of Statistics (e1071),

TU Wien, 2012. URL http://CRAN.R-project.org/package=e1071. R package

version 1.6-1.

[229] Terry Therneau, Beth Atkinson, and Brian Ripley. rpart: Recursive Partitioning

and Regression Trees, 2014. URL http://CRAN.R-project.org/package=rpart.

R package version 4.1-5.

[230] David A Cieslak, T Ryan Hoens, Nitesh V Chawla, and W Philip Kegelmeyer.

Hellinger distance decision trees are robust and skew-insensitive. Data Mining and

Knowledge Discovery, 24(1):136–158, 2012.

[231] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New

York, fourth edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN

0-387-95457-0.

[232] Milton Friedman. The use of ranks to avoid the assumption of normality implicit

in the analysis of variance. Journal of the American Statistical Association, 32

(200):675–701, 1937.

[233] C Radhakrishna Rao. A review of canonical coordinates and an alternative to

correspondence analysis using hellinger distance. Questiió: Quaderns d’Estadística,

Sistemes, Informatica i Investigació Operativa, 19(1):23–63, 1995.

[234] David A Cieslak and Nitesh V Chawla. Detecting fractures in classifier perfor-

mance. In Data Mining, 2007. ICDM 2007. Seventh IEEE International Confer-

ence on, pages 123–132. IEEE, 2007.

http://CRAN.R-project.org/package=caTools
http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=rpart
http://www.stats.ox.ac.uk/pub/MASS4

Bibliography 180

[235] Foster Provost and Pedro Domingos. Tree induction for probability-based ranking.

Machine Learning, 52(3):199–215, 2003.

[236] T Ryan Hoens, Nitesh V Chawla, and Robi Polikar. Heuristic updatable weighted

random subspaces for non-stationary environments. In Data Mining (ICDM), 2011

IEEE 11th International Conference on, pages 241–250. IEEE, 2011.

[237] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,

and Ian H Witten. The weka data mining software: an update. ACM SIGKDD

Explorations Newsletter, 11(1):10–18, 2009.

[238] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa: Mas-

sive online analysis. The Journal of Machine Learning Research, 99:1601–1604,

2010.

[239] Georg Krempl and Vera Hofer. Classification in presence of drift and latency. In

Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on,

pages 596–603. IEEE, 2011.

[240] Wei Fan. Systematic data selection to mine concept-drifting data streams. In

Proceedings of the tenth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 128–137. ACM, 2004.

[241] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The

Journal of Machine Learning Research, 7:1–30, 2006.

[242] Wei Fan and Ian Davidson. On sample selection bias and its efficient correction via

model averaging and unlabeled examples. In SDM, pages 320–331. SIAM, 2007.

[243] Torsten Hothorn, Peter Bühlmann, Sandrine Dudoit, Annette Molinaro, and

Mark J Van Der Laan. Survival ensembles. Biostatistics, 7(3):355–373, 2006.

[244] Hothorn Torsten, Hornik Kurt, and Achim Zeileis Carolin, Strobl and. party: A

Laboratory for Recursive Partytioning., 2015. URL http://CRAN.R-project.org/

package=party. R package version 1.0-13.

[245] Gilles Louppe. Understanding random forests: From theory to practice. arXiv

preprint arXiv:1407.7502, 2014.

[246] Burr Settles. Active learning literature survey. University of Wisconsin, Madison,

52:55–66, 2010.

[247] DJ Hand, C Whitrow, NM Adams, P Juszczak, and D Weston. Performance

criteria for plastic card fraud detection tools. Journal of the Operational Research

Society, 59(7):956–962, 2008.

http://CRAN.R-project.org/package=party
http://CRAN.R-project.org/package=party

Bibliography 181

[248] Bertrand Lebichot, Ilkka Kivimaki, Kevin Françoisse, and Marco Saerens. Semisu-

pervised classification through the bag-of-paths group betweenness. Neural Net-

works and Learning Systems, IEEE Transactions on, 25(6):1173–1186, 2014.

	Declaration of Authorship
	Abstract
	Résumé
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	I Overview
	1 Introduction
	1.1 The problem of Fraud Detection
	1.2 The impact of frauds
	1.3 Credit Card Fraud Detection
	1.4 Challenges in Data Driven Fraud Detection Systems
	1.5 Contributions
	1.5.1 Understanding sampling methods
	1.5.2 Learning from evolving and unbalanced data streams
	1.5.3 Formalization of a real-world Fraud Detection System
	1.5.4 Software and Credit Card Fraud Detection Dataset

	1.6 Publications and research activities
	1.7 Financial support and project objective
	1.8 Outline
	1.9 Notation

	2 Preliminaries
	2.1 Machine Learning
	2.1.1 Formalization of supervised learning
	2.1.2 The problem of classification
	2.1.3 Bias-variance decomposition
	2.1.4 Evaluation of a classification problem

	2.2 Credit Card Fraud Detection
	2.2.1 Fraud Detection System working conditions
	2.2.1.1 FDS Layers:
	2.2.1.2 Supervised Information
	2.2.1.3 System Update

	2.2.2 Features augmentation
	2.2.3 Accuracy measure of a Fraud Detection System

	3 State-of-the-art
	3.1 Techniques for unbalanced classification tasks
	3.1.1 Data level methods
	3.1.2 Algorithm level methods

	3.2 Learning with non-stationarity
	3.2.1 Sample Selection Bias
	3.2.2 Time evolving data

	3.3 Learning with evolving and unbalanced data streams
	3.4 Algorithmic solutions for Fraud Detection
	3.4.1 Supervised Approaches
	3.4.2 Unsupervised Approaches

	II Contribution
	4 Techniques for unbalanced classification tasks
	4.1 When is undersampling effective in unbalanced classification tasks?
	4.1.1 The warping effect of undersampling on the posterior probability
	4.1.2 Warping and class separability
	4.1.3 The interaction between warping and variance of the estimator
	4.1.4 Experimental validation
	4.1.5 Discussion

	4.2 Using calibrated probability with undersampling
	4.2.1 Adjusting posterior probabilities to new priors
	4.2.2 Warping correction and classification threshold adjustment
	4.2.3 Experimental results
	4.2.4 Discussion

	4.3 Racing for sampling methods selection
	4.3.1 Racing for strategy selection
	4.3.2 Experimental results
	4.3.3 Discussion

	4.4 Conclusion

	5 Learning from evolving data streams with skewed distributions
	5.1 Learning strategies in credit card fraud detection
	5.1.1 Formalization of the learning problem
	5.1.2 Strategies for learning with unbalanced and evolving data streams
	5.1.3 Experimental assessment
	5.1.4 Discussion

	5.2 Using HDDT to avoid instances propagation
	5.2.1 Hellinger Distance Decision Trees
	5.2.2 Hellinger Distance as weighting ensemble strategy
	5.2.3 Experimental assessment
	5.2.4 Discussion

	5.3 Conclusion

	6 A real-world Fraud Detection Systems: Concept Drift Adaptation with Alert-Feedback Interaction
	6.1 Realistic working conditions
	6.2 Fraud Detection with Alert-Feedback Interaction
	6.3 Learning strategy
	6.3.1 Conventional Classification Approaches in FDS
	6.3.2 Separating delayed Supervised Samples from Feedbacks
	6.3.3 Two Specific FDSs based on Random Forest

	6.4 Selection bias and Alert-Feedback Interaction
	6.5 Experiments
	6.5.1 Separating feedbacks from delayed supervised samples
	6.5.2 Artificial dataset with Concept Drift
	6.5.3 Improving the performance of the feedback classifier
	6.5.4 Standard accuracy measures and classifiers ignoring AFI
	6.5.5 Adaptive aggregation
	6.5.6 Final strategy selection and classification model analysis

	6.6 Discussion
	6.7 Conclusion

	7 Conclusions and Future Perspectives
	7.1 Summary of contributions
	7.2 Learned lessons
	7.3 Open issues
	7.4 The Future: going towards Big Data solutions
	7.5 Added value for the company
	7.6 Concluding remarks

	A The unbalanced package
	A.1 Methods for unbalanced classification
	A.2 Racing for strategy selection
	A.3 Summary

	B FDS software modules
	B.1 Model training
	B.2 Scoring
	B.3 Review

	C Bias and Variance of an estimator
	Bibliography

