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Abstract

Today’s computerized processes generate massive amounts of streaming data. In many
applications, data is collected for modeling the processes. The process model is hoped
to drive objectives such as decision support, data visualization, business intelligence,
automation and control, pattern recognition and classification, etc. However, we face
significant challenges in data-driven modeling of processes. Apart from the errors,
outliers and noise in the data measurements, the main challenge is due to a large
dimensionality, which is the number of variables each data sample measures. The
samples often form a long temporal sequence called a multivariate time series where
any one sample is influenced by the others. We wish to build a model that will ensure
robust generation, reviewing, and representation of new multivariate time series that
are consistent with the underlying process.

In this thesis, we adopt a modeling framework to extract characteristics from mul-
tivariate time series that correspond to dynamic variation-covariation common to the
measured variables across all the samples. Those characteristics of a multivariate time
series are named its ‘commonalities’ and a suitable measure for them is defined. What
makes the multivariate time series model versatile is the assumption regarding the ex-
istence of a latent time series of known or presumed characteristics and much lower di-
mensionality than the measured time series; the result is the well-known ‘dynamic factor
model’. Original variants of existing methods for estimating the dynamic factor model
are developed: The estimation is performed using the frequency-domain equivalent of
the dynamic factor model named the ‘spectral factor model’. To estimate the spectral
factor model, ideas are sought from the asymptotic theory of spectral estimates. This
theory is used to attain a probabilistic formulation, which provides maximum likelihood
estimates for the spectral factor model parameters. Then, maximum likelihood param-
eters are developed with all the analysis entirely in the spectral-domain such that the
dynamically transformed latent time series inherits the commonalities maximally.

The main contribution of this thesis is a learning framework using the spectral
factor model. We term learning as the ability of a computational model of a process to
robustly characterize the data the process generates for purposes of pattern matching,
classification and prediction. Hence, the spectral factor model could be claimed to have
learned a multivariate time series if the latent time series when dynamically transformed
extracts the commonalities reliably and maximally. The spectral factor model will be
used for mainly two multivariate time series learning applications: First, real-world
streaming datasets obtained from various processes are to be classified; in this exercise,
human brain magnetoencephalography signals obtained during various cognitive and
physical tasks are classified. Second, the commonalities are put to test by asking for
reliable prediction of a multivariate time series given its past evolution; share prices in
a portfolio are forecasted as part of this challenge.
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For both spectral factor modeling and learning, an analytical solution as well as
an iterative solution are developed. While the analytical solution is based on low-rank
approximation of the spectral density function, the iterative solution is based on the
expectation-maximization algorithm. For the human brain signal classification exercise,
a strategy for comparing similarities between the commonalities for various classes of
multivariate time series processes is developed. For the share price prediction problem,
a vector autoregressive model whose parameters are enriched with the maximum like-
lihood commonalities is designed. In both these learning problems, the spectral factor
model gives commendable performance with respect to competing approaches.
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Résumé

Les processus informatisés actuels génèrent des quantités massives de flux de données.
Dans nombre d’applications, ces flux de données sont collectées en vue de modéliser
les processus. Les modèles de processus obtenus ont pour but la réalisation d’objectifs
tels que l’aide à la décision, la visualisation de données, l’informatique décisionnelle,
l’automatisation et le contrôle, la reconnaissance de formes et la classification, etc. La
modélisation de processus sur la base de données implique cependant de faire face à
d’importants défis. Outre les erreurs, les données aberrantes et le bruit, le principal défi
provient de la large dimensionnalité, i.e. du nombre de variables dans chaque échantillon
de données mesurées. Les échantillons forment souvent une longue séquence temporelle
appelée série temporelle multivariée, où chaque échantillon est influencé par les autres.
Notre objectif est de construire un modèle robuste qui garantisse la génération, la
révision et la représentation de nouvelles séries temporelles multivariées cohérentes
avec le processus sous-jacent.

Dans cette thèse, nous adoptons un cadre de modélisation capable d’extraire, à par-
tir de séries temporelles multivariées, des caractéristiques correspondant à des variations
- covariations dynamiques communes aux variables mesurées dans tous les échantillons.
Ces caractéristiques sont appelées «points communs» et une mesure qui leur est ap-
propriée est définie. Ce qui rend le modèle de séries temporelles multivariées polyvalent
est l’hypothèse relative à l’existence de séries temporelles latentes de caractéristiques
connues ou présumées et de dimensionnalité beaucoup plus faible que les séries tem-
porelles mesurées; le résultat est le bien connu «modèle factoriel dynamique». Des
variantes originales de méthodes existantes pour estimer le modèle factoriel dynamique
sont développées : l’estimation est réalisée en utilisant l’équivalent du modèle factoriel
dynamique au niveau du domaine de fréquence, désigné comme le «modèle factoriel
spectral». Pour estimer le modèle factoriel spectral, nous nous basons sur des idées
relatives à la théorie des estimations spectrales. Cette théorie est utilisée pour aboutir à
une formulation probabiliste, qui fournit des estimations de probabilité maximale pour
les paramètres du modèle factoriel spectral. Des paramètres de probabilité maximale
sont alors développés, en plaçant notre analyse entièrement dans le domaine spectral,
de façon à ce que les séries temporelles latentes transformées dynamiquement héritent
au maximum des points communs.

La principale contribution de cette thèse consiste en un cadre d’apprentissage util-
isant le modèle factoriel spectral. Nous désignons par apprentissage la capacité d’un
modèle de processus à caractériser de façon robuste les données générées par le pro-
cessus à des fins de filtrage par motif, classification et prédiction. Dans ce contexte,
le modèle factoriel spectral est considéré comme ayant appris une série temporelle
multivariée si la série temporelle latente, une fois dynamiquement transformée, permet
d’extraire les points communs de façon fiable et maximale. Le modèle factoriel spectral
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sera utilisé principalement pour deux applications d’apprentissage de séries multivariées
: en premier lieu, des ensembles de données sous forme de flux venant de différents
processus du monde réel doivent être classifiés; lors de cet exercice, la classification
porte sur des signaux magnétoencéphalographiques obtenus chez l’homme au cours de
différentes tâches physiques et cognitives; en second lieu, les points communs obtenus
sont testés en demandant une prédiction fiable d’une série temporelle multivariée étant
donnée l’évolution passée; les prix d’un portefeuille d’actions sont prédits dans le cadre
de ce défi.

À la fois pour la modélisation et pour l’apprentissage factoriel spectral, une solution
analytique aussi bien qu’une solution itérative sont développées. Tandis que la solution
analytique est basée sur une approximation de rang inférieur de la fonction de densité
spectrale, la solution itérative est basée, quant à elle, sur l’algorithme de maximisation
des attentes. Pour l’exercice de classification des signaux magnétoencéphalographiques
humains, une stratégie de comparaison des similitudes entre les points communs des
différentes classes de processus de séries temporelles multivariées est développée. Pour
le problème de prédiction des prix des actions, un modèle vectoriel autorégressif dont
les paramètres sont enrichis avec les points communs de probabilité maximale est
conçu. Dans ces deux problèmes d’apprentissage, le modèle factoriel spectral atteint
des performances louables en regard d’approches concurrentes.
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Chapter 1

Introduction

The yearning to master a complicated process often prompts us to build its model. We
wish to have a model that is simple but consistent with the characteristics of volumes
of data obtained from the process. A model might serve several purposes: it could
aid in representing and reviewing available data and to generate more data of similar
characteristics. We also prefer the flexibility to evaluate the loyalty of the model to
the characteristics of the given data and subsequently alter it if need be. Such a
well-founded model should ultimately enable us to rein on the process.

The data typically comes as a set of samples and each sample is constituted by a
set of measured variables. The characteristics of the measured variables might not
be simple to comprehend. Hence, we wish the model to have a latent simplicity. To
that end, we might conveniently demand the model to use a lower number of latent
variables than the number of measured variables. Such a simplified interpretation of
the process with a fewer number of underlying unobserved latent variables than the
number of measured variables is called a latent variable model [11]. It is hoped that
the data could be represented and reviewed with ease in terms of the latent variables.

In many applications, the set of measured variables of a sample is dependent on
those of its preceding samples. The result is variation for a measured variable and
covariation between the measured variables with respect to time and such data is
called a multivariate time series [102]. The temporal variation-covariation across the
measured variables of a multivariate time series is termed its dynamic characteristics.

latent time series

measured
time series

Transformation

Figure 1.1: Three latent time series are dynamically transformed to five measured time series.
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A model built on the dynamic characteristics of a time series is a reasonably flexible
and accurate depiction of the underlying process.

Figure 1.1 illustrates a number of measured time series variables being generated
by a transformation of a lower number of variables of the latent time series. It is this,
possibly complicated, transformation that is to be modeled using the simplicity of the
lower number of latent variables. Obviously, in doing so, we ought to be aware of the
challenge that neither the transformation nor the number and characteristics of the
latent variables are known. The modeling challenge is even greater because the lower
number of variables might not be able to inherit the entire dynamic characteristics of
the measured time series.

The scope of the problem of latent variable modeling of the dynamic characteristics
of a multivariate time series is wide. It is natural, then, to restrict its scope as well
as make it practically interesting. To this end, the dynamic characteristics common
to any two measured variables [117] is deemed interesting for the modeling problem;
those characteristics are termed the commonalities. In this thesis, commonalities will
be defined in Definition 4.1 as the component cross-covariance functions of a weakly
stationary multivariate time series.

For the still unknown model and latent time series, it is assumed that the latent
variables are dynamically transformed to maximally inherit the commonalities of the
measured time series according to some suitable metric. Thus, first we seek a modeling
framework that defines the ingredients and scope of the latent variable model. The
framework develops solutions for data-driven estimation of the parameters that control
the transformation.

Apart from confirming our understanding of the process which generated the time
series used to build the model, what could we do with a data-driven model? Suppose
a model represents a collection of time series with similar commonalities. Then, the
model could be used for classification of any new time series as belonging to that
collection or not. This will be done based on similarities and dissimilarities of the
commonalities of the new time series with those of the time series already available.
Another utility could be in consistently generating future time series samples that bear
characteristics similar to the time series we had used to build the model. Such a
prospect might allow prediction of the time series given its past samples. It should
be noticed that both of these applications involve applying the latent variable model
towards unseen time series suggesting its ability to learn. Enabling the parameters
of the transformation to predict and classify multivariate time series based on their
commonalities implies a learning framework which is the main broad contribution of
this thesis.

In Section 1.1 of this introductory chapter, a brief overview of the latent variable
model with relevant references is given.

In Section 1.2, two practical examples to emphasize the motivation for a latent
variable model with dynamic transformation are animated; these examples also form
the experiments of the thesis. By these examples, interpretation of the commonalities
in a multivariate time series as well as the learnability of a dynamic factor model are
attempted. The basic assumptions that hold the latent variable model together and the
basic strategy to arrive at a suitable model are listed. The technique of independent
component analysis is complementary to the factor modeling pursued in this thesis; it
is reviewed briefly.

In Section 1.3, the motivation for choosing the dynamic factor model as the latent
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variable model is stated. Its structure, it is discussed there, will transform the latent
time series to measured time series dynamically while the transformation maximally
inherits the commonalities from the measured time series according to some suitable
metric. Using its frequency-domain counterpart called the spectral factor model for
modeling and learning purposes is then vouched for.

In Section 1.4, the modus-operandii of learning a multivariate time series based
on the commonalities is elaborated in layman terms. The modeling framework is in-
troduced there; it is mentioned there how it is intended to bin discrete frequencies in
subbands and maximize the inheritance via dynamic transformation of the measured
commonalities within each of those subbands. The learning framework is also intro-
duced there; the strategies for prediction and classification of multivariate time series
using the spectral factor model are illustrated.

In Section 1.5, a brief review of existing works elsewhere in the growing literature
of multivariate time series analysis that have similar objectives as that of the spectral
factor model is conducted. Existing methodologies from diverse fields such as control
systems, econometrics, biomedical signal processing, geology, etc., that are related to
the ones used during various stages in the development of spectral factor model in this
thesis are recapped there.

In Section 1.6, a pithy statement of objectives and in Section 1.7 a summary list
of the main and supporting contributions of the thesis are provided. In Section 1.8,
the organization of the thesis is outlined while in Section 1.9 a list of publications that
motivated and aided this thesis are listed. In Section 1.10, a very essential summary
of this notation-rich thesis is presented.

1.1 Latent variable model: An overview

A model of a process with a set of underlying variables held responsible for generating
or representing a set of measured variables is the basic notion behind the latent variable
model. Among the premiers to voice this notion loudly was Spearman in [114] and
a series of works that followed. His research in psychology argued that there exists
a statistical quantity called the ‘general factor’ that remains same in the scores of all
mental tests on humans; whereas there is a ‘unique factor’ that varies with the tests.
This idea has evolved over a century. Today it is all too common to conduct such
tests where discrete responses to questions in the form of personality statements are
assumed to be expressions of latent personality traits [121]. There also exist problems
pursued in the sciences where it is necessary to assume that latent variables are not
a continuum but discrete or categorical in nature. They are mainly of two types:
First, the mixture model involves associating measured samples to a finite set of latent
variables by estimating probabilities of the associations [82]. And the second type
is the latent class model which pursues discrete latent variables that when presumed
known or available amounts to locally independent measured variables [81]; this could
be treated as a special case of the mixture model.

What qualifies as a latent variable model in this thesis in light of the above pos-
sibilities is the one which maps continuous latent variables to continuous measured
variables. However, the important requirement stipulated is that there ought to be
very few of the former in comparison to the latter. By this requirement, as envisioned
by [55], the hope is “to attain scientific parsimony or economy of description.” Con-
siderable research has progressed in this arena known as factor modeling with an aim
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to explain correlations in the measured variables by a much lower number of latent
variables: It was shown in [107] that three latent factors are generally sufficient in ac-
counting for voltage variations, especially those relevant to electrocardiogram, recorded
on the surface of a human body. In [69], yield rates of a large portfolio of stocks were
shown to have a fewer number of latent factors corresponding to industry-wide com-
mon activities; whereas there were market factors unique to each of stock. Via factor
analysis, six latent features out of twelve standard measured features were extracted
for forecasting weather phenomenon in [9]. Factor models will be explored further in
Chapter 3.

It will not escape our notice that in the seminal applications of factor models
reviewed above, time dependency of the data was ignored for latent variable analysis.
But this thesis focuses on the type of continuous latent variables that are to be modeled
based on correlated samples in a multivariate time series. For the purpose of learning
from such data, the classical factor model above will be insufficient and, instead, a
dynamic factor model is required. Before entering into a detailed discussion on the
dynamic factor model and its salient features in Section 1.3, the next section serves
practical motivations for it.

1.2 Latent variable model: Two examples

In order to assert the context for a latent variable model for multivariate time series
we discuss two practical examples below.

Classification of brain activities

Figure 1.2: Illustration of the measuring of MEG signals via sensors positioned around the
head [5].

Consider the scenario of a comfortably chaired computer gamer who makes smooth
movements of a joystick by moving one of her wrists depending on the demands of a
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game. Under same experimental conditions, it might be assumed that activities in her
brain are similar every time she makes the same wrist movement. Suppose we wish
to do some experiments to know what could be going on in her brain for every wrist
movement she makes. Remember that such experiments are very common these days
and international conferences and competitions are conducted to learn more about brain
activities [3]. The biggest beneficiaries of such studies include patients of neurological
disorders [105, 115].

For the experiments, magnetoencephalography (MEG) signals from a human brain
could be measured. These signals are based on magnetic fields induced by currents
due to synchronized neuronal activities. Their recording is non-invasively performed via
extremely sensitive magnetic sensors, as depicted in Figure 1.2; in reality, the sensors
of an MEG scanner are encased in a well-isolated cavity in which the head is positioned
comfortably. The signals have a temporal resolution of under a millisecond [42] and
methods are available to attribute the readings from the sensors to designated spatial
spots of the brain. Suppose ten signals attributed to ten spatial spots of the brain are
measured. We know that these signals depend on one another mutually, i.e., activities
in one part of the brain are influenced by activities in other parts. Figure 1.3 shows
real signals from one such experiment [1]. We could perhaps observe various types of
similar characteristics among any two measured MEG signals, i.e., delayed or inverted
patterns, similar peaks and troughs but with one signal more fluctuating than other, etc.
As a result, these signals could be considered temporally dependent on one another,
i.e., current brain activity at a spot is influenced by current and previous activities at
all spots.

For making a wrist movement based on some prompt, hypothesize the existence
of only two latent activities in the brain of the gamer. This hypothesis could be
based on a subjective opinion of an expert or mere guess. What they neurologically
are is not relevant here. Nevertheless, assume that these two latent activities to be,
e.g., (i) her cognition of the demands of the game and (ii) her reactions to move her
wrist. In addition, suppose the general characteristics, e.g., averages, ranges, and other
statistics, of these two fictitious latent signals of cognition and reaction are known.

The assumptions made so far are, firstly, the existence of a set of low-dimensional
latent signals and, secondly, that their statistical characteristics are known. In addition,
thirdly, assume that when the gamer has to make a particular wrist movement, the
presumed latent cognition and reaction sequences undergo a particular transformation
that gets expressed as mutual and temporal dependence seen in the ten measured
signals. Although this assumption compounds to limiting the characteristics of the
measured sequences as well. But it is a fair assumption because there ought to be
a number of time dependent characteristics common to the ten MEG signals which
are part of the same brain that collectively results in her making a particular type of
movement of the joystick or another. For this reason, it is opined that the latent sig-
nals of cognition and reaction manifest themselves as the ten measured MEG signals
consisting of a large amount of common variation-covariation, i.e., commonalities,
corresponding to her brain activities. Then, essentially, cross-correlations between
the measured variables equals commonalities. Obviously, there will be variations
of the signals unaccounted by the commonalities, which will be unique or idiosyn-
cratic characteristics pertaining to each of the measured signals and independent of
the commonalities. Hence, the gamer making a wrist movement may be regarded as,
the fourth in the list of model assumptions, that the latent signals transforming them-

5



selves maximally imparting desired commonalities to the measured signals according to
some suitable metric; whereas, the fifth assumption is that any unaccounted variations
of the measured signals are just undesired and independent noise.

Note 1.1. From a data generation perspective, transformation of latent variables
imparts commonalities to measured variables. From a modeling perspective, trans-
formation of latent variables inherits commonalities from measured variables.

To summarize, the model assumptions are

1. there exist generative latent variables of lower-dimensionality than the measured
variables,

2. the statistical characteristics of the latent variables are known,

3. the transformation of the latent signals limit the modeled characteristics of the
measured variables,

4. the transformation should maximally impart measured cross-correlation charac-
teristics, and

5. the non-transformable characteristics are independent noise unique to each mea-
sured variable.

The presumed characteristics of the cognition and reaction latent variables stay
same throughout the game; the gaming conditions will stay the same but challenges
will differ. Then, it could be inferred that the common characteristics of the MEG
signals during one wrist movement switch to a different class if and only if she changes
the wrist movement to another class. This is a valid inference because one part of the
brain behaves differently from another to various cognition and reaction challenges of
the game she is playing. As a result, any class differences of the movement will manifest
in the dynamic characteristics of the measured MEG signals. So a particular class of
characteristics of the measured signals during a particular class of wrist movements is
attributed to a corresponding class of transformation the latent variables undergo in
imparting the commonalities.

The objective of this experiment is modeling multivariate time series for classifi-
cation of wrist movements. Transformations corresponding to each cognition-reaction
challenge are to be estimated and one class of transformations from another are to be
distinguished. An approach could be to estimate, from all possible transformations,
one that maximizes the likelihood to have generated the measured signals. Then, the
estimate could be constrained further by requiring the presumed latent signals to max-
imally inherit, according to some suitable metric, the commonalities of the measured
signals upon their transformation. It is now clear that the two steps:

1. estimate a maximum likelihood transformation based on model assumptions and

2. estimate the maximum likelihood transformation that inherits commonalities
maximally as per a suitable metric.
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Suppose we estimate the optimal latent variable model of the cognition-reaction
process corresponding to each classified example of wrist movements. Then, as shown
in Figure 1.4, for two classes of example measured MEG signals, we should be able to
classify a test measured signal as belonging to a class of movements by computing
how similar the commonalities of the test measured signal are to those in the classi-
fied examples. Obviously, the intrigue lies in classifying the measured signals without
actually knowing or seeing the particular wrist movement she had performed.

Prediction of share prices

We take financial market as our next example where, suppose, the interest is in investing
in a portfolio of shares of six companies, e.g., as shown in Figure 1.5, from various
sectors of economic activities in a country. Suppose we know a successful investor
who believes that investors are driven to purchase or sell shares based on perceived
values of three underlying latent variables, viz., general political climate, consumer
sentiments, and investor confidence. Of course, none of these fictitious latent variables
could be metered objectively in practice. We wish to validate this belief before buying
his advice. Note that as in the previous example, it is the number of latent variables
and their presumed characteristics that is our concern and not their real physical or
financial interpretations. If the investor’s belief has merit, we could think of those
latent variables to transform investment activities in the share market that manifest as
changes in the share prices. Also, the latent variables when transformed must impart
as much of the common dynamic characteristics, i.e., commonalities, demonstrated by
the measured share prices.

In practice, even the best investors cannot consistently outsmart the market. And,
our investor acquaintance above could blame any unexplainable fluctuations in the share
prices on the dynamic characteristics of the share prices that the latent variables cannot
inherit. These fluctuations could be idiosyncratic characteristics unique to each of
those shares. However, if the transformation of the latent variable to the commonalities
as we envisaged is true, we might be able to explain evolving tendencies of share prices.
Therefore, in order to validate existence and influence of the commonalities, we could
go by traditional investor wisdom to assess past behavior to bet on future: We could
gather a training set of share prices of a sufficiently long evolution of various shares of
the portfolio. We could then then estimate a dynamic transformation that is optimal
in the sense of having the maximum likelihood to have generated the training series.
Subsequently, we could search among the maximum likelihood transformations one
that will maximally inherit, according to some suitable metric, the commonalities of
the share price evolution process. We could use a predictor that is based on minimizing
temporal tendencies to err in predicting the training series. The set of parameters of
such a predictor will be a function of the optimal dynamic transformation. Then, given
a current evolution of the share prices, it should be possible to predict their future
evolution with a reasonable accuracy.

Independent components versus latent factors

The thesis, as discussed so far, involves estimating a generative model where a set of
latent variables are transformed to a larger number of measured variables based on
the latter’s characteristics. To estimate the transformation matrix, the maximal inher-
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itance of the mutually dependent variation-covariation characteristics was the criterion
considered.

In a complementary setting, there exists a wide body of literature called indepen-
dent components analysis or blind source separation [27, 24]. Independent component
analysis is often called ‘non-Gaussian factor analysis’ [61]. In contrast to the objec-
tive of factor analysis, the objective in independent components analysis is to identify
mutually ‘independent’ latent variables.

One of its working philosophy is due to the central limit theorem whereby any
transformation of the latent variables will be maximally non-Gaussian if it equals one
of the independent latent variables; hence, latent variables are considered non-Gaussian
[60]. In contrast, factor analysis stresses on dependencies and Gaussians are readily
accepted as the latent variables.

In another working philosophy of the independent components analysis, higher pre-
dictability of a latent series component than that of any dynamic transformation of the
latent series components is exploited to sequentially identify the latent variables [26].
In dynamic factor analysis as presented in this thesis, higher cross-correlations via com-
monalities aid predictability. On the other hand, in this thesis, the variation-covariation
characteristics of the latent variables, their mutual dependence or independence, will
be assumed known.

Moreover, in this thesis, the transformation of the latent variables will be assumed
a linear process; therefore, the measured variables are also assumed linear processes.
The focus in this thesis is in estimating a transformation for the latent variables rather
than identifying the latent variables themselves as done in a blind source separation
problem.

1.3 Dynamic and spectral factor models

As the two examples above highlight, the processes that are of our interest generate
data samples such that each measured variable is free to influence the preceding sam-
ples of itself and other variables. This emphasizes that the order in the sequence of
occurrences of the measured samples is rather important and it must be indexed appro-
priately. It is convenient to attribute the index of the sequence to discrete instants of
time. This is the reason we call such a sequential collection of correlated data samples
a time series.

In many processes we measure a set of variables at the same instant. This implies
that every sample of the data is formed by the same ordered set of multiple variables.
Such a collection of samples is referred to as multivariate data.

This thesis focuses on learning from multivariate time series where any measured
variable in a data sample is influenced by, in general, the rest of the variables in the
sample and all the variables of all the preceding samples. Such an influence could be
quantified as a function of the lag, which is the number of time instants by which
two samples differ. So, when a multivariate time series is said to display dynamic
characteristics, the term dynamic attributes its characteristics to be lag-dependent.

In the context of multivariate time series, the driving assumption is that a lower
number of latent variables are transformed to a number of measured variables resulting
in a latent variable model as illustrated in Figure 1.1. A practical motivation for that
assumption is that a fewer number of variables will aid simplicity in interpretation, mod-
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eling, and computation. Note, however, that the true latent variable transformation is
unknown and estimating it is part of the objective of this thesis.

Recall that the characteristics of a measured time series are to be modeled. But
how could simplicity in modeling be aided when unknowns such as latent time series
and variable transformation are injected into the model? In that respect, either or both
the transformation and the characteristics of the latent time series could be assumed
unknown. Remember, we wish to strictly control the underlying process which the
latent time series represents and prefer it to have characteristics not as complicated
as those of the measured time series. Moreover, if possible, expert opinion on the
latent time series could be invited. Hence, it will be assumed that the latent variable
characteristics are known and the transformation is unknown.

To enhance simplicity even further, the latent variables will be assumed a multi-
variate time series with lag-independent characteristics whereas it is the transformation
that is dynamic and unknown. The challenge then is to estimate the dynamic trans-
formation that best generates the measured time series from the latent time series. In
this framework, the latent variables upon transformation are assumed to impart the dy-
namic characteristics to the measured time series. Hence, given a dataset of measured
time series, such a framework implies estimating the ideal transformation that could
yield the desired dynamic characteristics. This is illustrated in Figure 1.6, where the
‘desired time series’ is enabled to capture the desired dynamic characteristics pertain-
ing to the measured time series; whereas the ‘undesired time series’ is the difference
between the measured time series and the desired time series. The set of parameters
θ of the dynamic transformation are retained for reference.

Note 1.2. Figure 1.1 depicts the unknown true transformation that generates the
measured time series from a latent time series of unknown characteristics. Whereas
an appropriate dynamic transformation of Figure 1.6 has to be estimated based on
the measured time series and the presumed characteristics of the latent time series.

Remember that the desired dynamic characteristics of the measured time series are
its commonalities. As introduced earlier and through the examples, maximally captur-
ing the commonalities is tantamount to learning. It has been decided to keep the latent
time series characteristics known, lag-independent, and simple; they are the underlying
factors of the model. The model which consults the measured time series to dynamically
transform the factors to maximize the commonalities is named the dynamic factor
model. This concept is illustrated in Figure 1.7, where the term idiosyncrasies refers
to the undesired time series that retains no commonalities. Hence, a dynamic factor
model is a multivariate time series model which dynamically transforms a latent time
series of predetermined characteristics to maximally, in some suitable metric sense, in-
herit the common dynamic characteristics of a set of measured multivariate time series.
It accepts measured time series as input and outputs commonalities, idiosyncrasies, and
the optimal model parameters.

One possible dynamic characteristic of the measured variables is periodicity. There
could be many periodic dynamic characteristics in the measured time series. A period-
icity corresponds to a frequency, which is associated with the number of time series
samples that constitutes the period. Decomposing the measured time series into com-
ponent frequencies is intuitively simple, analytically rich, and practically useful. Such
a decomposition of a time series across all possible frequencies is called the spectral
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analysis [99]. An inverse synthesis of frequency components to time-domain is also
possible through spectral analysis. This is a motivation to understand the influence of
various frequencies in the dynamic characteristics of the measured time series. As de-
picted in Figure 1.8, such a frequency spectral analysis of dynamic factor model would
require analyzing measured and latent time series, commonalities and idiosyncrasies,
and dynamic transformation all in the spectral or frequency-domain. It will be called
the spectral factor model, which may be contrasted with the time-domain equivalent
in Figure 1.7. In that respect, Figure 1.9 depicts the frequency spectral equivalent of
the dynamic factor model. Note that Figure 1.9 has the same input and outputs as
the dynamic factor model in Figure 1.7 for they are subjected to spectral analysis and
its inverse, respectively.

1.4 Learning by maximizing spectral commonalities

The appeal of the frequency-domain approach in many fields of study are mainly due to
the computational advantages and the physical interpretation it offers [97, 23]. Many
time-domain processing requirements of a time series may be easily realized in the
frequency-domain; the software and hardware implementation of such processing is
widely available [63]. These further motivate, in addition to the theoretical appeal, the
development of a spectral factor model for learning from multivariate time series.

The spectral components correspond to an infinite continuum of frequencies, but
samples from a discrete time series are practically limited. This limits and motivates
targeting just a set of discrete frequencies. But uncertainty is encountered in balancing
resolution and precision of the spectral components at these discrete frequencies. To
tackle the challenge, spectral components in small non-overlapping bands of frequen-
cies may be considered. In these frequency subbands, spectral factor modeling might
be performed by assigning probabilities to various discrete spectral components of the
measured time series. The aim is to estimate a probabilistic spectral factor model that
is the most likely to affiliate the measured spectral components. For this purpose,
model parameters that will maximize the likelihood of simultaneous occurrences of all
the measured spectral components within a subband will be probed. From all possible
maximum likelihood spectral factor models, the one which maximally, in some suitable
metric sense, inherits the measured commonalities on the dynamically transformed fac-
tors could be chosen. Recall that commonalities are cross-correlations of the measured
variables. Later in the thesis, their inheritance by the dynamic factor transformation
will be defined as a very simple and intuitive function of all cross-correlations of the
measured variables over all lags.

Figure 1.10 illustrates the strategy for maximum likelihood maximum common-
alities spectral factor model estimation. The spectral components of the presumed
latent spectra and the given measured spectra are divided into frequency subbands.
For each subband, maximum likelihood estimation of parameters of the spectral factor
model will be performed. Two distinct maximum likelihood estimation methods will be
demonstrated: The first method is an analytical estimation which gives an explicit
formula for the optimal parameters. The second method is an iterative estimation
starting with initial guesses of the model parameters that are updated till they con-
verge to possible optimal parameters. Further, for each of those methods, techniques
to extract those parameters that will maximize the commonalities are devised.

Commonalities of the measured time series maximally inherited in some suitable
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metric sense by the dynamic factors allow the model to learn a process. Classification
of multivariate time series measured from various distinct processes is the first of
our two learning applications. In Section 1.2, the example of classification of MEG
signals involved in maneuvering a joystick via wrist movements was discussed in detail.
The various classes there could be regarded as dynamically transformed latent signals
corresponding to various visual prompts on a computer monitor. There will be several
example time series in a class. For each such example dataset obtained from any two
processes deemed to be distinct by an expert, two classes of spectral factor model
examples are built. The models are considered to have learned the example processes
upon maximally inheriting their commonalities on their respective maximum likelihood
parameters according to some suitable metric. Then, in order to decide which of
any two possible processes a new unclassified measured time series belongs to, the
commonalities of the new dataset need to compared with those of the two classes
of spectral factor models. Based on the discussions so far, the commonalities will
determine the dynamic transformation. In that regard, the new test measured time
series will be assigned to the class to which its estimated dynamic transformation
has the most proximity to. Such a strategy for the classification exercise requires a
comparator of the dynamic transformations as shown in Figure 1.11. This method
could be extended to associate a time series as belonging to one of any number of
identified classes of processes.

Prediction of multivariate time series is chosen as the other learning application.
Once knowledge of the characteristics and the number of latent time series variables
are presumed, a spectral factor model based on a training set of measured time series
could be estimated. Based on the optimal dynamic transformation that maximally,
according to some suitable metric, inherits commonalities of the measured time series,
a multivariate time series predictor could be built . The example of a portfolio of share
prices that was discussed in Section 1.2 is used for prediction experiments later in the
thesis. For a given length of training time series, a number of latent time series less than
the number of the measured time series are experimented with to build the spectral
factor models. Using their parameters, a prediction framework based on minimizing
the prediction error given past samples is built. As shown in Figure 1.12, a future
evolution could be charted for a given current evolution. The prediction accuracy will
be validated using the true share prices whenever it becomes available.

1.5 Dynamic and spectral factor models in literature: A

brief review

It must be mentioned at this juncture that the concept of commonalities and dynamic
factor model is not very new. In one of the earliest formal studies about dynamic fac-
tor model, its estimation in the Fourier domain was famously attempted by [100] for
advanced control systems and [104] for macroeconomic forecasting. An idea similar to
commonalities was promoted by [104] in econometrics literature as “common shocks.”
Like in this thesis, they too state the relation between the spectral density functions
via a likelihood function of the discrete Fourier transform components within disjoint
frequency subbands. Then, they obtain maximum likelihood parameter estimates via
Fletcher-Powell optimizations and standard hypothesis testing procedures. However,
they stop short of going much farther than the possibility of infinitely many uncon-

11



strained solutions for the spectral factor transformation matrix.
Another line of approach is an approximate dynamic factor model with finite lags as
was developed in [118]. There, the estimation was performed as the principal compo-
nents of an expanded set of static factors; their aim was prediction of macroeconomic
variables. Their prediction equations take the form of vector autoregression where the
estimated static factor components may be directly plugged in without having to esti-
mate the Fourier domain parameters as in fully dynamic models.
Recently, [36] changed the landscape of research in this domain substantially with
their generalized dynamic factor model, e.g., they spell out the extent of flexibility
allowed for idiosyncrasies and derived the convergence properties of the model parame-
ters as the number of samples and measured variables grow. They focus on forecasting
macroeconomic variables and the work forms a series of highly acclaimed and rigorous
treatment of the subject. There are agreements between the parts of the approach to
the problem in this thesis and theirs in (i) concluding that the principal components of
the spectral density matrix gives the analytical solution (ii) the idiosyncrasies could be
mildly cross-correlated. However, the ideas introduced in this thesis are quite different
from theirs; e.g., an iterative estimation procedure and a time series classification strat-
egy are provided. Moreover, while this thesis focuses in the multivariate time series
modeling and learning frameworks, they focus on prediction of latent commonalities.
In §7.8 of [111] a maximum likelihood estimation estimation of dynamic factor model
in the spectral domain much like in this thesis is pursued. They use it for analyzing
function magnetic resonance imaging data. Their final analytical solution overlaps with
the one developed in this thesis and in [36]. But they seem not to share any qualms
regarding the non-analytical nature of the log-likelihood function and does not see
such a model from the classification or prediction perspectives. They do not provide
an iterative solution strategy either.
Among the front-runners of the dynamic factor model was [90] who wanted to estimate
the latent trajectory of a patient’s state based on vital signals. He rewrote the dynamic
factor model parameters as a Markovian state model whose estimation was carried out
via Kalman filter principles.
Now, let us divert the attention to a spectral domain method whose priority was multi-
variate time series classification rather than prediction. In [66], sample spectral densities
are compared for classifying and clustering episodes of multivariate time series. Their
experiments involved discriminating between time series generated by earthquakes and
those by explosions. However, they do not consider existence of a low-dimensional
latent time series and, as a result, were able to design disparity measures that work by
comparing the full-rank sample spectral densities. This thesis uses the information con-
tained in a rank-deficient maximum-likelihood maximum-commonalities spectral factor
transformation matrix to perform classification.

1.6 Objectives

Based on discussions on the motivation and the premise of this thesis so far, its objec-
tives are broadly divided into developing

1. a multivariate time series latent variable modeling framework
To meet this objective, dynamic and spectral factor models as well as commonal-
ities are formally introduced and defined in Chapter 4. The maximum likelihood
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maximum commonalities spectral factor model is derived in Chapter 5. An ana-
lytical form as well as an iterative procedure for estimating such a spectral factor
model are developed.

2. a multivariate time series maximum commonalities learning framework
This objective is achieved by providing multivariate time series classification and
prediction algorithms in Chapter 6, which exploit the maximum commonalities
parameters of the spectral factor model.

1.7 Contributions

The following is the list of main contributions of this thesis:

⊲ The most original contribution of this thesis is the development of a commonalities-
based classification metric in (6.4) that compares overlap of spectral factor model
subspaces to distinguish multivariate time series processes.

⊲ The second most important contribution is the utilization of the estimated com-
monalities in developing a multivariate time series prediction strategy via classical
vector autoregression on current and past samples; it is detailed in Section 6.3.

The following is the list of supporting contributions of this thesis, which are im-
provements, interpretations, or alternatives to existing work in the literature:

⊲ Derived an analytical solution for spectral factor model in (5.10) using low-rank
approximation theorem.

⊲ Derived an iterative solution for spectral factor model in Section 5.2 using the
Expectation - Maximization algorithm whose converged parameters that maxi-
mally inherit the commonalities are extracted by applying the Gauss - Markov
theorem in Section 5.2.3.

⊲ Obtained the mild cross-correlation property of the idiosyncrasies in Property 5.1
via Weyl’s theorem.

⊲ Used Wirtinger relaxations for maximizing log-likelihood in Chapter 5.

1.8 Organization

A non-technical overview of the thesis was presented so far. In the two chapters that
follow, the basics on which this thesis is built is presented.

• In Chapter 2, an essential overview of multivariate time series analysis is provided;
very essential time-domain and frequency-domain analyses are presented there.

• In Chapter 3, parametric estimation methods for probabilistic models concisely
and as required is discussed.

With much groundwork done with the aforementioned chapters, the two chapters
that follow introduce and develop the dynamic factor model framework to suit the
learning framework objective of this thesis.
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• In Chapter 4, a technical introduction and motivation for the concepts of dynamic
and spectral factor models as well as commonalities and their maximization are
provided.

• In Chapter 5, an analytical method and an iterative method for maximum likeli-
hood maximum commonalities spectral factor model are derived.

Subsequent to the development of the dynamic factor model, the learning frame-
work is provided.

• In Chapter 6, a time series learning framework is built using the inherited com-
monalities by explicitly stating algorithms for classification and prediction of mul-
tivariate time series analysis.

The contributions are tested and possible extensions are discussed in the last two
chapters:

• In Chapter 7, the methodology and results of multivariate time series classification
and prediction experiments are presented.

• In Chapter 8, improvements and plans for further research and applications are
mentioned.
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1.9 List of relevant publications

(I) Miranda, A. A., Olsen, C., Bontempi, G.: Fourier spectral factor model for pre-
diction of multidimensional signals, Signal Processing, 91(9):2172-2177, Elsevier,
2011.
This paper presents the vector autoregressive prediction of a multivariate mea-
sured time series on the current and past samples as developed in Section 6.3
using the autocovariance of the maximally inherited commonalities. It demon-
strates prediction of yield rate of a six-variate share portfolio with substantially
better accuracy than standard vector autoregression; the daily prices of those
yield rates are used for experiments in this thesis.

(II) Miranda, A. A., Bontempi, G., Schuddinck, P.: Fourier spectral factor model
for classification of high-dimensional MEG signals, Under review in Biomedical
Signal Processing and Control, Elsevier, 2011.
This paper presents the commonalities-driven classification strategy developed
in Section 6.2 for multivariate time series; the magnetoencephalography experi-
ments conducted for Section 7.1 are also presented.

(III) Miranda A. A, Caelen O., Bontempi, G.: Machine learning for automated polyp
detection in computed tomography colonography, Biomedical Image Analysis
and Machine Learning Technologies, Medical Information Science Reference,
2009.
This paper compares a number of classifiers well-known in machine learning that
perform well despite severe imbalance in the class representation and unreliable
features. That classification problem may be compared with that in Section 6.2
to understand that popular robust classifiers designed towards identically and in-
dependently distributed data are not directly usable for a multivariate time series
classification problem.

(IV) Miranda, A. A., Le Borgne, Y.-A., Bontempi, G.: New routes from minimal ap-
proximation error to principal components, Neural Processing Letters, 27(3):197-
207, Springer, 2008.
This well-cited paper discusses the classical principal components analysis from
a layman perspective. Principal subspaces, eigenvalue decomposition, trace min-
imization are recurrent themes in this thesis and are presented in simple terms
in the paper.

(V) Miranda, A. A., Whelan, P. F.: Fukunaga-Koontz transform for small sample
size problems, Proceedings of the IEE Irish Signals and Systems Conference, pp.
156-161, Dublin (2005)
This paper discusses a strategy for comparing the principal subspaces due to the
autocorrelation matrices of two classes of multivariate data in a common full-
rank space. The features of this paper such as real-valued projections, euclidean
distance measures, binary classification, etc., are serious shortcomings for com-
paring multiple spectral factor subspaces and to overcome them the classification
metric in (6.4) was developed.
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1.10 Notations

Herein, notations and conventions used in this thesis are introduced. Unfortunatelely,
terms whose proper definitions will show up in later chapters only will be mentioned
here. Nevertheless, it is important to read this section carefully for grasping the treat-
ment of technical aspects later.

The following convention of using Latin characters is adhered to: Incremental vari-
ables such as indices are denoted using i, j, k, and l.

Note 1.3. From Chapter 4 onwards, certain alphabets are appointed to imply the
same variable for the rest of the thesis. These are, respectively, q and r for the
latent dimensionality and observed dimensionality. The letters v, x, y, and z are
used for transformed, latent, measured, and idiosyncratic variables; but they will
have an appropriate meaning depending on whether it appears in Roman, sans-serif
or boldface fonts.

Use of t for time indices and h for time delays are reserved throughout. The afore-
mentioned conventions imply that both scalars and vectors are denoted in small-case.
Linear algebra drives much of the contributions and a rectangular matrix is always in
capital-case as in X.

Ideas from the basics of probability and stochastic processes are used liberally. A
sans-serif font such as in x is used to denote a random variable and its realization will
be in Roman font as in x.

Note 1.4. Random variables and vector random variables, either real-valued or
‘complex-valued’, will be denoted in the same fashion using a sans-serif font; the
context will make their distinction clear.

Also, the sans-serif font will be used to denote common mathematical operations or
functions such as log for natural logarithm, p for a probability density function, S for
spectral density function, etc.

The standard practice of using a blackboard bold font to denote number sets, e.g.
set of complex numbers C, set of integers Z, etc. are followed. However, a calligraphic
font will be used to denote a group of items such as two classes C1 and C2 and the
Gaussian family of probability densities N .

Certain Greek alphabets will denote the same variable, function, or metric through-
out, e.g., µ for mean and Γ for autocovariance function matrix.

Subscripts are used for indices in two capacities: First, they denote indices as in
xt for the t-th time sample of x. Second, they denote a component of a vector or
a matrix. E.g., xk is the k-th component of random variable x and Xij is the i, j-th
element of matrix X. This gives the possibility to interpret nested subscripts appropri-
ately. E.g., xkt is the t-th time sample of xk and the inner subscript, i.e., k in xkt , will
be always interpreted as the component index and the outer subscript, i.e., t in xkt , as
the sequence index.

Note 1.5. Other than its usual interpretation as scalar exponent, superscript on
a function or an operator will denote the operand, e.g., µy denotes mean of the
random variable y.
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Fourier analysis is a persistent theme in this thesis and boldface, e.g., x(ωk), implies
discrete Fourier transform components.

Presented below is a table of certain frequently used symbols and notations:

u′, U ′ transpose of vector u or matrix U
ū, U complex conjugate of scalar or vector u or matrix U
u∗, U∗ complex conjugate transpose of scalar or vector u or matrix U
|u|, |U| absolute value of scalar u; cardinality of set U
Ui:j matrix formed by columns i, i + 1, . . . , j − 1, j of matrix U
det(U) determinant of real or complex-valued square matrix U
{ut} time series due to sequence of random variables ut ∀t ∈ Z

ut realization of a time series {ut} at instant t
u(ωj) discrete Fourier transform due to {ut} at frequency ωj

P(U) probability of the event U
pu probability density of (a possibly vector) random variable u

p order of vector autoregression
Eu expectation with respect to pu

µu mean of (vector) random variable u

Γu variance (covariance matrix) of (vector) random variable u

Γu,v cross-covariance (matrix) of (vector) random variables u and v

acvf autocovariance function
γuh acvf of univariate {ut} at lag h
Γu
h acvf of (univariate or multivariate) {ut} at lag h

i imaginary operator
Iq identity matrix of size q × q

d̃iag(U) setting off-diagonal elements of U to zero
‖U‖F Frobenius norm of matrix U
F Fourier transformation; discrete Fourier transform
iid independently and identically distributed
〈x〉 A posteriori mean of x
L log-likelihood function
D a dataset
τ length of a time series realization
̂ number of frequency subbands
κ number of relevant nearest neighbors
W dynamic factor transformation matrix
W spectral factor transformation matrix
Ŵ maximum likelihood W

W̃ maximum commonalities Ŵ

Su spectral density function of {ut}
Šu sample spectral density function of {ut}
Ŝu maximum likelihood Su

S̃u maximum commonalities Ŝu
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Figure 1.3: MEG signals corresponding to ten spatial spots V1-V10 of the brain upon a
particular movement of the wrist.
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Figure 1.4: Among the two classes, a test measured signal is associated to the one to which
its commonalities are closest to.
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Figure 1.5: Daily stock prices in Deutsche Mark of six German companies between
01/01/1983 - 30/12/1993 [6].
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Figure 1.6: Dynamic transformation, whose parameters are summarized by θ, of the latent
time series will consult the measured time series to decompose the latter into
desired and undesired time series.
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Commonality
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Figure 1.7: According to some suitable metric, the dynamic factor model allows the dynamic
transformation to maximally inherit the commonalities from the measured time
series; their difference forms the idiosyncratic time series.
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Figure 1.8: The spectral factor model expresses dynamic factor model in frequency-domain.
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Figure 1.9: An equivalent of the dynamic factor model is built by sandwiching the spectral
factor model between spectral analysis and its inverse operations.
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Figure 1.10: Maximized commonalities for a finite ̂ number of individual frequency bands
are obtained from amongst the family of maximum likelihood spectral factor
model parameters analytically and iteratively.
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Figure 1.11: A test time series is associated to a class of time series if that class has the
closest proximity, in terms of the commonalities of its examples, among all
classes to the test time series.
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Figure 1.12: A predictor for the measured time series is built using parameters pertaining to
maximally inherited commonalities of a training series. Accuracy of predictions
based on current samples of the measured time series as evidence is compared
with its future samples.
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Chapter 2

Multivariate time series
analysis: Some essential

notions

An overview of a modeling and learning framework for multivariate time series was
presented in Chapter 1. In this chapter, some notions on multivariate time series
analysis in time and frequency domains are succinctly introduced; tools and conventions
used herein are essential to appreciate the contributions later in the thesis. Although
they are widely available in textbooks, they have been adapted appropriately to suit
this thesis.

In Section 2.1, a multivariate time series model and the concept of weak sta-
tionarity are formally defined; only those time series that are weakly stationary are
considered throughout this thesis. Weak stationarity requires defining the autocovari-
ance function of a time series. Autocovariance characteristics of a few relevant types
of stationary multivariate time series are presented.

In Section 2.2, frequency or spectral domain concepts belonging to Fourier analysis
are introduced. The motion of a simple pendulum is used as an example to motivate
the presentation of Fourier series; this is subsequently extended to the Fourier trans-
form. Clearly, this example to introduce Fourier analysis is a detour to a continuous
time process; but it will enhance understanding of spectral domain tools, notations,
and definitions.

In Section 2.3, the discrete time process is introduced as a limiting case of contin-
uous time processes; this leads to discrete time Fourier transform. Discrete time
Fourier transform gives a periodic and continuous spectrum and it underpins impor-
tant developments in subsequent sections. There, discrete Fourier transform of a
discrete time process is also discussed.

In Section 2.4, after having defined time and spectral domain characteristics of
a deterministic process, spectral analysis of stationary time series is presented. The
two most important ideas that need to be taken from this chapter are presented next:
First, the relation between autocovariance function and spectral density function
is simply that of a Fourier transform. Second, the probability distribution of discrete
Fourier transform components of a linear process is complex-Gaussian within small
subbands of frequencies. The first idea is a direct application of Fourier analysis
derived in earlier sections. For the second idea, the asymptotic theory of spectral
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estimates is involved. In Section 2.5, therefore, the asymptotic probability distribution
function of discrete Fourier transform components is provided without proof.

2.1 Temporal analysis of stationary processes

In this section, an introductory review of the time-domain or temporal analysis of
time series is performed. It starts by adapting some definitions from the literature of
random processes [29, 68, 86, 47]; the presented definitions might be termed differently
by various authors elsewhere in the literature.

An infinite sequence of random variables forms a random process. Then, a vector
random process is defined as an infinite sequence of vector random variables that is a
set of random variables maintaining the same order of the vector components in every
realization.

Definition 2.1. A (multivariate) time series of a (vector) random process is a
connected subsequence formed by its constituent (vector) random variables.

A time series is called so because the index of the sequence is often attributed to time
instants. If yt is the random variable at time instant t ∈ Z of a random process of
interest, then {yt}, t = 1, . . . , τ shall be called a τ -length realization of a time series
whose t-th sample is yt. An r-dimensional vector random process generates an infinite
sequence {yt} of r-dimensional vector random variables yt = [y1t · · · yrt ]′, where yit ,
i = 1, . . . , r are the component random variables at time instant t ∈ Z. Figure 2.1
selects a realization of a τ -length r-variate time series whose t-th sample is the vector
yt ∈ Rr.

It may now be implied that when referring to the term ‘process’ in Chapter 1 in a
broad sense, it meant the vector random process underlying a multivariate time series.
On similar lines, the term ‘model’ there referred to the joint probability distribution
function of the samples of the time series; this is because it is a set of random variables
that is dealt with. Then, the model of a process corresponding to a τ -length r-
variate time series requires evaluating the τ×r-dimensional joint probability distribution
function P(y1 ≤ c1, . . ., yτ ≤ cτ ) for any constant vector ct ∈ Rr, t = 1, . . . , τ ,
where P denotes probability and the comparison of vectors are component-wise. Of
course, direct evaluation of such a probability distribution is very unwieldy. Therefore,
restricting the scope of the studies and bringing forth assumptions to simplify the
process is inevitable for modeling a process generating a multivariate time series.

Let a few useful terms associated with random variables be first defined [95].

Definition 2.2. The probability density function pu of a random variable u is
defined as pu(a) = d

daP(u ≤ a) ∀a ∈ R, wherever the derivative exists.

In the above definition, pu(a) is any positive finite real number wherever the derivative
does not exist. Then the joint probability density function pu1,...,ur of r random vari-
ables u1, . . . , ur may be given by pu1,...,ur (a1, . . . , ar) = ∂rP(u1 ≤ a1, . . . , ur ≤ ar)
/∂a1 · · · ∂ar ∀a = [a1 · · · ar]′ ∈ Rr and pu1,...,ur(a1, . . . , ar) is any positive finite
real number wherever the derivative does not exist.
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{yt}, t = 1, . . . , τ

Figure 2.1: The second sample y2 of a realization of a τ -length r-variate time series {yt} is
highlighted.

Definition 2.3. The multivariate probability density function pu of an r-
dimensional vector random variable u = [u1 · · · ur]

′ is defined as the joint
probability density function of its r component random variables, i.e., pu(a) =
pu1,...,ur(a1, . . . , ar) ∀a = [a1 · · · ar]′ ∈ Rr.

Definition 2.4. For an r-dimensional vector random variable u whose probability
density function pu(b) exists ∀b ∈ Rr, the expectation of a function g(u) with
respect to pu is defined as Eu[g(u)] =

∫
∞

−∞
· · ·

∫
∞

−∞
g(b) pu(b) db.

Definition 2.5. The mean µu ∈ Rr of an r-dimensional vector random variable u

is defined as its expectation with respect to its r-variate probability density function,
i.e., µu = Eu[u].
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Definition 2.6. The variance (covariance matrix) Γu of the (r- dimensional
vector) random variable u is defined as the expectation, with respect to its (mul-
tivariate) probability density function pu, of the (outer) product of the (vector)
random variable with itself about its mean µu, i.e., Γu = Eu [(u− µu) (u− µu)′].

Definition 2.7. The cross-covariance Γu,v between the (vector) random variables
u and v is defined as the expectation, with respect to their joint (multivariate)
probability density function pu,v, of the (outer) product of the random variables
about their respective means µu and µv, i.e., Γu,v = Eu,v [(u− µu) (v − µv)′].

Definition 2.8. The cross-covariance between any two constituent (vector) ran-
dom variables of the same (vector) random process is called the autocovariance
function between the (vector) random variables.

Therefore, the autocovariance function (acvf) between the r- dimensional vector ran-
dom variables yt and ys ∀t, s ∈ Z is

(2.1) Γyt,ys = Eyt,ys [(yt − µyt)(ys − µys)′].

Note 2.1. When it specifically concerns a univariate time series {yt} and not a
multivariate time series, its acvf will be denoted by γyt,ys . Then, for a multivariate
time series {yt} = {[y1t y2t · · · yrt ]′}, the (i, j)-th element of its acvf Γyt,ys may
be written as γyit ,yjs , which according to Definition 2.7, may be interpreted as the
cross-covariance between yit and yjs ∀i, j ∈ 1, . . . , r and ∀t, s ∈ Z.

Definition 2.9. A (vector) time series {yt} ∀t ∈ Z is weakly stationary if the
mean µyt is a constant (vector) µy and its acvf Γyt,ys between the (vector) random
variables yt and ys ∀s ∈ Z depends on s and t only through s− t.

The variable h = s− t of the acvf Γyt,ys
h will be referred to as the lag. It follows from

Definition 2.9 that the acvf between yt+h and yt of a weakly stationary time series
{yt} is

(2.2) Γy
h , Γyt+h,yt = Eyt+h,yt [(yt+h − µy)(yt − µy)′] ∀h ∈ Z.

It is easy to verify that γ
yi,yj
h = γ

yj ,yi
−h , which gives rise to the following property of the

acvf :

Property 2.1. A weakly stationary acvf is transpose symmetric about h = 0, i.e.,

(2.3) (Γy
h)

′ = Γy
−h.

In this thesis, the focus is on time series that are weakly stationary and the main
references on that topic are [102, 99, 111, 19, 20]. Now, take a look at a few examples
of weakly stationary multivariate time series.
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Property 2.2. A weakly stationary r-variate time series {zt} is idiosyncratic if any
two components zit and zjt+h

∀h ∈ Z, i 6= j of its corresponding vector random

variable zt = [z1t · · · zrt ] ∀t ∈ Z have zero cross-covariance, i.e., γzit ,zjt+h ,

γ
zi,zj
h ∈ R is zero whenever i 6= j ∀i, j ∈ 1, . . . , r and h ∈ Z.

Note 2.2. The diagonal elements of an acvf Γu of the vector random variable
ut = [u1t u2t · · · urt ]′ will be written simply as γuih , γui,uih ∀i ∈ 1, . . . , r.

The acvf of an r-variate idiosyncratic time series {zt} due to vector random variable

γ
z1

h

γ
z2

h

γzr

h

γ
z1,z2
h = 0 γ

z1,zr
h = 0

γ
z2,zr
h = 0γ

z2,z1
h = 0

γ
zr,z1
h = 0 γ

zr,z2
h = 0

h

h

h

Figure 2.2: The structure of the r×r acvf matrix Γz
h

of an r-variate idiosyncratic time series
{zt} shows zeros off-diagonal due to no cross-correlation between its components.
The plots are hypothetical and interpolated for, an otherwise discrete h, for clarity.

zt = [z1t . . . zrt ]
′ has an r × r matrix structure shown in Figure 2.2. Following Note

2.2, the cross-covariance γ
zi,zj
h of Property 2.2 may be written as the acvf γzih of zi

whenever i = j, whereas γ
zi,zj
h = 0 is zero otherwise. This means that the off-diagonal

elements of such an acvf are always zero. Let a special case of an idiosyncratic time
series whose each diagonal element of the acvf is an impulse function be now defined.

Definition 2.10. For a weakly stationary (vector) time series {xt}, if (the compo-
nents of) xt are independently and identically distributed ∀t ∈ Z, then {xt} is said
to be (multivariate) white noise.

Note that the acvf Γx
h of a q-variate white noise {xt} is Γx

h = 0q ∀h 6= 0 and
det(Γx

0) 6= 0. Definition 2.10 implies that mean-subtracted white noise components
may be defined completely by their component variances σ2

ih
= σ2

i ∀i = 1, . . . , q

so that Γx
h = diag(σ2

1 , . . . , σ
2
q ) ∀h ∈ Z, which is said to be isotropic if σi = σ,
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i = 1, 2, . . . , q. A special case of the zero-mean isotropic white noise is the following:
If the component random variables of a q-variate white noise {xt} have zero means
and unit variances so that Γx

h = diag(1, . . . , 1) ∈ Rq×q ∀h ∈ Z, then {xt} is termed
a zero-mean unit-variance white noise. The white noise is used as the ingredient
in many weakly stationary time series process models because of the simplicity of its
acvf . Defined below is one such model; refer §11.1 of [20] or §9.2 of [79] among many
references for its details.

Definition 2.11. For a q-variate zero-mean white noise {xt} ∀t ∈ Z and matrices
Cj ∈ Rq×q ∀j ∈ Z with absolutely summable elements, a linear process is defined
as the q-variate time series

(2.4) ut =
∑

j∈Z

Cjxt−j ,

which is weakly stationary with zero mean and acvf

(2.5) Γu
h =

∑

j∈Z

Cj+hΓ
x
0C

′
j .

2.2 Spectral analysis of continuous processes

The purpose of this section is to introduce certain Fourier analysis concepts required
for this thesis.

Note 2.3. This section deviates momentarily to discuss continuous time processes;
the time index is t ∈ R; everywhere else in this thesis t ∈ Z.

Consider the motion of a simple pendulum as an example of a periodic continuous
process. It is assumed for simplicity that the mass of the string attached to the bob
of the pendulum is negligible. The oscillation is restricted to a plane so that the
constant string length and an angle, viz., the instantaneous angle that the string forms
with respect to its equilibrium position, are sufficient to describe its motion. It is also
assumed that the amplitude α, which is the maximum displacement of the bob from
its position of equilibrium, is very small relative to the length of the pendulum. Refer
to Figure 2.3; let τ be the time period of oscillation so that τ−1 is the frequency of
oscillation. The standard association of 2π radians to be equivalent to one complete
oscillation may be made. Let φ radians be the part of 2π radians of an oscillation the
pendulum has completed at time t = 0; its sign depends on the choice of direction of
reference of the bob’s trajectory. If it is assumed that the pendulum is undamped by
any kinds of friction and disturbances, then the pendulum’s displacement with respect
to the equilibrium position of the string at time t ∈ R is yt = α cos(2π t

τ + φ). Basic
trigonometric identities enable writing yt in various combinations of sinusoids, e.g.,

(2.6) yt = a cos(2πt/τ) + b sin(2πt/τ),

where a = α cos(φ) and b = −α sin(φ).
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Figure 2.3: The motion of the simple pendulum registers a continuous function based on the
displacement of its bob.

Just seen is the decomposition of a basic equation of oscillation into two sinusoids
of frequency τ−1. Consider that yt was expressed as a weighted sum of two basis func-

tions; this is because the sinusoids here are orthogonal functions, i.e.,
∫ 1

2
τ

−
1

2
τ
cos(2πt/τ)

sin(2πt/τ) dt = 0. The necessity of orthogonal functions in many problems is anal-
ogous to the necessity of orthogonal coordinate axes in expressing the position of a
point in a Cartesian plane.

The decomposition of a time-domain process to its frequency components is known
as Fourier (spectral) analysis and the definitions presented in this and Section 2.3
on this topic can be found in references such as [99, 44, 93, 89]. Fourier analysis is
based on one of the most important contributions to the sciences originally formalized
by Joseph Fourier in 1807 that any ‘well-behaved’ deterministic continuous periodic
function yt could be expressed as a sum of orthogonal functions if and only if the or-
thogonal functions are sinusoids, where a ‘well-behaved’ function satisfies the following
condition:

Definition 2.12. A function yt ∀t ∈ R is said to be absolutely summable if

(2.7)
∫

∞

−∞

|yt| dt <∞.

The unique decomposition of such a deterministic periodic function yt into a possi-
bly infinite number of sinusoids is called its Fourier series representation: yt = a0

2

+
∑

∞

n=1(an cos(2πnt/τ) +bn sin(2πnt/τ)), where am = 2
τ

∫ 1

2
τ

−
1

2
τ
yt cos(2mπt/τ) dt,

m = 0, 1, 2, . . . and bl =
2
τ

∫ 1

2
τ

−
1

2
τ
yt sin(2lπt/τ) dt, l = 1, 2, 3, . . .. It is often con-
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venient to use Euler identity eiθ = cos(θ) + i sin(θ) to reach the following definition
which holds for complex-valued functions also.

Definition 2.13. The Fourier series representation of a deterministic continuous
periodic function yt ∈ C ∀t ∈ R satisfying (2.7) is

(2.8) yt =
∞∑

m=−∞

cmei2πmt/τ

where cm ∈ C ∀m ∈ Z is

(2.9) cm =
1

τ

∫ 1

2
τ

−
1

2
τ
yte

−i2πmt/τdt.

Note that if cm = cm ∀m ∈ Z, then the function yt ∈ R, else yt ∈ C.
Involve frequency spacing ∆u = 2π/τ and write the Fourier series coefficients as

cm = ∆u
2π

∫ 1

2
τ

−
1

2
τ
yt e−imt∆udt. Substituting these coefficients back into the series

summation gives yt =
∑

∞

m=−∞
∆u
2π

∫ 1

2
τ

−
1

2
τ
yte

−int∆u dt eimt∆u. Suppose

y(n∆u) =

∫ 1

2
τ

−
1

2
τ
yte

−int∆udt,

then yt =
∑

∞

m=−∞
∆u
2π y(n∆u) eimt∆u. As τ →∞ or ∆u→ 0,

yt =
1

2π

∫
∞

u=−∞

y(u)eitudu.

This is regarded as the inverse relation of a very important transform in mathematics
that is defined below. The term y(u) in the above development is the result of limiting
∆u→ 0 in y(n∆u) and acquires the following definition:

Definition 2.14. Fourier transform of a function yt ∀t ∈ R satisfying (2.7) is

(2.10) y(u) =

∫
∞

−∞

yte
−itudt.

2.3 Spectral analysis of discrete processes

In the Fourier transform relation of (2.10), a continuous function defined for t ∈ R is
dealt with. Consider the continuous time function yt ∀t ∈ R such that yt = 0 whenever
t 6= m∆τ ∀m ∈ Z for some constant ∆τ > 0. This is equivalent to sampling the
continuous function yt ∀t ∈ R at discrete instants separated by ∆τ and zero at all
other instants. Since only discrete instants are relevant here from the Fourier transform
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perspective, yt would be called a discrete time function. Therefore, the discrete time
Fourier transform using (2.10) becomes

y(u) =

∞∑

m=−∞

ym∆τe
−ium∆τ .

Denote ym , ym∆τ and refer to it as the m-th sample. Then a sufficient condition
for the existence of such a relation is |y(u)| < ∞, i.e., |∑∞

m=−∞
yme−ium∆τ | ≤∑

∞

m=−∞
|ym| |e−ium∆τ | <∞. This results in the absolute summability condition

(2.11)
∞∑

m=−∞

|ym| <∞.

Using angular frequency ω as u∆τ = 2πω in the above development results in the
following definition of Fourier transform for discrete time functions.

Definition 2.15. The discrete time Fourier transform of a complex-valued dis-
crete function ym ∀m ∈ Z satisfying (2.11) is

(2.12) y(ω) =
∞∑

m=−∞

yme−i2πωm.

Although real-valued discrete functions were being discussed, the discrete time Fourier
transform is valid for complex-valued functions also. Furthermore, since ei2πk = 1∀k ∈
Z, the following property holds:

Property 2.3. The discrete time Fourier transform has unit periodicity, i.e.,

(2.13) y(ω) = y(k + ω)∀k ∈ Z.

Another easily verifiable property, which holds true for any absolutely summable dis-
crete or continuous function, is due to the following theorem; refer §22.1 of [41] or
Chapter 3 of [72]:

Theorem 2.1. According to the Plancherel-Parseval theorem for the discrete
time Fourier transform y(ω)∀ω ∈ [−1

2 ,
1
2 ] of the function ym ∀m ∈ Z,

(2.14)
∑

m∈Z

|ym|2 =
∫ 1

2

−
1

2

|y(ω)|2 dω.

Just as the discrete time Fourier transform was defined being valid for complex-valued
discrete functions, the Fourier series discussed earlier in (2.8) and (2.9) is applicable
to any complex valued periodic function defined over any continuous domain. Hence,
replacing (y,− t

τ )→ (y, ω) in (2.8) makes it equivalent to (2.12). In other words, the
discrete time Fourier transform of a sequence of equally spaced samples of a real func-
tion is also a Fourier series whose coefficients form the sequence. Therefore, allowing
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the same replacement in (2.9) gives the differential 1
τ dt→ −dω and the integral limits

t = ±1
2τ → ω = ∓1

2 resulting in the following inverse of the relation in (2.12):

Definition 2.16. The inverse discrete time Fourier transform of a complex-
valued continuous function y(ω)∀ω ∈ R is defined as

(2.15) ym =

∫ 1

2

−
1

2

ei2πmωy(ω)dω.

The Fourier series gave discrete frequency components of a continuous time pro-
cess and the discrete time Fourier transform gave continuous frequency components
of a discrete time process. On the other hand, the following transform gives discrete
frequency components of a finite realization of a discrete time process:

Definition 2.17. The discrete Fourier transform of a series {yt}, t = 1, . . . , τ
is defined as

(2.16) y(ωj) =
1√
τ

τ∑

t=1

yte
−i2πωjt

at discrete frequencies ωj =
j
τ , j = 0, . . . , τ − 1 and the inverse discrete Fourier

transform at the discrete instants is defined as

(2.17) yt =
1√
τ

τ∑

t=1

y(ωj)e
i2πωjt.

The equivalent of Theorem 2.1 for the discrete Fourier transform is as follows [17]:

Property 2.4. According to the Plancherel-Parseval theorem for the discrete
Fourier transform y(ωj) of the sequence yt ∀j, t = 1, . . . , τ ,

(2.18)
τ∑

t=1

|yt|2 =
τ∑

j=1

|y(ωj)|2.

In this thesis, for a given finite length realization of a multivariate time series, certain
asymptotic properties of the discrete Fourier transform will be used to define, derive,
and optimize the dynamic transformation of the latent time series into commonalities.
These asymptotic properties will be discussed in Section 2.5. The Plancherel-Parseval
theorem will enable measuring and containing the commonalities that are retained
during the transition between the time-domain and the frequency-domain. In Section
2.4, how the frequency-domain analysis finds utility in a stationary process will be
discussed. Specifically, in Theorem 2.2, it will be learned how the Fourier transform
relates two important statistical properties of a time series.
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2.4 Spectral analysis of stationary processes

Suppose the pendulum motion expressed in (2.6) is subject to random amplitude α
and phase φ disturbances so that (a, b) become uncorrelated zero-mean unit-variance
random variables (a, b). Moreover, the discrete time domain is considered so that the
equation of motion in (2.6) takes the form yt = a cos(2πωt) + b sin(2πωt) ∀t ∈ Z;
it will be called the ‘perturbed pendulum.’ Its mean µy = Ea,b[yt] = 0. The
acvf is γyh = Ea,b[yt+hyt], which due to non-correlated a and b takes the form
γyh = Ea,b[a2 cos(2πω(t+h)) cos(2πωt)] + Ea,b[b2 sin(2πω(t+h)) sin(2πωt)] ∀h ∈ Z.
Since it was assumed that Ea[a2] = Eb[b2] = 1, what one gets1 is γyh = cos(2πωh);
spectral analysis of such an acvf could be found in [111, 19]. Since µy and γyh are in-
dependent of t, it is found that {yt} is weakly stationary. And, since weakly stationary
{yt} does not satisfy (2.11), its Fourier transform simply does not exist.
Using Euler’s identity, the acvf of the perturbed pendulum is written as a summa-
tion γyh =

∑k
i=1 αig(ωi), where g(ω) = ei2πωh, k = 2, ω1 = −ω, ω2 = ω, and

α1 = α2 = 1
2 . But such a summation with a general g(ω) has an integral repre-

sentation
∑k

i=1 αig(ωi) =
∫
g(ω) dSy(ω), where S

y(ω) ,
∑k

i=1 αi 1(ωi ≤ ω) is a
monotonically increasing function bounded between S

y(−∞) = 0 and S
y(∞) = 1,

and 1(ωi ≤ ω) is the step function which jumps from zero to unity at ω = ωi.
However, due to periodicity of g(ω) = ei2πωh in the above example of a perturbed

pendulum, the acvf is essentially represented in the integral form γyh =
∫ 1

2

−
1

2

ei2πωh

dSy(ω), where S
y(ω) is a monotonically increasing function bounded between [−1

2 ,
1
2 ]

while S
y(−1

2) = 0 and S
y(12 ) = γy0. The reader is referred to [99, 20] for the details

of this representation and other properties that Sy(ω) adheres to. The notion carried
forward is that whenever the derivate sy(ω) = d

dωS
y(ω) exists, it is possible to write

the acvf as

(2.19) γyh =

∫ 1

2

−
1

2

ei2πωh sy(ω) dω.

But if there are discontinuities in S
y(ω), e.g., the perturbed pendulum, it will not be

possible to write the acvf according to (2.19) because sy(ω) does not exist.
Now refer back to (2.15) to see its analogy with (2.19) which requires that a condition

(2.20)
∞∑

h=−∞

|γyh| <∞,

equivalent to (2.11) be satisfied by γyh. This enables the following theorem and defini-
tion; refer §4.3 of [20]:

1Using the trigonometric identity cos(θ1 − θ2) = cosθ1 cosθ2 + sinθ1 sinθ2
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Theorem 2.2. For acvf γyh of a weakly stationary time series {yt} ∀t ∈ Z satisfying
(2.20), according to Herglotz’s theorem, the spectral density function sy(ω) at
the frequency ω ∈ R exists and is defined as the discrete time Fourier transform of
its acvf, i.e.,

(2.21) sy(ω) ,

∞∑

h=−∞

γyhe
−i2πωh.

In this context, it may be noted that the perturbed pendulum does not satisfy the ab-
solute sum condition because

∑
∞

h=−∞
|γyh| =

∑
∞

h=−∞
| cos(2πfh)| = ∞ and it does

not have a spectral density function.
In light of (2.21) and similar to Property 2.3, the following property of the spectral
density function is arrived at:

Property 2.5. The spectral density function has unit periodicity, i.e., sy(ω) =
sy(k + ω)∀k ∈ Z.

For an r-variate time series {yt} ∀t ∈ Z, where yt = [y1t · · · yrt]′, let γ
yi,yj
h be the

(i, j)-th element of its autocovariance matrix Γy
h. Referring to §1.1.2 of [102], the

condition equivalent to (2.20) for vector random variables becomes

(2.22)
∞∑

h=−∞

|γyi,yjh | <∞,

which is valid ∀i, j ∈ 1, . . . , r in defining the matrix of spectral density function
Sy(ω) ∈ Cr×r whose (i, j)-th element is syi,yj . Then, due to the development of
Property 2.1 and the relation (2.21), the following is easily got:

Property 2.6. The spectral density function Sy(ω) is Hermitian symmetric about
ω = 0, i.e.,

(2.23) (Sy(ω))′ = Sy(−ω) = S
y
(ω).

Referring to Theorem 2.7.1 of [18], Theorem 4.4.1 of [39], and [92, 34], another im-
portant property of the r-variate time series follows:

Property 2.7. If {yt} ∀t ∈ Z is a linear process, then |Sy(ω)| 6= 0 ∀ω ∈ [0, 1].

The above discussion is very relevant to the intention in this thesis to assess the com-
monalities of a multivariate time series via its spectral density function. For the purpose
of learning multivariate time series based on the commonalities, the hope is to take the
following approaches: Firstly, two multivariate time series are compared by evaluating
how similar the components of their spectral density functions are. Secondly, the fu-
ture evolution of a multivariate time series is predicted by estimating the acvf , via its
spectral density function, that inherits maximum commonalities.
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2.5 Asymptotic properties of linear processes

In practical problems, it is infeasible to have a dataset consisting of an infinite collection
of samples to compute true statistical properties such as mean, acvf , variance, etc.
Characteristics of a time series have to be estimated from a given finite length subset
of its realization. With a limited number of samples, sample estimates may be ques-
tioned for their reliability. The field of study of asymptotic statistics strives to design
properties, procedures, tests, and estimators in the limit that the sample size becomes
large [122, 58]. A broad review of the asymptotic techniques will not be resorted to;
however, presented below are the essentials for the thesis’s purposes.

Consider the scenario in which, due to computational or limited access to data, time
series characteristics have to be gleaned from one realization forming a finite length
data stream. For a weakly stationary time series, these characteristics include its mean
and acvf for which, first, the following asymptotic properties referring to §11.2 of [20]
are presented:

Theorem 2.3. For a finite τ -length realization {yt} t = 1, . . . , τ of a weakly
stationary time series {yt} t ∈ Z whose acvf Γy

h satisfies (2.22), the sample mean

(2.24) ŷ =
1

τ

τ∑

t=1

yt

converges in a mean square sense to the population mean µy.

Theorem 2.4. For a finite τ -length realization {yt} t = 1, . . . , τ of a weakly
stationary time series {yt} t ∈ Z with sample mean ŷ, the r × r sample acvf

(2.25) Γ̂y
h =

{
1
τ

∑τ−h
t=1 (yt+h − ŷ)(yt+h − ŷ)′ 0 ≤ h ≤ τ − 1,

1
τ

∑τ
t=−h+1(yt+h − ŷ)(yt+h − ŷ)′ −τ + 1 ≤ h < 0

converges in probability to the population acvf Γy
h.

With the sample acvf Γ̂y
h for finite lags, the best hope is for estimates of the spectral

density function Sy(ωk) at finite discrete frequencies ωk = k
τ ∀|k| = 0, . . . , τ − 1

via inverse discrete Fourier transform. For an otherwise continuous spectral density
function Sy(ω), 0 ≤ ω < 1, those estimates at discrete frequencies is an approximation
of Sy(ωk) dependent on how good the sample estimation Γ̂y

h is. Therefore, in what
follows, described is the asymptotic property of Sy(ω) near any target frequency ωj =
j/̂ ∀j = 0, . . . , ̂− 1, or 0 ≤ ωj < 1 and ̂≪ τ .

It starts by splitting a period of ω ∈ [0, 1) of the spectral density function into ̂ non-
overlapping frequency bands. Suppose there is a total of τ = n̂ discrete frequencies
that are considered for the splitting so that each band will have n discrete frequencies.
By the 0-th frequency band represented by the target frequency ω0 = 0, implied are
n discrete frequencies ω0,l > 0, l = 1, . . . , n closest to 0. By the j-th frequency band
ωj,l ∀l = 1, . . . , n; j = 1, . . . , ̂ − 1, implied are n frequencies closest to the target
frequency ωj = j/̂ and between ωj − b and ωj + b, where 2b = n/̂ is called the
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band 1 band j band (̂− 1)

ω

band 0

ω ∈ [0, 1)

band (̂− 2)

ω

ωj,1 ωj,2 ωj,l ωj,n−1
ωj,n

ω

ω0 ω1 ωj ω̂−2 ω̂−1

Figure 2.4: The scheme of splitting the frequency range ω = [0, 1) into ̂ non-overlapping
subbands containing n discrete frequency components each.

bandwidth. Suppose 2b < ω1 − b < ω̂−1 + b < 1 and n ≪ ̂ is choosen so that the
bandwidth is very low.

For proceeding further, the following definitions are needed; refer to [45]:

Definition 2.18. An r-dimensional ‘complex-valued vector random variable’
ξ = [ξ1 · · · ξr]′ = ℜ(ξ) + iℑ(ξ) ∈ Cr is defined as the 2r-variate vector random
variable η = [ℜ(ξ1)ℑ(ξ1) · · · ℜ(ξr)ℑ(ξr)]′ ∈ R2r formed by its real and imaginary
components.

As established in [45], the covariance matrix Γξ of an r-variate complex valued vector
random variable ξ is isomorphic, i.e., equivalent upto a row and a column permutation,
to the covariance matrix Γη of its corresponding 2r component vector random variable
η via

Γξ
≅ 2Γη; (Γξ)−1

≅
1

2
(Γη)−1;

whereas the means are isomorphic via µξ ≅ µη. Also, it was shown there that det(Γξ) =

2r(det(Γη))
1

2 and ξ∗Γξξ = η′Γηη. Then, following the convention of a Gaussian
distribution of an r-variate random variable u with mean a and covariance matrix B
denoted by

(2.26) N (u|a,B) =
exp

(
−1

2(u− a)′B−1(u− a)
)

(2π)r (det(B))
1

2

,

the following definition could be arrived at:
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Definition 2.19. The r-variate ‘complex Gaussian probability density’ of a
complex valued random variable u with mean a ∈ Cr and covariance matrix B ∈
Cr×r is defined as

NC(u | a,B) =
exp

(
−(u− a)∗B−1(u− a)

)

πr det(B)
.(2.27)

Now an essential theorem for this thesis is presented; refer Theorem 4.4.1 of [18], §C.2
of [111], and [53].

Theorem 2.5. The discrete Fourier transform components of a realization of an r-
variate linear process at frequencies ωj,l such that lim

̂→∞
|ωj−ωj,l| → 0 ∀l ∈ 1, . . . , n;

∀j = 1, . . . , ̂ ≫ n are iid samples of an r-dimensional ‘complex-valued vector
random variable’ yj at frequency ωj ∈ [0, 1] with a probability density

py(ωj)(u) =

{
NC(u | 0,Sy(ωj)), ωj ∈ (0, 1)
N (u | 0, 2Sy(ωj)), ωj ∈ {0, 1}.(2.28)

Theorem 2.5 furnishes a probabilistic model for discrete Fourier transform samples
obtained from a finite realization of a time series of a linear process. The theorem simply
recommends that discrete Fourier transform components within a ‘small’ bandwidth
near a target frequency ωj is Gaussian with the covariance matrix equal to the spectral
density function Sy(ωj); at zero frequency the covariance matrix is twice Sy(0).

In order to use this theorem, the following procedure is adhered to: Given τ samples
of a time series realization, first compute the τ -length discrete Fourier transform y(ωk),
k = 0, . . . , τ−1. Then, n discrete Fourier transform components y(ωj,l), l = 1, . . . , n;
j = 0, 1, . . . , ̂− 1, contained in the j-th subband may be assigned as

(2.29) ωj,l : |ωj − ωj,l| ≤ nτ−1; n≪ ̂.

For the j-th frequency band, the sample covariance matrix is computed as

(2.30) Ŝy(ωj) =
1

n

n∑

l=1

(y(ωj,l)− ŷ(ωj))(y(ωj,l)− ŷ(ωj))
∗,

and

ŷ(ωj) =
1

n

n∑

l=1

y(ωj,l)

is the sample mean of the discrete Fourier transform y(ωk) and ωj − b < ωk < ωj + b.
To ensure robustness of the estimate Ŝy(ωj), typically, one would also want to maintain

(2.31) n ≥ r2,

refer [106, 12].
It could be shown, as done in §4.2 of [18] or §12.4 of [25] that for a linear process

(2.32) lim
n→∞

Ey[Ŝy(ω | n)] = Sy(ω) ∀ω ∈ [0, 1).
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Hence, while maintaining ̂ ≫ n, a sufficiently large n should provide an unbiased
estimate of Sy(ωj) through (2.30). This process is given in Algorithm 1, where care
should be taken to ensure that there are sufficient subbands as required by Theorem
2.5.

Algorithm 1: Prepare discrete Fourier transform subbands

Input: D = {yt}, t = 1, . . . , τ ; yt ∈ Rr;n; ̂;

Output: {Ŝy(ωj)}; {y(ωj,l)}; j = 1, . . . , ̂; l = 1, . . . , n;

compute yt
F←→ y(ωk); ωk = k

τ , k = 0, . . . , τ − 1 using (2.16);
assign y(ωj,l); j = 1, . . . , ̂; l = 1, . . . , n using (2.29);

estimate Ŝy(ωj) using (2.30);

2.6 Summary

This chapter introduced certain frequently sought after notions pertaining to time
and frequency domain analyses of time series. These notions include acvf , spectral
density function, discrete Fourier transform, white noise, etc. The relation between the
spectral density function and the acvf was recapped on. Also introduced were some
of the notations adhered to for the remaining chapters. As discussed, the spectral
density function of a stationary time series is the Fourier transform of its autocovariance
function. The discrete Fourier transform components of a linear process within a
small bandwidth around a target frequency is approximately complex-Gaussian with
mean zero and covariance matrix equaling the spectral density function at the target
frequency.

Our goal for this thesis is to model and learn a measured multivariate time se-
ries by dynamically transforming a low-dimensional latent time series. The hope is to
use classical probabilistic modeling concepts introduced in the next chapter to achieve
this goal. Most of those concepts will be based on fitting popular probability density
function models on time and lag independent data; but it is time series data that is
dealt with. In order to elicit a similar and manageable probability density function that
applies to a wide class of time series, the asymptotic theory of discrete Fourier trans-
form components was approached. This is because those components within a small
bandwidth may be considered as realizations of a complex-valued Gaussian vector ran-
dom variable. This enables the possibility of applying standard probabilistic modeling
techniques, as reviewed in the next chapter, to multivariate time series modeling.
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Chapter 3

Analytical and iterative factor
modeling

Modeling a process which generated a given multivariate time series dataset for the
purpose of learning motivates this thesis. In Chapter 2, the essential time series analysis
tools that are needed in the modeling were presented; whereas in this chapter the
elements of building the model itself will be discussed. Models with parameters that
could be tuned to fit the statistical characteristics of the dataset at hand will be chosen;
this tuning is called parametric estimation. It may be seen as a limitation because it
warrants assumptions on the type of the data generation process involved. However,
essential precautions will be taken by modeling on a dataset that is representative
enough of the process. Moreover, in order to avoid any overfitting, learning methods
which caution when wide deviations from the assumptions on the model and data are
detected will be used.

The treatment of this chapter from the rest of the thesis has one main difference;
here, any temporal correlation of the data samples in the given dataset is ignored. Yet,
later on in the thesis, the parametric modeling techniques presented herein with the
time series techniques of Chapter 2 will be utilized to achieve the thesis objectives.

In Section 3.1, a well-founded modeling strategy based on the principle of max-
imum likelihood will be introduced [96]. The principle assumes that the data has
been generated by a known class of probability distributions whose parameters are to
be estimated such that the likelihood of observing the data is maximized.

In Section 3.2, the concept of a linear model whose parameters are linear combina-
tions of the data samples will be introduced. The derivation of the optimal parameters
will be summarized by the Gauss-Markov theorem. The ideas of unbiased and
efficient parameters defined there are desirable properties for any parametric model.

In Section 3.3, the factor model is presented. While the linear model of Section
3.2 utilizes some measured variables of the dataset to explain themselves or other
measured variables, the factor model is remarkably different. The latter assumes ex-
istence of a fewer number of unmeasured latent variables responsible for generating
all measured variables of a given dataset. The transformation from latent variables to
measured variables is assumed to be non-random but unknown; this transformation will
account for the covariations in the data. However, in the measured data, there will be
deviations unexplained by such a generative model. Those deviations will be assumed
unique to each of the measured variables and the variables that absorb these unique
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deviations will be called unique factors. This characteristic of the factor model is
actually facilitated by imposing a diagonal structure on the covariance matrix of the
unique factors; whereas the latent variables are transformed such that they absorb the
common variation of the measured variables. The transformed latent variables are,
hence, called common factors.

Note that the parameters of the factor model are (i) transformation matrix of
the latent variables to the measured variables and (ii) variances of the unique fac-
tors. The principle of maximum likelihood cannot yield these two sets of parameters
independently. By assuming knowledge or guessing one of them, an estimate for the
other parameter could be found.

In Section 3.4.1, the principal factor model first estimates the covariance ma-
trix of the unique factors in order to estimate the transformation matrix; the reverse
procedure is followed in principal component factor model of Section 3.4.2.

In Section 3.5, the Expectation - Maximization (EM) algorithm for maximum
likelihood estimation of the factor model will be first narrated in an original manner. It
is an iterative scheme established by [33]. The expression for complete log-likelihood
of the measured variables as well as the latent variables are written out. However, its
analytical tediousness in direct maximization is realized. This is overcome by probing
its lower bound. It turns out that the local maximum of the lower bound is attained
whenever the complete log-likelihood converges to the log-likelihood of the measured
variables. Hence, starting with a set of guessed parameters, iteratively maximizing
the complete log-likelihood converges towards the standard log-likelihood. Writing the
lower bound of the complete log-likelihood scheme in an a posteriori expectation format
and maximizing it for the optimal parameters is the crux of the EM algorithm.

In Sections 3.6 and 3.7, the scheme for using the EM algorithm for iteratively
estimating factor model parameters is presented; it is partly along the lines of [14]. In
doing so, the expression for the log-likelihood in the complete log-likelihood form is
first written out; the latter is conducive for use with the algorithm. In the E-step of
the algorithm presented in Section 3.7.1, the a posteriori mean and covariance of the
latent variables are derived. In the M-step of Section 3.7.2, a posteriori expectation
format of the log-likelihood is maximized; the parameters of the factor model, viz.,
transformation matrix of the common factors and covariance matrix of the unique
factors, are thereby estimated.

3.1 Maximum likelihood model

This section starts by presenting some notions and usages that will help in explaining
the characteristics of the data to be modeled. The primary assumption is that the
data is a collection of samples of some relevant variables measured in an experiment;
this collection will be denoted by D and will be called simply the dataset. Let D be
constituted by n data samples written in the sequence D = {yl}, l = 1, . . . , n and yl
be called the l-th sample.

In this chapter, unlike in Chapter 2, any sequential dependence of the value or
occurrence of a data sample on next or any other sample is ignored. So there is no
need to sort the data samples based on the time of data acquisition or any other
criteria. But an index to identify the samples individually may be used.

Let the samples in D be realizations of the sequence yl of random variables. Let pyl

denote density functions of their respective probability distributions. Throughout this
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chapter, it is assumed that the samples encompassing D adhere to the characteristic
defined below [108]:

Definition 3.1. A dataset {yl}, l = 1, . . . , n due to its respective random variables
yl is said to be independently and identically distributed or iid if its joint
probability density function is

∏n
l=1 p

y(yl), where y is a random variable such that
py(yl) = pyl(yl) ∀l = 1, . . . , n.

Based on Definition 3.1, D is interpreted as n realizations of a random variable y whose
probability density function is py. Therefore, any realization y of y has a corresponding
probability density py(y). Extending py(y) based on Definition 3.1 to D leads to the
joint probability density of the dataset, which is simply denoted by py(D), and is given
by

(3.1) py(D) ,
n∏

l=1

py(yl).

In order to maintain simplicity for the model which generated D, a set of parameters
θ will be introduced for the model. In the context of Definition 3.1, θ refers to the
set of parameters of the probability density function of y. However, θ is unknown and
has to be estimated. In this setup, py|θ(D | θ) will be termed as the likelihood of the
dataset whilst the parameters θ are available. Note that the distribution is over y and
the likelihood is a function of non-random θ.

At a set of parameters θ, due to (3.1), the likelihood of the dataset D consisting
of iid samples yl, l = 1, . . . , n factorizes as

(3.2) py|θ(D | θ) =

n∏

l=1

py|θ(yl | θ).

In order to find an appropriate model for a given dataset, the intention is to utilize the

following statistical methodology [96].

Definition 3.2. According to the principle of maximum likelihood, an optimal
set of parameters θ̂ for the model corresponding to a dataset D is the set of
parameters θ for which the likelihood of D is maximized, i.e.,

(3.3) θ̂ = argmax
θ

py|θ(D | θ).

A modification to (3.3) is made now: Since probability density is a non-negative func-
tion, the logarithm of the likelihood is maximized to arrive at the same solution for the
optimal parameters as per Definition 3.2. Such an analysis of the exponential family
of probability density functions will lead to substantial simplification [96]. Hence, (3.3)
may be rewritten equivalently as

θ̂ = argmax
θ

L(θ),(3.4)

where

L(θ) = loge py|θ(D | θ).(3.5)
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3.2 Linear model

In Section 3.1, an appropriate estimate θ̂ of θ is considered as parameter for a model
given the dataset D. It is assumed that θ is a non-random quantity. Now consider the
estimator Θ of θ, i.e., Θ is a random variable. It is hoped that Θ gives a reasonably
good estimate of the true set of parameters θ given D. Denoting mean of Θ by µΘ

and variance by γΘ, the following properties indicate the quality of Θ; refer §4.4 of
[70] and §10.3 of [94]:

Property 3.1. An estimator Θ of θ is unbiased if µΘ = θ.

Property 3.2. An estimator Θ of θ is efficient if Θ = argmin
Θ̃∈C

γΘ̃, where C is the

class of all unbiased estimators of θ.

A modeling strategy in Section 3.1 with a dataset constituted by iid samples was
considered. Another popular parametric modeling paradigm called linear model in-
volves treating a set of r-variate iid samples y1, . . . , yn as dependent on a set of
q-variate iid samples x1, . . . , xn, where n > q. The simplest of linear models regresses
xl towards yl ∀l = 1, . . . , n through the relation

(3.6) yl = Wxl + zl,

where W ∈ Rr×q is a linear function of xl ∈ Rq and zl ∈ Rr is the error in the
regression [119, 109]. The model parameters θ discussed above refer to W here.
Suppose the modeling errors zl are realizations of the vector random variable z, then
the measurements yl may also be treated as realizations of the vector random variable
y. The linear model may then be effectively written as

(3.7) y = Wx+ z,

for any x ∈ Rq. By restricting the quality of the regression error z, the following
theorem defines a popular linear model; for details one may refer to §6.2.1 of [62],
§7.1 of [38] or §8.1 of [51] among plenty of references in the literature: Suppose each
realization yl ∈ Rr of the vector random variable y is related to xl ∈ Rq, l = 1, . . . , n
through (3.6) or (3.7) where zl are due to zero mean uncorrelated Gaussian vector
random variable z. According to the Gauss-Markov theorem, an efficient estimator of
W is given by

(3.8) Ŵ = [y1 · · · yn]X ′
(
XX ′

)−1
,

where X = (x1 · · · xn) ∈ Rq×n has rank(X) = q. Then, the error estimate for the l-th
sample becomes ẑl = (ẑ1l · · · ẑrl)′ = yl− Ŵxl ∀l = 1, . . . , n. The unbiased estimator
of the covariance matrix Γz = diag(γz1 , . . . , γzr) of z is given by

γzk =
1

n− q

n∑

l=1

ẑ2kl ∀k = 1, . . . , r.(3.9)
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3.3 Factor model

The linear model reviewed in Section 3.2 could be seen as the q-variables of the iid
samples xl, l = 1, . . . , n together explaining the r-variables of each and every iid
sample yl, where both these sets of measured variables are available as part of the
dataset D. Suppose yl and xl , l = 1, . . . , n are treated to be due to vector random
variables y and x, respectively, so that y is the result of the transformation W x, where
W ∈ Rr×q. Then, the challenge is to explain y when x is unavailable or inaccessible
in D. One way to proceed is by assuming latent existence of the q-dimensional vector
random variable x in generating the r-dimensional vector random variable y. In that
context, y is named the set of measured variables and x the latent variables.
It is wished to pursue here a parametric model by involving the probability density
function; this will help extract the statistical characteristics of the dataset in a finite
number of parameters. Hence, if the probability density function of x is assumed
known in the transformation y = W x, then W serves as the parameter that needs to
be estimated from the measured y.
However, the model y = W x is very restrictive because it assumes that any randomness
in y is due to x whose characteristics are assumed. The model is relaxed by introducing
an r-dimensional random variable z uncorrelated with x and designated to absorb all
deviations in y that cannot be retained by

(3.10) v , W x.

Thus, the measured variables y are split into the common factors v = W x and unique
factors z; the following is such a model [80]:

Definition 3.3. A factor model is defined as

(3.11) y = W x+ z,

where y and z are r-dimensional vector random variables, x is a q-dimensional vector
random variable, W ∈ Rr×q is a non-random transformation matrix, and

(3.12) µx = 0, µy = 0, µz = 0,

(3.13) Γx = Iq,

(3.14) Γz is diagonal, and

(3.15) Γx,z = 0.

Given a dataset of realizations of y, the parameters of the factor model that need to
be estimated are W and the covariance matrix Γz of z. The factor model, in contrast
to the linear model of (3.6), does not observe any realizations of x.
The following essential result for the moments of a function of a vector random vari-
able is summarily provided; refer Chapter 6 of [35]: For v = W x, µv = Wµx and
Γv = WΓxW ′. Therefore, applying (3.13) gives

(3.16) Γv = WW ′.
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In the factor model, the condition (3.15) of zero correlation between x and z is crucial.
Naturally, it leads to Γv,z = 0. Therefore, taking the second-order moments on both
sides of (3.11) gives

(3.17) Γy = Γv + Γz = WW ′ + Γz.

Due to (3.14), the r components of z are uncorrelated, or, all cross-covariances between
the r components of y are inherited by only the covariance matrix Γv = WW ′ of
v = W x and not by Γz. This can be seen as each component of z inheriting only a part
of the variance unique to its corresponding component in y. Hence, the components
of z are called the unique factors. Since no part of the covariance of y common to
all its components are held by z but instead by the transformation v = W x, v is called
the common factors.
Note that in the factor model, the rq elements of W and r diagonal elements of Γz

are to be estimated. Since (3.17) is just one equation with two unknowns, i.e., W and
Γz, it cannot be solved uniquely; more conditions and assumptions may be placed to
restrict possible solutions.

3.4 Maximum likelihood factor model

Well-known is the following assumption towards a proper solution of the factor model
parameters, e.g., refer §3.5 of [62]: The measured variables follow a Gaussian distribu-
tion with parameters θ = {µy,Γy}, i.e.,

py|θ(y | θ) = N (y | µy,Γy),(3.18)

as defined in (2.26).
Given samples yl , l = 1, . . . , n of the measured variables y, the principle of

maximum likelihood as per Definition 3.2 could be used to estimate an optimal set
of parameters according to (3.4). The maximum likelihood parameters µ̂y and Γ̂y of
the mean and covariance matrix of the Gaussian distribution in (3.18) are the sample
mean and sample covariance matrix, respectively, i.e.,

µ̂y =
1

n

n∑

l=1

yl,(3.19)

Γ̂y =
1

n

n∑

l=1

(yl − µ̂y)(yl − µ̂y)′.(3.20)

Then (3.20) may be substituted in (3.17) to get

(3.21) Γ̂y = WW ′ + Γz.

However, it gives no clue regarding the maximum likelihood W and Γz, which are the
parameters of interest to the factor model. In what follows, two relevant methods which
derive appropriate solutions on the basis of the general maximum likelihood solution
are briefly presented.
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3.4.1 Principal factor model

One of the approaches to finding possible solutions to the maximum likelihood factor
model of the r-dimensional measured variables y using q-dimensional common factors
x and r-dimensional unique factors z as per Definition 3.3 starts with a good guess Γ̂z

of Γz. The approach is called the principal factor model. One may refer to §10.2 of
[54] or §6.3 of [46] to know how this guess could be made reliable; the details which
are unnecessary for the objective of the present discussion are skipped. Substituting
Γ̂z in (3.21) gives

(3.22) Γ̂y = WW ′ + Γ̂z.

The problem then is to estimate a W such that WW ′ = Γ̂y − Γ̂z subject to some
quality criterion. Suppose columns u1, . . . , ur of U ∈ Rr×r are the eigenvectors of
Γ̂y − Γ̂z whose corresponding eigenvalues d21 ≥ · · · ≥ d2r > 0 constitute the diagonal
elements of a diagonal matrix D2 from top-left to bottom-right. If the eigenvalue-
eigenvector decomposition of WW ′ = UD2U ′ and the subscript 1 : q is used to refer
the first q column indices of a matrix, then the optimal transformation matrix of the
principal factor model is

(3.23) Ŵ = U1:qD1:q.

If necessary, the estimation between Γ̂z and Ŵ may alternate iteratively.

3.4.2 Principal component factor model

Another approach, for which [103] is referred to, involves first estimating W and then
the covariance matrix Γz of the unique factors. In order to estimate Γv and W , first, it
has to be reminded that WW ′ is of rank q. Second, note that the relation (3.21) may
be thought as WW ′ approximating the variance-covariance of the measured variables
y as contained in Γy. There could be infinitely many ways WW ′ could approximate Γy

and an approximation with respect to the Frobenius norm ‖Γ̂y−Γv‖F seems reasonable
and standard practice; refer §10.2 of [54] and and §2.12 of [103]. In that context, the
following theorem is used; refer Lecture 5 of [120]:

Theorem 3.1. For full rank matrix A ∈ Cr×r with eigenvectors u1, . . . , ur whose
corresponding eigenvalues are α1 ≥ · · · ≥ αr, matrix Ã ∈ Cr×r with rank(Ã) =
q < r defined as

(3.24) Ã = [u1 . . . uq] diag(α1, . . . , αq) [u1 . . . uq]
∗

is such that

(3.25) ‖A− Ã‖F = inf
B∈Cr×r

rank(B)=q

‖A−B‖F = αq+1.

Due to Theorem 3.1, the optimal approximation of Γy using WW ′ in the Frobenius
norm sense is declared as ŴŴ ′ = E1:qΛ

2
1:qE

′
1:q, where columns of E are eigenvectors

of Γ̂y whose corresponding eigenvalues in decreasing order form the diagonal of Λ2.
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Therefore, if the subscript 1 : q to refer to the first q column indices of a matrix, the
estimate of W sought is given by

(3.26) Ŵ = E1:qΛ1:q.

Since Γz ought to be diagonal due to uncorrelated z, taking into account (3.21), an
approximate solution for Γz is

(3.27) Γ̂z ≈ d̃iag(Γ̂y − Ŵ Ŵ ′),

where d̃iag refers to setting the off-diagonal elements to zero.

3.5 EM algorithm

Now a presentation of the Expectation-Maximization (EM) algorithm is attempted; as
stated in the introduction of this chapter, it is a popular iterative method for maximum
likelihood estimation.

Note 3.1. In this section, x is assumed a discrete and univariate random variable;
this is to avoid any unnecessary analytical complications otherwise leading to equiv-
alent conclusions. E.g. the summation over x has to be replaced by an integration
for continuous x. And, a summation or integration across all dimensions of x is to
be applied had x been a vector random variable.

Note the following lemma (refer §4.5 of [49]):

Lemma 3.1. If a random variable x is marginalized from its joint distribution px,y

with the random variable y, the result is the distribution of y, i.e.,

(3.28) py(y) =
∑

x

px,y(x, y).

The definition of log-likelihood in (3.5) may be rewritten through Lemma 3.1 as

(3.29) L(θ) = loge

∑

x

py,x|θ(D, x | θ);

the maximization of this expression for the log-likelihood is intractable due to the
summation inside the logarithm. In order to evade this situation, a dummy function
η(x) such that

(3.30)
∑

x

η(x) = 1; η(x) > 0

is introduced and the complete log-likelihood

(3.31) L(θ, η) = loge

∑

x

η(x)
py,x|θ(D, x | θ)

η(x)
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is formed. The purpose in introducing η(x) is to seek possibilities to maximize L(θ, η)
in lieu of L(θ). In that pursuit, as shown in Section B.1.1, the logarithm may be
brought inside the summation, i.e.,

(3.32) L(θ, η) ≥
∑

x

η(x)loge
py,x|θ(D, x | θ)

η(x)
.

Referring to Section B.1.2, it is possible to decompose the complete log-likelihood as

(3.33) L(θ, η) ≥ L(θ) + K(θ, η),

where

K(θ, η) =
∑

x

η(x)loge
px|y,Θ(x | D, θ)

η(x)
.(3.34)

Now think of two iterative steps:

Step 1 − Find optimal η for a fixed θ: For a particular θ = θi, let η̂i = argmax
η

L(θi, η). Since local increase of L(θ, η) is guaranteed by locally maximizing its
global lower bound L(θ) +K(θ, η), η̂i = argmax

η
K(θi, η); one may refer [87] for

more details. By differentiating (3.34) with respect to η(x), it may be found
that

(3.35) η̂i = px|y,Θ(x | D, θi).

However, K(θi, η̂i) = 0 whereby

(3.36) L(θi, η̂i) = L(θi).

Note that for a Gaussian density for y, the conditional probability for η̂i in (3.35)
is tractable.

Step 2 − Find optimal θ for a fixed η: Having found the locally optimal η for
a fixed θ, the locally optimal θ for a fixed η = η̂i is pursued. Based on (3.33)
and (3.36), it may be written that

(3.37) θi+1 = argmax
θ

L(θ, η̂i)

Note that (3.36) ensures that likelihood L(θi) is approached in every i-th iteration
whenever L(θi, η̂i) is maximized to obtain the i + 1-th estimate θi+1; in other words,
the iterations converge to a local maximum of L(θi).

E and M steps

The two steps arrived at above are now compiled. Suppose there is an initial guess θ0
of θ. Then a local maximization of likelihood may be performed such that, in the i-th
iteration, where i = 1, 2, . . ., has the two steps:
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Step 1: estimate η̂i based on θi, and

Step 2: locally maximize the likelihood to obtain θi+1.

These steps of an iteration become explicit if we note as shown in Section B.1.3 that

θi+1 = argmax
θi

Ex|y,θ
[
logep

y,x|θ(D, x | θi)
]
.(3.38)

Hence, the i-th iteration involves:

Step 1 (Expectation): Evaluating the expectation Ex|y,θ
[
logep

y,x|θ(D, x | θi)
]
,

and

Step 2 (Maximization): Maximizing Ex|y,θ
[
logep

y,x|θ(D, x | θi)
]

locally with
respect to θi.

3.6 Basic setup of EM algorithm for factor modeling

The difference between the linear model and the factor model is obvious and wide.
While access to the samples xn and yn in (3.6) of the linear model is available, x in
(3.11) is assumed inaccessible in the factor model. Hence, for the factor model, the
conditional distribution py|x of y given x is of interest.
Firstly, using the properties of the conditional distribution, e.g. refer §8 in Chapter 1
of [110], it could easily be shown for the factor model that Ey|x[y|x] = W x + Ez|x[z]
= W x because z is independent of x and has zero mean.
Secondly, the conditional variance Γy|x is Ey|x[yy′|x] −(Ey|x[y|x]) (Ey|x[y|x])′. On ex-
pansion based on (3.11), Γy|x = Ey|x [(W x + z)(W x + z)′|x] −(W x)(W x)′. Upon
term-by-term expansion, due to the independence of z and x and since Ez[z] = 0, the
only surviving term will be Ez|x[zz′ | x], which becomes Ez[zz′] = Γz.
It is also well-known that the distribution of a Gaussian random vector conditioned
on another is itself Gaussian; one may refer of §4.8 of [48] or Theorem 3.10.1 of [15]
among many methods to verify it. Therefore, the Gaussian probability density of y | x
with parameters θ = {W,Γz} for the factor model may be written as

(3.39) py|x,θ(y | x, θ) = N (y | W x,Γz).

Note that θ in py|x,θ refers to the availability of the set of parameters; the distribution
is conditioned only on x. Based on the discussions in Section 3.1, the conditional
probability density py|x,θ underpins the likelihood of the factor model. As with (3.1),
the dataset D is considered to consist of the iid samples yl, l = 1, . . . , n of y. The
likelihood of the dataset is

(3.40) py|x,θ(D | x, θ) =

n∏

l=1

py|x,θ(yl | x, θ).

Using Theorem B.1 known as Bayes theorem, py,x|θ(D, x | θ) = py|x,θ(D | x, θ)px(x).
If it is assumed that the distribution px(x) to be independent of θ, then (3.38) of the
EM-algorithm reduces to iteratively solving

(3.41) θi+1 = argmax
θi

Ex|y,θ
[
logep

y|x,θ(D | x, θi)
]
.
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From the above three equations, it may be written that

θi+1 = argmax
θi

Ex|y,θ[f(θi, x)],(3.42)

f(θi, x) = logep
y|x,θ(D | x, θi)

=
n∑

l=1

logeN (yl | Wix,Γ
z
i ),

(3.43)

where the parameters

(3.44) θi , {Wi,Γ
z
i}

correspond to the ith iteration.

3.7 Two steps of EM algorithm for factor modeling

In light of the discussion in Section 3.5 and the parameter update equations of (3.42), it
may be stated that the i-th iteration of the factor model estimation alternates between:

1. Expectation-step Evaluate the expectation Ex|y,θ
[
f(θi, x)

]
, and

2. Maximization-step Update θi+1 ← θi by maximizing Ex|y,θ
[
f(θi, x)

]
with re-

spect to θi.

To proceed note that in (3.43) that f(θi, x) = −n loge(det(Γ
z
i ))−

∑n
l=1M(yl,Wix,Γ

z
i ),

where for any compatible vectors a, b and matrix C

(3.45) M(a, b, C) = (a− b)′C−1(a− b),

whose expansion gives M(yl,Wix,Γ
z
i ) = y′l(Γ

z
i )

−1yl− 2y′l(Γ
z
i )

−1Wix+ tr((Γz
i )

−1Wixx
′W ′

i ).
Note the presence of terms with random variables x and xx′ in M(yl,Wix,Γ

z
i ). There-

fore, the EM algorithm, as a result of this expansion of M(yl,Wix,Γ
z
i ), will involve

alternating between:

1. Expectation-step Evaluate, for l = 1, . . . , n,

〈x〉i,l , Ex|y,θ[x | yl, θi],

〈xx′〉i,l , Ex|y,θ[xx′ | yl, θi],
(3.46)

where 〈x〉i,l ∈ Rq and 〈xx′〉i,l ∈ Rq×q, and

2. Maximization-step Update θi+1 ← θi by maximizing f(θi, x) with respect to
θi, where x and xx′ are replaced by their corresponding a posteriori estimates,
i.e., in (3.43)

x⇐= 〈x〉i,l
xx′ ⇐= 〈xx′〉i,l.

(3.47)

The following analysis between (3.48) and (3.52) is inspired by [14].
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3.7.1 E-step

Note that 〈x〉i,l is the mean of the Gaussian distribution px|y,θ(x | yl, θi), which is
evaluated in Appendix B.2 to be

〈x〉i,l = ΩiW
′
i (Γ

z
i )

−1yl,

Ωi = (Iq +W ′
i (Γ

z
i )

−1Wi)
−1,

(3.48)

where Ωi ∈ Rq×q. From the classical relation of mean and covariance of any distri-
bution, it is known that 〈xx′〉i,l is the sum of 〈x〉i,l〈x′〉i,l and covariance of x | yl, θi,
i.e.,

(3.49) 〈xx′〉i,l = 〈x〉i,l〈x′〉i,l +Ωi.

This completes the E-step of the EM Algorithm.

3.7.2 M-step

Towards the M-step of the EM algorithm, the substitutions in (3.47) give

Ex|y,θ[f(θi, x)] = −n loge(det(Γ
z
i ))−

n∑

l=1

tr((Γz
i )

−1Wi〈xx′〉i,lW ′
i )

− 2y′l(Γ
z
i )

−1Wi〈x〉i,l + y′l(Γ
z
i )

−1yl.

(3.50)

Now Ex|y,θ[f(θi, x)] may be maximized to update the parameters Wi and Γz
i :

Update Wi : The problem that has to be solved is

Wi+1 = argmax
Wi

Ex|y,θ[f(θi, x)]

= arg
Wi

(
∂

∂Wi
Ex|y,θ[f(θi, x)] = 0

)
.

(3.51)

It is easy to see using matrix differentiation rules, e.g., refer [98], that

∂

∂Wi
Ex|y,θ[f(θi, x)] = −

n∑

l=1

2(Γz
i )

−1Wi〈xx′〉i,l − 2(Γz
i )

−1yl〈x′〉i,l,

which when equated to zero gives

Wi+1 =

( n∑

l=1

yl〈x′〉i,l
)( n∑

l=1

〈xx′〉i,l
)−1

.(3.52)

Update Γz
i : The access to the updated Wi+1 is available and if

vi,l = Wi+1〈x〉i,l,
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then Ex|y,θ[f(θi, x)] = −n loge(det(Γ
z
i )) −

∑n
l=1M(yl, vi,l,Γ

z
i ). Now, consider

the update

Γz
i+1 = arg

Wi

(
∂

∂Wi
Ex|y,θ[f(θi, x)] = 0

)
.(3.53)

For Γz
i = diag(γz1i , . . . , γzri ) it can be seen that

Ex|y,θ[f(θi, x)] = −n
r∑

k=1

[loge(γ
zk
i ) +

1

γzki
azki ]

where

azki =
1

n

n∑

l=1

(yl − vi,l)
2.

Then, ∂Ex|y,θ[f(θi, x)]/∂γ
zk
i = 0 at

(3.54) γzki+1 = azki .

Factor model estimation via EM algorithm

Given the dataset, in Algorithm 2, the results of the analysis of the iterative parametric
estimation of the factor model using the EM algorithm are summarized.

Algorithm 2: EM algorithm for the factor model

Input: D = {yl}, l = 1, . . . n

Output: Ŵ , Γ̂z = diag(γ̂z1 , . . . , γ̂zr)
initialize i = 0;
initialize randomly Wi,Γ

z
i ;

do
E-step:
for l = 1 to n do

compute
〈x〉i,l using (3.48);
〈xx′〉i,l using (3.49);

end
M-step: update

Wi+1 using (3.52);
γzki+1 ∀k = 1, . . . , r using (3.54);

i←− i+ 1;
ǫ←− Ex|y,θ[f(θi, x)]− Ex|y,θ[f(θi−1, x)] using (3.50);

while ǫ > 10−8 and i < 20 ;

Ŵ ←−Wi, γ̂
zk ←− γzki ∀k = 1, . . . , r;

A major drawback of the EM algorithm is the possibility that the estimation might
get trapped in a local maximum of the log-likelihood and hence might require random
restarts or other heuristic measures to be more certain regarding the estimates.
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3.8 Summary

Two possibilities of modeling an r-dimensional measured vector random variable y

were considered, viz., (i) the linear model where a measured variable x ∈ Rq, q < r is
transformed to y and (ii) the factor model where a latent q-variate random variable
x is transformed to y. Essentially, a factor model transforms a latent vector random
variable of known probability distribution to a measured vector random variable of
higher dimensionality that is perturbed by independent and uncorrelated noise. For the
linear model, an efficient estimator of the transformation matrix was presented; whereas
for the factor model there is no unique transformation. However, by restricting the
variances unique to each of the measured variable, it is possible to estimate meaningful
transformations. Thus, from a parametric modeling perspective, the transformation
matrix and the unique variances are the parameters of the factor model.
In order to estimate the factor model parameters, two approaches based on the principle
of maximum likelihood were discussed: The analytical estimation approach involves
approximating the covariance structure of the measured variables using that of the
transformed variables. For the iterative approach based on the EM algorithm, the log-
likelihood function being lower bound by the a posteriori expectation of the logarithm
of the joint probability density of the measured variables and the latent variables was
exploited. Starting from guesses of the parameters, the EM algorithm maximizes the
complete log-likelihood function of the latent variables and the measured variables by
iteratively converging to the log-likelihood with every update of the parameters.
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Chapter 4

Dynamic and spectral factor
models

Recall the linear model y = Wx + z of (3.7). The intention there was to linearly
relate the set of r-variate independent samples {yl}, l = 1, . . . , n, which are thought to
be realizations of a vector random variable y to the corresponding set of q-variate
samples {xl}, l = 1, . . . , n. However, both {xl} and {yl} were measured and available
in a given dataset.

Now, contrast the linear model with the factor model y = W x + z of (3.11),
where x is a q-variate hidden or latent vector random variable while y is an r-variate
measured vector random variable.

The noticeable similarities between the linear model and the factor model are as-
sumptions that r > q, transformation matrix W is non-random, and z is an r-variate
vector random variable with uncorrelated components.

In this chapter, the assumption of Chapter 2 that a sequence of vector random
variables {yt} are temporally correlated is underpinned. Thence, based on the moti-
vations presented in Chapter 1, existence of a q-variate time series {xt} which gets
transformed by a non-stochastic matrix {Wt} to obtain an r-variate time series {yt}
∀t ∈ Z is assumed. The objective of this chapter is to define such a model and enable
it for learning problems.

In Section 4.1, the time-domain definition of the dynamic factor model and the
commonalities it represents are defined. In doing so, the assumptions made with
respect to the model are emphasized and the relations between the parameters of the
model, viz., the acvf s of the measured, latent, and idiosyncratic time series are
analyzed. Then, the dynamic factor model is defined.

In Section 4.2, the analysis is switched to Fourier-domain: Frequency-domain
counterparts of the measured, latent, and idiosyncratic time series are defined and the
frequency-domain equivalent of the dynamic factor model called the spectral factor
model is defined.

The following situates the developments in this chapter with respect to the state-
of-the-art:

⊲ Definition 4.2 and Definition 4.3 define the dynamic and spectral factor models,
respectively.
These definitions include all model assumptions and the model objectives. In
[100, 104, 43, 36], both time and frequency domain analyses are called “dynamic
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factor model”; for convenience, “spectral factor model” is a term introduced here
to emphasize the frequency-domain analysis. The properties and assumptions
of interacting linear processes of the model used here are standard practice in
literature.

⊲ Definition 4.1 introduces commonalities; relations (4.9) and (4.18) state the cri-
terion for inheriting them from the measured variables.
Unlike in the existing literature, cross-correlations are emphasized in the defini-
tions here of dynamic and spectral factor models through the concept of com-
monalities. Also, the existing literature does not specifically relate the dynamic
transformation to the commonalities nor its maximal inheritance as defined here.

4.1 Dynamic factor model

A multivariate time series model is to be designed where a q-variate latent time
series {xt} is transformed by a sequence of r × q non-stochastic transformation
matrices {Wt} to a measured r-variate time series {yt}, where r > q. Only those
actions of Wt in transforming xt to yt that is intuitively appealing, theoretically valid,
practically feasible, and analytically sound will be allowed. In the simplest of forms,
such a time series model may be written as yt = f(Wt, xt)+ zt, where f is some linear
function of {Wt} and {xt} ∀t ∈ Z, where {zt} is a vector random variable independent
of {xt} that offers itself as the error in the transformation.

It is also to be ensured that the transformation will take advantage of the frequency-
based techniques discussed in Chapter 2. In that case, existence of the spectral
density function of f(Wt, xt) is a necessity. As discussed in Section 2.4, for a
weakly stationary vector random variable sequence {xt}, the Fourier transform of
any linear relation f(Wt, xt) between Wt and xt does not exist for no guarantee of∑

t∈Z |f(Wt, xt)| <∞ could be made. But as long as the acvf of f(Wt, xt) exists and
that acvf is absolutely summable as in (2.20), techniques of Fourier transform could
be pushed.

Take a look at one of the simplest linear operations for f(Wt, xt) , vt, which is an
r-variate vector random obtained when Wt is convolved with xt, i.e., ∀t ∈ Z,

(4.1) vt =
∑

j∈Z

Wjxt−j .

If both {Wt} and the acvf {Γx
h} ∀h ∈ Z of xt are absolutely summable, then vt

according to (4.1) exists; refer Theorem 2.7.1 of [18] for this result. Let r-variate
linear processes {yt}, {vt}, and {zt} be related according to

(4.2) yt = vt + zt.

Further, if vt and zt are independent, then they have their acvf s related as

(4.3) Γy
h = Γv

h + Γz
h,

where ∀h ∈ Z is the lag parameter of the acvf s. It is further assumed that

(4.4) rank(Γz
h) = r.
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Thus, the measured r-variate vector random variable yt is assumed to be obtained
by adding two independent r-variate vector random variables vt and zt. And, vt is a
dynamic transformation of a latent q-variate vector random variable xt as per (4.1).

Recall that Chapter 1 hoped to dynamically transform a latent vector random
variable of known or presumed characteristics and that the dynamic transformation is
the one that is unknown. The similarity between the form of dynamic transformation
in (4.1) and the form of linear process defined in Definition 2.11 is evident. This
similarity entices to assume that {xt} is a q-variate zero mean white noise and that

(4.5)
∑

t

|Wt| <∞ ∀t ∈ Z.

It will deliver a {vt} that is a linear process resulting from a linear transformation
of {xt} by the sequence of parameters {Wt}. Further, to simplify the analysis, it is
assumed that {xt} is a unit variance white noise process, i.e.,

(4.6) Γx
h = Iq ∀h ∈ Z.

Such an assumption is admissible because it is not intended to estimate Γx
h anyway.

Then, referring back again to Definition 2.11, it is easy to see that

(4.7) Γv
h =

∑

j∈Z

Wj+hW
′
j ∀h ∈ Z,

and

(4.8) rank(Γv
h) = q.

The objective is to enable {vt} to maximally inherit the commonalities in the mea-
sured time series {yt}. And, in Chapter 1, commonalities of the measured time series
{yt} were regarded to be the temporal covariations of the r measured components of
yt = [y1t y2t . . . yrt]

′. A good measure of the commonalities should be the expected
value of a suitable function combining the r random variables, e.g., their mean product.
Now, the following definition is arrived at:

Definition 4.1. For a weakly stationary time series {yt}, the commonalities are
the off-diagonal elements of its acvf Γy

h.

Appropriateness of Definition 4.1: Cross-covariances describe all the mutual char-
acteristics of the components of a zero-mean multivariate time series linear process.
The pairwise commonality between any two components yit and yjt are the off-diagonal
elements of the acvf Γy

h of the measured time series {yt}.
In Chapter 1, it was envisaged to estimate parameters of a model that will maxi-

mize the measured commonalities. Earlier in this section, the role of measured cross-
covariances as a suitable measure of the commonalities was confirmed. As a result,
the commonalities are retained in the cross-covariance terms of Γv

h upon a dynamic
transformation of {yt} to {vt} as discussed earlier in this section using {Wt}. the
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proposed measure for the inheritance of the commonalities of Γy
h using Γv

h is the sum
of square differences of the covariances across all measured dimensions and lags, i.e.,

(4.9) g =
∑

h∈Z

‖Γv
h − Γy

h‖2F .

Appropriateness of g: These reason the choice of the quality of approximation of
the commonalities:

1. Since Γy
h − Γv

h is positive definite and Γv
h is of lower rank than positive definite

Γy
h, trace of Γv

h will also be lower than Γy
h, i.e., the unique variance terms of Γy

h
will be also affected and has to approximated in a low-rank sense.

2. It has a direct equivalence in the frequency domain; this is through relation
(4.18).

3. It provides the properties of the residual process yt−vt easily; this is due to (5.7)
enabling (5.12) and (5.13).

4. Its analytical conveniences and properties are well-known; refer [84].

The optimal parameters using the measure in (4.9), with reference to (4.7) and (4.3),
are given by

W̃t, Γ̃
z
h := argmin

Wt,Γz
h

g.(4.10)

Since orthogonal rotations of Wj ∀j ∈ Z lead to same Γv
h ∀h ∈ Z in (4.7), there is no

unique solution to the minimization problem (4.10).

Note 4.1. In this thesis, the choice of the latent dimensionality q is made arbitrarily.
No theoretical effort is spent towards the important problem of determining an
optimal q. In the experiments, however, performance of the dynamic factor model
across q will be evaluated. Asymptotic properties of the dynamic factors in the
latent space with respect to larger measured number of samples and dimensionality
is available in [37].

The dynamic model defined by (4.1) - (4.8) implies that the measured vector ran-
dom variable yt is an addition of an independent linear process to another linear process
formed by the dynamic transformation of a lower dimensional unit variance white noise.
Apart from the time series aspect of the measured variables, the dynamic model bears
much resemblance to the factor model: In (3.11), a latent vector random variable is
transformed to an unobserved higher dimensional vector random variable which is per-
turbed by independent noise resulting in the measured vector random variable. This
similarity invites the following definition:

Definition 4.2. Let a q-variate latent zero mean unit variance white noise {xt}
be dynamically transformed by non-stochastic {Wt} to an r-variate linear process
{vt}. Suppose an independent r-variate linear process {zt} is added to {vt} to
obtain an r-variate weakly stationary measured time series {yt}. Such a vector
time series model which satisfies the conditions (4.1) - (4.8) and solves (4.10) is
called a dynamic factor model.

58



Model assumptions: Recall the original list of model assumptions in Section 1.2.
With the dynamic factor model as per Definition 4.2, they may be concretely restated
as follows:

1. the measured time series is a linear process,

2. the measured time series is a dynamic transformation of a zero-mean unit variance
white noise of a dimensionality lower than that of the measured time series,

3. the acvf of the dynamically transformed process is a low rank approximation in
a Frobenius norm sense of the measured acvf ,

4. the residual time series is a linear process independent of the latent time series
and has finite unique variances.

4.2 Spectral factor model

The objective of the dynamic factor model is to estimate the optimal parameters
that maximize the commonalities of the measured time series {yt} inherited by the
unobserved time series {vt}. However, what stands out is the concern regarding how
to perform such a maximization that adheres to the transformation of Γv

h to Wt as per
(4.7).

Motivation for a Fourier-domain approach: It is clear from (4.7) that Γv
h is

the correlation of the sequence {Wt} in the time domain. According to the autocor-
relation theorem of Fourier transform, which is also known as the Wiener-Khinchin-
Einstein theorem, the autocorrelation of a function and power spectrum of that function
are Fourier transform pairs; refer §10.1.1 in [77]. Then, ∀h ∈ Z,−1

2 ≤ ω < 1
2

(4.11) Γv
h

F←→ Sv(ω) = W(ω)W∗(ω),

where Wt
F←→W(ω) refers to the discrete time Fourier transform as per Definition

2.15 and Sv(ω) is the spectral density function of v whose (i, j)-th matrix element is
svi,vj(ω) ∀h ∈ Z,−1

2 ≤ ω < 1
2 . Note that applying the definition of the Fourier

transform to the relation (4.3) gives

(4.12) Sy(ω) = Sv(ω) + Sz(ω).

It is further assumed that

(4.13) rank(Sz(ω)) = r.

Also, it emerges from Property 2.7 that |Sv(ω)| = |W(ω)W∗(ω)| 6= 0 ∀ω ∈
[−1

2 ,
1
2 ], i.e.,

(4.14) |W(ω)| 6= 0 ∀ω ∈ [−1

2
,
1

2
].

For a finite τ -length realization of the process, combining (4.1) and (4.2) gives yt =∑τ
j=1Wjxt−j + zt. As per Definition 2.17, the discrete Fourier transform of these
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realizations are y(ωk) = W(ωk)x(ωk) + z(ωk), at frequencies −1
2 ≤ ωk < 1

2 , k =
1, . . . , τ .

To proceed, recall Theorem 2.5 where the spectral density function Sy(ωj) becomes
the covariance matrix of the complex Gaussian distribution of the discrete Fourier
transform components sufficiently close to ωj so that

(4.15) y(ωj) = W(ωj)x(ωj) + z(ωj),

are complex Gaussian vector random variables {x(ωj), y(ωj), z(ωj)}. Then, x(ωj) be-
comes a vector random variable whose complex Gaussian distribution has a covariance
matrix

(4.16) Sx(ωj) = Iq.

Note that the equivalent for (4.8) is

(4.17) rank(Sv(ω)) = q.

Note that the form in (4.15) is very much reminiscent of the factor model, where
x(ωj) is a latent factor of known Fourier characteristics transformed by a non-stochastic
W(ωj) perturbed by independent vector random variable z(ωj). Hence, the motivation
for pursuing a Fourier domain approach for the solution of the dynamic factor model
is the possibility that classical factor model methods as reviewed in Chapter 3 might
be availed to solve for Wt in (4.1).

Dynamic factor model equivalent in the Fourier-domain: Armed with a Gaus-
sian probability distribution for the measured discrete Fourier transform y(ωj), the
maximum likelihood estimation for the factor modeling should follow naturally. In that
pursuit, the hope is to attain a relation connecting the maximum likelihood spectral
density function Sv(ωj), Sz(ωj), and Sy(ωj). Certainly, their inverse Fourier transform
should yield their unique acvf s of Γv

h, Γ
z
h, and Γy

h, respectively, which are also of in-
terest.
However, some estimate of the parameters of the interest is not satisfactory because
the objective is to find those that will maximize the commonalities. Next, applying
Theorem 2.1, the sum in (4.9) may be written as

(4.18) g =

∫ 1

2

−
1

2

‖Sy(ω)− Sv(ω)‖2F dω.

Thereafter, in line with the arguments for (4.10), it could be deduced that the optimal
parameters in the Fourier domain are

W̃(ω), S̃z(ω) := argmin
W(ω),Sz(ω)

g.(4.19)

Since orthogonal rotations of W(ω) lead to same Sv(ω) in (4.11), there is no unique
solution to the minimization problem in (4.19).

Due to the Fourier domain similarities of the dynamic factor model with the clas-
sical factor model, the following definition arrives:
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Definition 4.3. Let a q-variate latent zero mean unit variance discrete Fourier
transform vector random variable x(ωj) be transformed by non-stochastic W(ωj)
to an r-variate zero mean discrete Fourier transform vector random variable v(ωj).
Suppose an r-variate discrete Fourier transform vector random variable z(ωj) that
is independent of x(ωj) is added to v(ωj) resulting in an r-variate measured vector
random variable y(ωj). Such a vector discrete Fourier transform model which
satisfies the conditions (4.11) - (4.17) and solves (4.19) is called a spectral factor
model.

Model assumptions: Recall the list of model assumptions in Section 1.2 and
subsequent to Definition 4.2. With the spectral factor model as per Definition 4.3,
they may be restated as follows:

1. the measured discrete Fourier transform components (‘spectra’) are asymptoti-
cally Gaussian within small subbands,

2. the measured spectra are transformations of a zero-mean unit variance Gaussian
spectra of lower dimensionality,

3. the spectral density function of the transformed spectra is a low rank approxi-
mation in a Frobenius norm sense of the measured spectra,

4. the residual spectra is a Gaussian independent of the latent spectra and has finite
unique variances.

Basic goal of the spectral factor model: The dynamic and spectral factor models
and the accompanying problem of maximization of the commonalities of a measured
multivariate time series were defined in this chapter. The maximum commonalities
transformation matrix is the best approximation, in a Frobenius norm sense, using a
lower number of variables of the cross-covariances of the measured time series. Since
there exist problems, as the examples in Section 1.2 show, where commonalities will aid
learning, the goal is to adapt the transformation matrix for classification and prediction
problems. This will be done by deriving the required parameters of the spectral factor
model in Chapter 5 using the principle of maximum likelihood fostered by the constraint
of maximum commonalities. Classification and prediction algorithms will be developed
in Chapter 6.

4.3 Summary

In this chapter, the dynamic factor model and the spectral factor model were intro-
duced. Conceptually, the dynamic and spectral factor models transform a latent vector
random process by maximally inheriting the measured commonalities. It was discussed
why the cross-covariances could be called as commonalities. A criterion based on
approximating the acvf s in a Frobenius norm sense such that it will correspond to
maximizing the commonalities was formulated. It was claimed that the inheritance of
the commonalities of a vector random process by another increases if the Frobenius
norm of the difference between their autocovariance functions across all lags decreases;
an equivalent criterion for the spectral density function was also formulated. It was
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assessed how the spectral factor model for measured discrete Fourier transform com-
ponents in a ‘small’ bandwidth resembles the classical factor model.
The impediments of complex-valued parametric estimation should be overcame to ex-
tend the classical factor model estimation techniques reviewed in Chapter 3 to maximize
the commonalities of the spectral factor model.
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Chapter 5

Maximum likelihood
commonalities

The objective of this chapter is to solve the maximization problem defined as part
of the spectral factor model in Section 4.2. That problem refers to maximizing the
commonalities retained by the latent spectral factor transformation. It will be shown
that its solution requires estimating the maximum likelihood spectral density func-
tion. Two methods are developed to arrive at the maximum likelihood spectral density
function estimates: The first method is analytical and is the topic of Section 5.1; it
gains traction from the estimation procedures summarized in Section 3.4. The second
method discussed in Section 5.2 is iterative; it is along the lines of the EM algorithm
presented in Section 3.6.

In Section 5.1, as part of the analytical method, optimal parameters of the spectral
factor model are made available in (5.10) and (5.13). In order to arrive at those results,
the expression for the log-likelihood function of the spectral factor model is written. Due
to difficulties in maximizing such a real-valued function of complex-valued parameters,
Wirtinger relaxation rules of complex differentiation are sought. Such an approach
gives the relation (5.5) connecting the spectral density functions of the latent and
the idiosyncratic processes to the sample measured spectral density function. Sadly, it
evades delivering a unique solution. Therefore and subsequently, a much restricted class
of maximum likelihood solutions is pursued where the commonalities will be maximized
as well. Towards the end of that pursuit, the low-rank approximation technique of
Section 3.4.2 is used to arrive at a suitable solution.

In Section 5.2, the objective is to iteratively solve the commonality maximization
problem defined as part of the spectral factor model in Section 4.2. The optimal pa-
rameters of the spectral factor model are made available in (5.33) and (5.34). Just as
with the analytical method in Section 5.1, first the maximum likelihood parameters of
the spectral factor model are obtained; here it is done iteratively using the EM algo-
rithm. In doing so, the line of the estimation approach in Section 3.6 for Section 5.2 is
towed by which the definition of the ‘E’ and ‘M’ steps are laid out. For this purpose,
the formulae for the a posteriori expectation and the maximum likelihood parameters
are carried out just as they were derived in Sections 3.7.1 and 3.7.2. However, the
analysis is tedious because of the non-analytic nature of the real-valued log-likelihood
function of complex-valued parameters. As in Section 5.1, this difficulty is overcame
by employing Wirtinger relaxations. The equations (5.25) and (5.29) give the maxi-
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mum likelihood parameters of the spectral factor model at each iteration of the EM
algorithm. Once the EM algorithm has converged, the parameters that maximize the
commonalities are found in Section 5.2.3 using the idea of an efficient unbiased esti-
mator reviewed in Section 3.2.

Note 5.1. For the analysis in this chapter, the focus is on any one and only one
target frequency in the set of target frequencies obtained on application of Theorem
2.5. Hence, for brevity of notations in this chapter, the index specifying different
subbands will be dropped. Therefore, the sans-serif script without any subscripts as
in y will be used to refer to the discrete Fourier transform vector random variable
at the target frequency of interest. As a result, the spectral density function at the
target frequency is simply Sy and the transformation matrix is W.

Maximum likelihood estimation of linear processes in time-domain

The attempt in this thesis is to use the principle of maximum likelihood to estimate pa-
rameters of the dynamic factor model in the frequency domain. Despite the challenges
posed by complex-valued parameters of the model, such an approach was motivated
by the established route of maximum likelihood in factor analysis.
An alternative route that should easily be motivated by the maximum likelihood prin-
ciple is the estimation of the dynamic factor model in the time domain [78]; however,
it is not pursued in this thesis. It involves expressing the large sample approximation
of the likelihood function in terms of finite-order vector autoregressive moving average
process parameters; the maximum likelihood parameters are known to be consistent
and asymptotically Gaussian. The derivative of the likelihood function with respect to
the parameters are typically non-linear. Hence, iterative algorithms such as Newton
- Raphson scoring algorithm [8] or state-space Expectation - Maximization algorithm
[83] are used to maximize the log-likelihood. These iterative procedures in the time-
domain for vector autoregressive moving average processes are complicated owing to
a large set of parameters requiring reliable initial values as well as convergence issues
requiring robust estimates of model orders; refer Chapter 12 of [78]. The efficacy of
adopting these methods to dynamic factor model estimation in the time-domain is yet
to be seen.
On the other hand, the frequency-domain method as presented in this thesis exploits
proven methodologies to solve the estimation problem. The analytical approach of
Section 5.1 offers an intuitive computationally stable closed-form solution; it uses low-
rank approximation theorem and Weyl’s theorem to arrive at maximum commonalities
parameters. The iterative approach of Section 5.2 uses the EM algorithm for complex-
Gaussian estimation and Gauss-Markov theorem. Beyond the known-issue of local
minima, it does not suffer from over-parameterization and, as presented in this thesis,
is computational stable for Gaussian factor model estimation [14].

The following situates the developments in this chapter with respect to the state-
of-the-art:

⊲ The analytical solution for spectral factor model is derived in (5.10) using low-
rank approximation theorem.
The solution, which involves the principal components of the sample spectral
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density function, coincides with that of the the projection theorem solution of
[36]; they have a motivation and approach to dynamic factor model not depen-
dent on commonalities.

⊲ An iterative solution for spectral factor model is derived in Section 5.2 using the
Expectation - Maximization algorithm. The converged maximum likelihood pa-
rameters in Section 5.2.3 that maximally inherit the commonalities are extracted
by applying the Gauss - Markov theorem.
Iterative solutions recommended by [104] and [100] were based on Fletcher-
Powell-Davidon numerical methods.

⊲ Mild cross-correlation property of the difference between the maximally inherited
commonalities and the measured variables in Property 5.1 is obtained via Weyl’s
theorem.
In [37], a similar result is obtained via “monotone convergence theorem”.

⊲ Wirtinger relaxations are used for maximizing log-likelihood.
Relations (5.4) - (5.6) in Section 5.1 states a well-known fact that the sample
spectral density maximizes the log-likelihood; e.g., [104] calls it the “unobservable
index model”. They are retold here using Wirtinger relaxations to emphasize
nonexistence, in the Cauchy-Riemann sense, of a non-trivial derivative of the
real-valued log-likelihood function of complex-valued variables. The relaxations
are introduced in the very familiar setting of Section 5.1 in anticipation of its use
in Section 5.2. An alternative of using the isomorphic relations of a complex-
Gaussian with that of a real-Gaussian as discussed in Section 2.5 could prove
tedious for the purposes in Section 5.2.

5.1 Analytical estimation of maximum likelihood com-

monalities

Note 5.2. Since the selected target frequency represents a subband of frequencies
near it, the realization of y corresponding to the l-th frequency sample within the
subband near the target frequency is referred to by y(ωl).

In Theorem 2.5, an asymptotic property of the discrete Fourier transform was reviewed.
It involved treating the discrete Fourier transform at a target frequency ω as a com-
plex vector random variable y whose realizations are asymptotically the discrete Fourier
transform samples y(ωl) ∈ Cr at appropriately spaced frequencies ωl near ω. It was
observed there that these samples may be thought to have been generated from a
complex Gaussian probability density

(5.1) py(y(ωl)) = π−r(det(Sy))−1 exp(−y′(ωl)(S
y)−1y(ωl)),

where Sy ∈ Cr×r is the spectral density function at frequency ω. For n such discrete
Fourier transform samples y(ωl), l = 1, . . . , n, their log-likelihood function may be
written as −rnlog(π) − nlog(det(Sy)) −∑n

l=1 y
′(ωl)(S

y)−1y(ωl). The terms which
are independent of Sy may be discarded and the effective log-likelihood is written as

(5.2) L(Sy) = −log(det(Sy))− tr((Sy)−1Šy),
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where Šy ∈ Cr×r is the sample spectral density function as per (2.30). Note that the
inner product of two vectors is converted to the trace of their outer product.

The log-likelihood function L(Sy) is a real-valued function of complex valued vari-
ables in Sy. Hence, it is a non-analytical function and its stationary points have to
be found from its vanishing differential dL(Sy). Presenting the details of deriving the
differentials of common real-valued functions of complex-valued matrices is skipped.
A comprehensive treatment starting from the basic idea mentioned in Appendix A.1
to a full-fledged multivariate complex calculus is beyond the scope of this thesis. In-
stead, among many good references, the reader is referred to [57]. Referring to Ta-
bles II and V of [57], it is easy to verify that d log(det(Sy)) = tr((Sy)−1dSy) and
d tr((Sy)−1Šy) = −tr((Sy)−1Šy(Sy)−1dSy), and their sum may be written as

dL(Sy) = −tr(((Sy)−1 − (Sy)−1Šy(Sy)−1)dSy).

Based on this differential and from the trace form of the differentials in Table III of
[57],

(5.3)
∂

∂Sy
L(Sy) = −(Sy)−1 + (Sy)−1Šy(Sy)−1.

As mentioned in Appendix A.1, the stationary points of L(Sy) occur wherever dL(Sy)
vanishes. Since (Sy)−1 = 0 is prohibited for the existence of Sy, the maximum likeli-
hood solution is

(5.4) Ŝy = Šy

wherever ∂
∂Sy L(S

y) = 0. Now substitute (4.12) in the maximum likelihood solution for
Sy in (5.4); it follows that

(5.5) Sv + Sz = Šy,

where the check denotes the sample estimate of the spectral density function. Based
on (4.11) the maximum likelihood estimates may be further rewritten as

(5.6) WW∗ + Sz = Šy.

Since maximum likelihood solution for the parameters W and Sz have to be gleaned
from just one relation in (5.6), there will not be any unique solution.

In order to find the parameters that maximize the commonalities of y amongst the
maximum likelihood parameters W and Sz of (5.6), further restrictions on the quality
of the solutions will have to be imposed. Recall that Definition 4.1 of the commonalities
led the formulation of (4.19) which meant v will inherit the covariation in y maximally
according to relation (4.18).

However, note that the trivial solution that the diagonal matrix Sz(ω) = 0 ∀ω ∈
[−π, π] and Šy(ω) = Sv(ω) is forbidden because rank(Šy) = r 6= rank(Sv) = q.

Parameters due to commonalities

Note that the function to be minimized in (4.19) is nonnegative for every ω in the
integral in (4.18). Hence, ‖Šy(ω)−Sv(ω)‖2F may be minimized for each ω individually
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and specifying the variable ω may be dropped for brevity. Therefore, the maximum
commonalities maximum likelihood solution should solve

W̃ = argmin
W

‖Šy − Sv‖2F ,

rank(Sv) = q < rank(Šy) = r.
(5.7)

Recall that according to Theorem 3.1, for the eigenvalue decomposition

(5.8) Šy = Udiag(λ1, · · · , λr)U
∗,

where U = [u1 · · · ur] is unitary and λ1 ≥ λr > 0 are the eigenvalues of Šy, the best
q rank approximation in the Frobenius norm sense is

(5.9) S̃v = [u1 · · · uq] diag(λ1, · · · , λq) [u1 · · · uq]∗.

Then it is straightforward to observe that for Sv = WW∗ in (4.11), a possible
decomposition for the optimal W is

(5.10) W̃ = [u1 · · · uq] diag(
√

λ1, · · · ,
√

λq).

Comparing the result (5.10) with that of classical principal components analysis [88],
it can be seen that columns of W̃ are seeking directions in which the sample measured
variances are maximally retained.

Properties of non-commonalities

Note at this juncture from (5.5) that

(5.11) tr(S̃v) =

q∑

i=1

λi,

which enables

(5.12) tr(S̃z) = tr(Šy)− tr(S̃v) =

r∑

i=q+1

λi.

For the following lemma, refer Chapter 1 §4.4 of [116]:

Theorem 5.1. (Weyl’s theorem) For A,B,C ∈ Cr×r whose eigenvalues are a1 ≥
· · · ≥ ar, b1 ≥ · · · ≥ br, and c1 ≥ · · · ≥ cr, respectively, if A = B + C, then
bi + c1 ≥ ai ≥ bi + cr.

Let Šy, S̃v, S̃z correspond to A,B,C, respectively, in Theorem 5.1. Recall that the
least r − q eigenvalues of S̃v are equal to zero. Then, it follows that any S̃z satisfying
(5.12) may be chosen such that

tr(S̃v) > c1 ≥ (r − q)−1tr(S̃z) ≥ cr > 0.(5.13)
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This inequality establishes the following property for z while preserving the Frobenius
norm criterion for the inheritance of commonalities defined through 5.7.

Property 5.1. The variables forming the non-commonalities {zt} of the dynamic
factor model in (4.2) may be ‘mildly cross-correlated’ as per (5.12) and (5.13).

Property 5.1 suggests that z need not be strictly idiosyncratic.

Suppose the discrete Fourier transform components D = {y(ωl)}, l = 1, . . . n
within a subband as per Algorithm 1 are obtained. The solution proposed in Algorithm
3 provides the analytical solution of the spectral factor model within a subband.

Algorithm 3: Analytical solution for the spectral factor
model in a subband

Input: D = {y(ωl)}, l = 1, . . . n

Output: W̃

estimate Ŝy using (5.4) and (2.30);
compute pairs (λk, uk) ∀k = 1, . . . , r using (5.8);
estimate W̃ as in (5.10);

5.2 Iterative estimation of maximum likelihood com-

monalities

In Section 3.6, an iterative solution for the parameters of the classical factor model of
(3.11) was developed. Based on the EM algorithm presented therein, in this section,
an iterative procedure for the estimation of the maximum likelihood parameters which
is also enforced to maximally inherit the measured commonalities will be developed.
Such a motivation to do so is due to the similarity of the relations of the classical
factor model in (3.11) and the spectral factor model (4.15). This similarity is obvious
if it is supposed that the parameters of the factor model are θ , {W,Sz} and that
the random vectors y and z at a target frequency realize y and z at nearby frequencies
according to Theorem 2.5.

Note 5.3. As in the previous section, the realization of y corresponding to the
l-th frequency sample within the subband near the target frequency is denoted by
y(ωl). In addition, in this section, Syi and Wi are used to refer to the i-th iterative
estimate of the spectral density function Sy and the transformation matrix W at
the target frequency, respectively.

As in Section 3.6, first notice that the spectral factor model equivalent of (3.39) is

(5.14) py|x,θ(y | x, θ) = NC(y | Wx,Sz).

Let a dataset D render the discrete Fourier transform samples y(ωl), l = 1, . . . , n
at frequencies within the subband represented by the random vector y. At the target
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frequency under consideration, the likelihood of D to correspond to the spectral factor
model is

(5.15) py|x,θ(D | x, θ) =

n∏

l=1

py|x,θ(y(ωl) | x, θ).

Now, in line with (3.41), (3.43), and (3.42), the direct extension of the estimation of
the spectral factor model parameters in the i-th iteration of the EM algorithm gives:

(5.16) θ̂i+1 = argmax
θi

Ex|y,θ
[
logep

y|x,θ(D | x, θi)
]

and for

θi , {Wi,S
z
i},

θ̂i+1 = argmax
θi

Ex|y,θ[f(θi, x)],

f(θi, x) ,
n∑

l=1

logeNC(y(ωl) | Wix,S
z
i ).

Expanding f(θi, x) will lead to terms in x and xx∗. So, as with (3.46), first define

〈x〉i,l , Ex|y,θ[x | y(ωl), θi],

〈xx∗〉i,l , Ex|y,θ[xx∗ | y(ωl), θi].
(5.17)

Note that 〈x〉i,l ∈ Cq and 〈xx∗〉i,l ∈ Cq×q; whereas their estimation will define the
E-step of the EM-algorithm. Then, as in (3.51), it may be written that

Wi+1 = arg
Wi

(
∂

∂Wi
Ex|y,θ[f(θi, x)] = 0

)
.(5.18)

Similarly, as in (3.53),

Szi+1 = arg
Sz
i

(
∂

∂Szi
Ex|y,θ[f(θi, x)] = 0

)
.(5.19)

These optimizations complete the M-step of the EM-algorithm.

Hence, starting from initial guesses, the i-th iteration alternates between:

1. Expectation-step Evaluate 〈x〉i,l and 〈xx∗〉i,l using (5.17), and

2. Maximization-step Update Wi+1 using (5.18) and Szi+1 using (5.19).

It is clear that the EM algorithm leads to non-unique maximum likelihood solutions
depending on the starting conditions.
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5.2.1 EM steps and form of the maximum likelihood parameters

As in the previous sections, note that ωl corresponds to the l-th frequency sample
within the subband near the target frequency. Also, S

y
i and Wi refer to the i-th

iterative estimate of the spectral density function Sy and the transformation matrix W

at the target frequency, respectively.
In this section, the solutions encountered in the two steps of the algorithm will

be analyzed and the usability of an iterative solution in lieu of or complementing an
analytical solution assessed. In doing so, the derivations due to Section 3.6 will be of
sufficient aid and will be the main reference.

First, note from Appendix B.3 and relations (3.48) and (3.49) that the E-step of
the EM algorithm is simply

〈x〉i,l = ΩiW
∗
i (S

z
i )

−1y(ωl)(5.20)

Ωi = (Iq +W∗
i (S

z
i )

−1Wi)
−1,(5.21)

〈xx∗〉i,l = 〈x〉i,l〈x〉∗i,l +Ωi,(5.22)

where the inverse of Ωi ∈ Cq×q, in general, exists. For evaluating Wi+1 according to
(5.18), first write

Ex|y,θ[f(θi, x)] =

n∑

l=1

Ex|y,θ[loge(NC(y(ωl) | Wix,S
z
i ))]

= −n loge(|Szi |)

−
n∑

l=1

tr((Szi )
−1Wi〈xx∗〉i,lW∗

i ) + y∗(ωl)(S
z
i )

−1y(ωl)

− 2ℜ(y∗(ωl)(S
z
i )

−1Wi〈x〉i,l),

(5.23)

where eliminated are terms independent of Wi or Szi . The reader is referred to [57] to
verify using Wirtinger relaxations that

(5.24)
∂

∂Wi
Ex|y,θ[f(θi, x)] = (Szi )

−1
n∑

l=1

(Wi〈xx∗〉′i,l − y(ωl)〈x〉′i,l).

Then, due to (5.18),

(5.25) Wi+1 =

( n∑

l=1

y(ωl)(〈x〉i,l)∗
)( n∑

l=1

〈xx∗〉i,l
)−1

.

Just as in Section 3.7.2, let

(5.26) vi(ωl) , Wi+1〈x〉i,l.

For Szi = diag(sz1i , . . . , szri ) it can easily be seen that

Ex|y,θ[f(θi, x)] = −n
r∑

k=1

[loge(s
zk
i ) +

1

s
zk
i

bzki ](5.27)
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where

(5.28) bzki =
1

n

n∑

l=1

|yk(ωl)− vki(ωl)|2.

Note that Szi is a real-valued diagonal matrix and the derivative with respect to it is
straightforward. Then ∂Ex|y,θ[f(θi, x)]/∂s

zk
i = 0 at

s
zk
i+1 = bzki ,

Szi+1 = diag(sz1i+1, · · · , szri+1).
(5.29)

The relations (5.25) and (5.29) stand for the M-step of the EM algorithm for the
maximum likelihood parameters of the spectral factor model.

5.2.2 EM algorithm for spectral factor model

The following pseudocode of the EM algorithm for the maximum likelihood spectral
factor model may now be provided; this is in line with Algorithm 2 in Section 3.7.2.
In Algorithm 2, the input was the dataset D of iid data samples; whereas here it
is assumed that D is a set of discrete Fourier transform components near a target
frequency as recommended by the asymptotic requirements of Theorem 2.5.

Algorithm 4: EM algorithm for the spectral factor model
in a subband

Input: D = {y(ωl)}, l = 1, . . . n

Output: Ŵ, Ŝz = diag(ŝz1 , . . . , ŝzr)
initialize i = 0;
randomize Wi,S

z
i ;

do
E-step:
for l = 1 ton do

compute
〈x〉i,l using (5.20);
〈xx∗〉i,l using (5.22);

end
M-step: update

Wi+1 using (5.25);
s
zk
i+1 ∀k = 1, . . . , r using (5.29);

i←− i+ 1;
ǫ←− Ex|y,θ[f(θi, x)]− Ex|y,θ[f(θi−1, x)] using (5.23);

while ǫ > 10−8 and i < 20 ;

Ŵ←−Wi, ŝ
zk ←− s

zk
i ∀k = 1, . . . , r;

Suppose the discrete Fourier transform components D = {y(ωl)}, l = 1, . . . n
within a subband are obtained as per Algorithm 1. Algorithm 4 demonstrates how the
E and M steps may be alternated, starting with a random initialization of the parame-
ters corresponding to a target frequency, to output the converged parameters Ŵ and
Ŝz of the spectral factor model.
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Note 5.4. For EM algorithm in Algorithm 4 converging towards a local maximum
of the log-likelihood is possible, converged parameters θ corresponding to the largest
Ex|y,θ[f(θ, x)] from a number of random restarts will be chosen.

5.2.3 Maximizing commonalities in spectral factor model

Note 5.5. In this section, it is assumed that the EM steps have converged. There-
fore, for notational brevity, any indexing of the iteration is dropped and the updated

parameters will be denoted by θ , {Ŵ, Ŝz}. As in the previous sections, ωl corre-
sponds to the l-th frequency sample within the subband near the target frequency.

As seen, at the end of the iterations of a converged EM algorithm, access is available
to the estimate of the transformed factor to get

v(ωl) = Ŵx(ωl)

corresponding to the l-th realization y(ωl) ∀l ∈ 1, . . . , n, where

(5.30) x(ωl) = Ex|y,θ[x | y(ωl), θ]

as in (5.17) and computed in (5.20). Thus, in the context of (4.15),

(5.31) y(ωl) = Ŵx(ωl) + z(ωl) ∀l = 1, . . . , n

where z(ωl) is the error in regressing x(ωl) towards y(ωl). The regression errors are due
to zero mean isotropic Gaussian vector random variable z; this is not the assumption
but the result of Theorem 2.5.

Now it shall be seen why the same situation as in the linear model of Section 3.2
persists. From the form of (4.18) for inheritance by Sv of the commonalities of Sy, it is
clear that ‖Sy(ω) − Sv(ω)‖2F may be minimized for each ω individually. Then, (4.19)
implies that the optimal Sz is given by S̃z , argmin

Sz
g = argmin

Sz
tr(Sz), or for each of

the diagonal elements szk of Sz

(5.32) s̃zk , min(szk) ∀k = 1, . . . , r.

But szk is the variance of the zero mean Gaussian error in approximating yk(ωl) using
vk(ωl). Hence, a minimum variance unbiased regression of x(ωl) towards y(ωl) is
sought using v(ωl) = Wx(ωl).

As seen, maximizing the commonalities upon convergence of the EM algorithm
requires an efficient estimator of W. Therefore, if the Gauss-Markov solution of (3.8)
is used, the efficient estimator got is

(5.33) W̃ = [y(ω1) · · · y(ωn)]X
∗ (XX∗)−1 ,
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where, using x(ωl) referred to in (5.30 ) and computed via (5.20), the q × n matrix
X = [x(ω1) · · ·x(ωn)] having rank(X) = q is a maximum likelihood ‘latent data
matrix.’ And, as per (3.9), an unbiased estimate of Sz is

S̃z = diag(s̃z1 , . . . , s̃zr),

s̃zk =
1

n− q

n∑

l=1

|yk(ωl)− ṽk(ωl)|2, k = 1, . . . , r,

ṽ(ωl) = W̃x(ωl),

(5.34)

where x(ωl) referred to in (5.30 ) is computed via (5.20). It is important to un-
derstand that although the EM algorithm gives the maximum likelihood solution, the
maximization of the commonalities was achieved through (5.33).

Suppose the discrete Fourier transform components D = {y(ωl)}, l = 1, . . . n
within a subband as per Algorithm 1 are obtained. Then, as per Algorithm 5, the
procedure for estimating the maximum commonalities spectral factor model parameters
utilizing the EM algorithm developed in Algorithm 4 could be compiled.

Algorithm 5: Maximum commonalities spectral factor
model via EM algorithm

Input: D = {y(ωl)}, l = 1, . . . n

Output: W̃, S̃z

estimate {Ŵ, Ŝz} with input D to Algorithm 4;
compute x(ωl) as in (5.30);
estimate W̃ using (5.33);
estimate S̃z using (5.34);

5.3 Summary

The form of the spectral factor model in (4.15) is similar to the classical factor model
in (3.11). In this chapter, as reviewed for the classical factor model in Chapter 3,
two approaches for maximum likelihood estimation of the spectral factor model were
developed and within each of them the commonality maximization parameters were
found:

In the analytical approach put forth, the sample spectral density function computed
from the discrete Fourier transform samples of a measured vector random process
near a target frequency is the maximum likelihood spectral density function of the
process. The maximum likelihood maximum commonalities solution provided by (5.10)
is similar in interpretation to the low-rank approximation of the classical factor model
solution and (5.13) provides the leverage to choose idiosyncrasies the way the user
wants without destroying the rank stringencies of the transformation matrix. The
commonality maximizing maximum likelihood transformation was found to direct the
latent spectra along the principal components of the measured spectra. This analytical
solution was presented in Algorithm 3.

Again, as with the classical factor model, Algorithm 4 was designed to estimate the
maximum likelihood spectral factor model in an iterative fashion. The parameters of
the model thus estimated were improved in (5.33) and (5.34) by treating the maximum

73



likelihood transformation of the a posteriori mean of the latent variables of the spectral
model as a regression towards the measured spectral components. This enabled the
transformed latent spectra to maximally inherit the commonalities of the measured
spectra through the Gauss-Markov theorem.
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Chapter 6

Learning via spectral factor
model

In Chapter 1, the objective of learning a time series process was discussed with ex-
amples. Two challenges to prove the learning worth of the spectral factor model were
proposed there. Firstly, a given measured time series has to be classified as belonging
to one of the several possible processes that could have generated it. In this chapter,
classification is done based on the proximity of the optimal spectral factor model pa-
rameters of the unclassified time series with that of the time series of various classes of
possible processes. Secondly, prediction of the future evolution of a current measured
time series is done. In this chapter, prediction is performed by enriching classical vector
autoregression parameters of the measured time series in the prediction equation with
commonalities.

In Section 6.1, before moving to either of those learning applications, it is necessary
to consider the computational requirements of the spectral factor model estimation.
In particular, strategies to choose the best of the two possible estimation procedures
developed in Chapter 5 are considered from a practical perspective of using them in a
learning problem.

In Section 6.2, the classification problem is defined concretely. The strategy involves
comparing projection of the subspace spanned by the transformation matrix of the test
time series episodes onto those of a number of training time series episodes. An
approach based on the nearest neighbors in terms of the projection is used to decide
whether a test episode belongs to one class or another; this is made available in
Algorithm 7.

In Section 6.3, the prediction problem is taken up. The strategy there is simple:
The measured acvf is an addition of two acvf s, one of them inheriting the common-
alities and the other not. All occurrences of the measured acvf in the classical vector
autoregression prediction equations are replaced with the part of the measured acvf
that inherits the commonalities. This is demonstrated in Algorithm 8.

The following situates the developments in this chapter with respect to the state-
of-the-art:

⊲ Spectral factor model based classification.
The classification metric of (6.4) compares the maximum commonality transfor-
mations of any two multivariate time series. The metric quantifies the overlap
of maximum commonality subspaces despite (i) multiplicity of maximum likeli-
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hood solution due to orthogonal rotations, (ii) the transformation matrices being
complex-valued, and (iii) the transformations for all the subbands are to be com-
pared. The closest work in the literature to this is that of [66] who struggle to
achieve a proper metric that will compare two classes of spectral densities despite
working with their full-rank sample estimates.

⊲ Commonalities driven multivariate time series prediction.
For predicting measured multivariate time series believed to consist of substantial
commonalities, an estimate of the acvf is obtained by inverting its commonalities
enriched spectral density function. Classical vector autoregression on current and
past samples with orthogonal errors, as prevalent in literature [102, 51], is used
to obtain the predictions. Except, here, the measured acvf is replaced by that
of the commonalities estimate.
On the other hand, the focus of eminent works in dynamic factor model liter-
ature such as [36] is in the prediction of the commonalities, which is typically
unmeasured. E.g., [104] wants to model business cycles whereas [118] predicts
diffusion index based on other measurable indicators.

6.1 Practicalities of spectral factor model estimation

It is clear that learning problems would require estimation of the spectral factor model
parameters that inherit commonalities maximally. Hence, as a prelude to using com-
monalities for learning problems, Algorithm 6 is followed to estimate these parameters
given a finite τ length time series {yt}, t = 1, 2, . . . , τ . The output of the algo-
rithm is the set of spectral model parameters {W(ωj),S

z(ωj)} at ̂ target frequencies
ωj ∈ [0, 1), j = 1, . . . , ̂.

Algorithm 6: Estimate optimal spectral factor model per subband

Input: {yt}, t = 1, . . . , τ ; yt ∈ Rr;
Output: {W(ωj)}; j = 1, . . . , ̂
compute {y(ωj,l)}; j = 1, . . . , ̂; l = 1, . . . , n using Algorithm 1;
foreach j = 1, . . . , ̂ do

gather D = {y(ωj,l)}, l = 1, . . . , n;
estimate {W(ωj),S

z(ωj)} with input D to Algorithms 3 or 5;
end

The following observations regarding Algorithm 6 may be noted:

1. The procedures of Chapter 5 estimated the maximum commonalities spectral
factor model within a spectral subband as per the asymptotic theory discussed
in Section 2.5. Hence, the discrete Fourier transform components are split into
̂ subbands using Algorithm 1.

2. Each subband should have a sufficiently large n number of samples for a reliable
estimation of the spectral factor model parameters; this may typically be set to
n ≈ r2 to ensure consistency of sample estimates without inviting the curse of
dimensionality issues [106, 12].
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3. Although informative, the parameter Sz is needed for neither the classification
nor the prediction exercises because it contains no commonalities which are all
available through W.

4. Depending on the computational demands and application, either Algorithms 3
or 5 may be chosen for computing the optimal parameters of the spectral factor
model.

The last of the above requires further discussion. Theoretically, the analytical solu-
tion of Algorithm 3 is elegant and unique till orthogonal rotations of the transformation
matrix. However, in favor of the iterative Algorithm 5 are the following practical as-
pects:

⊲ For an r-variate measured time series, computing its spectral density function as
well as computing its eigenvalue decomposition are typically O(r3) operations
[32]. This makes Algorithm 3 very prohibitive as the number r of measured
variables grows. For q-variate latent time series, the intensive operations of the
EM algorithm-based estimation in Algorithm 5 are q×q matrix inverses; they are
typically O(q3) operations and q ≪ r is the practical choice. Note that (Sz)−1

in the EM Algorithm would involve only scalar reciprocals of its diagonal. Hence,
practically, for online or real-time implementations where complexity is always a
constraint, spectral factor model updates could be done better using Algorithm
5.
On the down side, as mentioned in Note 5.4, the issue of local minima in the
EM algorithm poses some risk. Hence, it is desirable to confirm iterative esti-
mates with an occasional update via Algorithm 3. Or, the randomization of the
parameters in the beginning of the EM algorithm might be replaced by analytical
estimates.

⊲ In many time series, especially in econometrics, seasonality leads to distinct
spikes in the spectral components. Their adjusting or correction leads to unde-
sired consequences including elimination of true and introduction of misleading
non-seasonal characteristics as well as distortion of commonalities [91]. Sup-
pose the discrete Fourier transform components of the unadjusted seasonal time
series corresponding to the suspected seasonalities are assumed missing. EM
algorithm could be extended to impute the missing values using approaches such
as Monte Carlo EM [123] and Stochastic Approximation EM [31]. This allows
the possibility to model and learn the commonalities without inviting unnecessary
pre-processing.

6.2 Multivariate time series classification

Let an r-variate measured time series be denoted by {yt}. The objective of the clas-
sification problem is to assign {yt} to one and only one of the c exhaustive classes of
time series Ci, i = 1, . . . , c. It is necessary to clarify what a class of time series means.
A class of time series is a stochastic process, which is distinct from other processes
according to an expert who has measured the time series. Such a distinction might be
due to some dynamic characteristics of the time series the class is associated with that
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is objectively or subjectively obvious to the expert. Or, the expert might believe that
the physical process that generated a class of time series is dissimilar to others.

To ease the discussion on classification of time series, revisit the first of the two
examples in Section 1.2. There, the computer gamer has to make joystick movements
which require her to position the cursor from the center of the screen to any one of the
four corners. During the game, the magnetoencephalography sequences corresponding
to ten spatial spots in the brain were recorded via a magnetoencephalography scanner.
Existence of a set of two latent signals, viz., her cognition and reaction sequences, of
known general characteristics which generate the measured time series is presumed.
When a joystick is moved, these latent signals must undergo a dynamic transformation
corresponding to that particular class of joystick movements. In this example, an expert
might have witnessed several episodes of the gamer making these four movements and
understood the dynamic characteristics of the measured time series. Each episode is
a finite length multivariate time series realization. Suppose access is available to a
historical database of many such episodes which have been classified by the expert;
they may be called the training episodes. It is wished to classify more episodes
without the aid of the expert one by one; each of them will be called a test episode.

The challenge to reliably classify a test episode of a multivariate time series process
based on the dynamic characteristics of a given dataset of classified training episodes
is the time series classification problem. Hence, the classification process will have
two phases: In the training phase, the summary of the dynamic characteristics of many
training episodes are extracted. Obviously, the summary here implies the parameters
of the spectral factor model. In the testing phase, the test episode is fed as input to
the classification system. Its dynamic characteristics are compared with the dynamic
characteristics of all the classes, and the most appropriate class label is given as the
output of the system. Effectively, the spectral factor model parameters of the test
episode is compared with those of the training episodes.

Such a classification system is indeed a learning system because of two reasons:
First, the essential dynamic characteristics from all training episodes have to be ap-
propriately summarized, which in this thesis’s context will be in model parameters.
Second, the classification system demonstrates the ability to use past experiences of
training episodes to respond to a new test episode which it has not witnessed earlier.

Proposal for a classification system

The motivation so far has been that, firstly, each of the components of a multivari-
ate measured time series contribute towards the commonalities shared amongst them,
and, secondly, the dynamic transformation should maximally inherit the commonalities.
Then, the following steps are devised in the time series classification strategy:

1. Estimate the optimal dynamic transformation for the test episode and all training
episodes whereby the latent dimensionality maximally inherits the commonalities.
From this thesis’s perspective, this is equivalent to estimating the maximum
commonalities spectral factor model as done by Algorithm 6.

2. Create a neighborhood for the test episode by computing its proximity with each
of the training episodes with respect to their optimal dynamic transformation
parameters.
For this step, the proximity of the test episode has to be compared to the training
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episodes with respect to their maximal inheritance of commonalities, which are
believed to distinguish one class from another. The spectral factor model pa-
rameters W are known to correspond to maximal inheritance of commonalities.
Hence, the proximity of the optimal W of the test episode ought to be compared
with the optimal W of the training episodes.

3. Classify test episode to the class in which majority of the training episodes in the
former’s immediate neighborhood belong to.
For this step, one should be able to design a distance metric between the trans-
formation matrices of any two time series. Then, with respect to the distance
metric, the concepts of ‘neighborhood’ of the transformation matrices as well as
the ‘closeness’ between them may be used. Specifically, one may decide in favor
of the class which has κ training episodes closer to the test episode than any
other class; this strategy is generally known as the κ-nearest neighbor classifica-
tion [28].

The last two steps above beg elaboration. Suppose access is available to time series
from c classes Ci, i = 1, . . . , c each with |Ci| examples and an unclassified time series
episode. To proceed further, let the following notations be compiled:

{yt}l@i, l = 1, . . . , |Ci| l-th example time series in the class Ci
{W(ωj)}l@i spectral transformation of {yt}l@i at ωj

{yt}? unclassified test episode
{W(ωj)}? spectral transformation of {yt}? at ωj

δ ({W(ωj)}l@i, {W(ωj)}?) similarity between {W(ωj)}l@i and {W(ωj)}?
ρ(l@i, ?) proximity between {yt}? and {yt}l@i

ρ(↓ l@i, ?) decreasing sort of ρ(l@i, ?) over l

Since the spectral factor models at ̂ target frequencies are independent of one another,
it is proposed that

ρ(l@i, ?) =

̂∑

j=1

δ ({W(ωj)}l@i, {W(ωj)}?) .(6.1)

Then, {yt}? may be associated with Cı̂, if

(6.2) ı̂ = argmax
i

κ∑

l=1

ρ(↓ l@i, ?),

where a tie is broken at random and κ is a suitable integer, e.g., κ = 5.

Classification metric

Recall from solution (5.10) that columns of W ∈ Cr×q form a set of scaled unitary
vectors which define a q-dimensional space embedded in Cr. These vectors carve a
hyperparallelopiped in Cr whose sides are norms of these columns [112]. Then, a
possible measure of disparity or similarity between any two transformation matrices is
to compare the overlap of the volumes.
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What the overlap of volumes really implies is specified now. The overlap for a, b ∈
Cr is defined as δ(a, b) = |a∗ b|, which is the absolute 2-norm of the unitary projection
of a onto the span of b. Consider a set of linearly independent columns vectors of some
matrix A spanning a subspace MA ⊂ Cr; rank(MA) = q which is unitarily projected
onto a subspaceMB ⊂ Cr; rank(MB) = q of another matrix B. This projection may
be thought of as carving a volume measured as the absolute determinant |det(A∗B)|
of the unitary projection of the vectors spanning MA ontoMB [75, 84]. In [85], it is
available that

(6.3) |det(A∗B)| = vol(A)vol(B) cos{R(A),R(B)}
where vol(A) , det(R(A)), where R(A) is the range space of A and cos{R(A),R(B)}
refers to the product of the principal angles between compatible matrices A and B. In
[40], it is shown that cos{R(A),R(B)} = ∏q

k=1 |a∗k bk|, where ak and bk correspond
to the k-th principal singular vector pair of A and B, respectively. For the purposes
here, it is appropriate to use (6.3) to find

(6.4) δ ({W(ωj)}l@i, {W(ωj)}?) , |det({W(ωj)}∗l@i {W(ωj)}?)|.
Salient features of the classification metric: The metric due to (6.1) and

(6.4) is superior to those proposed by [66] for multivariate time series classification
because (i) it evaluates the latent structure (ii) is invariant to orthogonal rotations of
the transformation matrix, (iii) applicable in rank-deficient spectral density functions,
and (iv) scalable with the number of subbands.

Classification algorithm

It is now ready to classify a test series {yt}? based on class affiliations and distances to
the κ-nearest neighbor training series from classes Ci, i = 1, . . . , c each with |Ci| train-
ing series whose l-th example is {yt}l@i, l = 1, . . . , |Ci|. The classification procedure
is simple and is given in Algorithm 7:

Algorithm 7: Spectral factor model classification
Input: {yt}?, {yt}l@i, i = 1, . . . , c; l = 1, . . . , |Ci|;
Output: ı̂ : {yt}? ∈ Cı̂
choose Algorithm 3 in Algorithm 6 and for
j = 1, . . . , ̂

estimate output {W(ωj)}? with input {yt}?;
estimate output {W(ωj)}l@i with input {yt}l@i;

compute ρ(l@i, ?) using (6.1) and (6.4);
compute ı̂ using (6.2);

Note 6.1. Algorithm 3 was insisted in Algorithm 7 because the solution based
on EM algorithm of Algorithm 5 does not guarantee orthogonal columns for the
spectral transformation matrix W for the metric (6.4) to be directly applicable.

Note 6.2. The optimal parameters of the training episodes {W(ωj)}l@i, j =
1, . . . , ̂, l = 1, . . . , |Ci| may be computed offline and only once.
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6.3 Multivariate time series prediction

The prediction problem, as introduced in Chapter 1, meant reliable estimation of the
future evolution of a given time series realization. Subsequently, through the spectral
factor model, a parametric time series model was developed; it assumes existence of
latent time series that could be dynamically transformed to imitate a higher dimensional
multivariate measured time series by inheriting the commonalities of the measured
variables. As a solution, it is hoped to drive the future evolution of a given realization
by using the commonalities and avoiding the idiosyncarsies.

Prediction methodology

Insofar as to validate the robustness of the spectral factor model and its underlying
assumptions, the intention is to predict the evolution of the time series using the
commonalities the spectral factor model could extract from the data. In order to
validate that the predictions are benchmarked appropriately, it is necessary to compare
the prediction accuracy of the spectral factor model with those of the state-of-the-art
multivariate time series models. Then, it seems reasonable to modify the parameters
of the state-of-the-art models to be dependent on the commonalities only and assess
the accuracy upon that modification.

Fortunately, the aforementioned modification of the state-of-the-art model in the
context of this thesis is easy. This is because the spectral factor model was built on the
spectral density function or equivalently on the acvf of stationary processes; whereas
the acvf s decompose into parts which are commonalities-dependent and commonalities-
independent as per (4.3).

Predicting a multivariate measured time series using commonalities dependent
state-of-the-art prediction models accurately should strongly hint that the evolution
of the time series is driven by the commonalities. Then, the assumption regarding a
latent time series will stand vindicated. On the contrary, if the component time series
are all uncorrelated there will not be much to gain in prediction through this approach.

Classical vector autoregressive prediction

One of the most widely used family of equivalent time series models based on classical
vector autoregressive modeling of linear processes will be used [102, 51]. This is
because the prediction framework in that model is simple to comprehend, popularly
tested, and easy to implement. Later, the classical model will be adapted such that its
parameters are maximal carriers of commonalities.

The basic principle of vector autoregression is to estimate a future sample of a
given realization as a weighted sum of the current and past samples. One may refer
[51] among many references to pick from a wide ranging approaches ranging from
maximum likehihood estimation, Kalman filter, Bayesian analysis, etc. to time series
prediction; in moving forward, just one of those approaches based on linear projections
is used. For now, the classical vector autoregressive model may be summarized as
follows: For an r-variate linear process {yt} up to the current sample yt, a simple and
valuable version of the prediction problem involves estimating the s-th next sample
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yt+s|t as a linear function of a finite number p of the present and past samples as

(6.5) yt+s|t = ǫt+s +

p−1∑

j=0

φy
j+1,syt−j ,

where ǫt+i = yt+i − yt+i|t ∀i = 1, 2, . . . is the estimation error and φy
l,s ∈ Rr×r ∀l =

1, 2, . . . , p are the autoregression coefficient matrices. The condition that ensures
minimum mean square error are when the errors ǫt+i above are uncorrelated, i.e.,
E[ǫt+iy

′
t−j ] = 0 ∀j = 0, . . . , p− 1; refer, e.g., Theorem 4.5 of [48], for this well-known

result. It gives rise to the relation between the acvf s and the coefficient matrices:

Φy
p,s = [φy

1,s φ
y
2,s · · · φy

p,s]
′ = (Ξy

p)
−1ρyp,s,(6.6)

where

ρyp,s =
[
Γy
s Γ

y
s+1 · · ·Γy

s+p−1

]′
,(6.7)

and

Ξy
p =




Γy
0 Γy

1 · · · Γy
p−1

Γy
−1 Γy

0 · · · Γy
p−2

...
...

. . .
...

Γy
−p+1 Γy

−p+2 · · · Γy
0


.(6.8)

In practical problems of interest (Ξy
p)−1 will exist. Therefore, for any given p-length

subsequence of {yt} written as

(6.9) ~yt,p = vec(yt, yt−1, . . . , yt−p+1) ∈ R
pr,

for the classical vector autoregression on past samples as per (6.5), referring to §4.3
of [51], the minimum mean square error prediction is

(6.10) ŷt+s|t = Φy
p,s ~yt,p.

Spectral factor model prediction

Based on the prediction methodology envisaged in Section 6.3, Γy
h may be replaced in

(6.7) and (6.8) by the part of the acvf which inherits the commonalities. The spectral
factor model was developed based on the decomposition of the measured multivariate
time series yt as per (4.2) to vt and zt, which inherit the commonalities and the
idiosyncrasies, respectively. The decomposition (4.3) of the acvf of Γy

h into Γv
h and

Γz
h was also seen. It was further found out that the best approximation of Γy

h in the
sense of inheriting the commonalities is Γv

h obtained via the spectral factor model. The
optimal spectral factor model parameter Sv is related to Γv

h through (4.11).
Suppose a maximum commonalities spectral factor model is computed based on a
training set of measured time series either via the analytical approach of Section 5.1
or the iterative approach of Section 5.2 according to Algorithm 6. As a result, the
optimal transformation matrices {W(ωj)}, j = 1, . . . , ̂ at ̂ target frequencies may be
assumed available. Then, given any subsequence ~yt,p of the measured time series, by
replacing Γy

h with Γv
h in the prediction equations, predictions may be performed as per

Algorithm 8:
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Algorithm 8: Spectral factor model prediction

Input: ~yt,p; {W(ωj)}, j = 1, . . . , ̂
Output: ŷt+s|t

compute Γv
h using (4.11);

compute ρvp,s replacing Γy
h → Γv

h in (6.7);
compute Ξv

p replacing Γy
h → Γv

h in (6.8);
compute Φv

p,s = (Ξv
p)

−1ρvp,s;
estimate ŷt+s|t = Φv

p,s ~yt,p;

6.4 Summary

In practical learning problems one is bound to use spectral factor model with limited
computational resources. In Section 6.1, choosing the estimation procedure was dis-
cussed; it was based on either (i) the cheaper EM algorithm but with necessary caution
to evade local optimum traps or (ii) the accurate but expensive analytical formulas of
the low-rank approximation.

For classification of multivariate time series based on the similarities of their com-
monalities, a metric in (6.1) and a κ-nearest neighbor classification rule in (6.2) was
designed. A test multivariate time series may be classified as belonging to the class
of training multivariate time series for which the subspaces spanned by their optimal
spectral factor transformation matrices overlap maximally.

For prediction of multivariate time series based on the spectral factor model, the
classical vector autoregression prediction models was modified by replacing the mea-
sured acvf with the acvf corresponding to the optimal commonalities.
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Chapter 7

Experiments

The notion of multivariate time series learning was introduced in Chapter 1 using
two practical example problems. One was classification of human MEG signals and
the other was prediction of share prices in a portfolio. It was posited that measured
multivariate signals in both these problems were generated by dynamic transformation
of a low-dimensional latent time series whose acvf characteristics are assumed known
or given. For convenience, it was assumed that the latent time series is a zero-mean
unit-variance white noise.
In designing a modeling framework for multivariate time series in Chapter 4, many
merits and challenges in estimating the dynamic transformation in Fourier spectral
domain were seen and the modeling framework was called the spectral factor model.
In deriving an optimal model in Chapter 5, the following points were considered :

(a) From all possible spectral factor models, a model that is the most likely to have
generated the available measured time series according to the principle of maximum
likelihood was found. For the maximum likelihood spectral transformation matrix
W, through (5.5) it was found that a unique analytical solution is infeasible;
whereas an iterative solution in (5.25) was obtained.

(b) From all possible maximum likelihood spectral factor models, the one which maxi-
mizes the commonalities inherited by the dynamic transformation was sought. To
attain that model, a solution each for the analytical and the iterative procedures
via Algorithms 3 and 4, respectively, were formulated.

Through the design of a learning framework in Chapter 6, the following were provided:

(i) A classifier, in Algorithm 7, based on κ-nearest neighbor proximity of the projec-
tion cast by the subspace defined by the optimal spectral factor model transfor-
mation of a test time series with the training examples from various classes.

(ii) A vector autoregression prediction scheme, in Algorithm 8, that replaces the acvf
of the measured time series in the classical prediction equations with the acvf
corresponding to the commonalities.

Each of these learning objective, viz., classification and prediction, will be experimented
with in Sections 7.1 and 7.2, respectively. In both experiments, their data acquisition
scheme and the general characteristics of the measured variables will be briefly ex-
plained. Importantly, limitations and advantages of these experiments with respect to
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the data will be discussed.
One important aspect of a spectral factor model that was taken for granted in the
theoretical development was the choice of the latent dimensionality. Hence, in the
experiments, its influence on classification and prediction accuracies will be tested.
Another aspect of the modeling framework that will be tested is the optimal number of
subbands as required by Theorem 2.5 of the asymptotic theory of spectral estimates.

Implementation

In addition to the practicalities discussed in Section 6.1, certain implementation aspects
of the experiments need to be highlighted. In conducting these experiments, the
learning capabilities of the spectral factor model are to be demonstrated. To allow
appropriate benchmarking, publicly available data from live fields of study will be used
without much expert insights on the processes for which the data was collected. All
experiments were conducted using a standard laptop with Intel Dual Core T7200 CPU
(2.00GHz). Implementation of the entire estimation and the learning experiments were
written using the R language [101]; the codes are intended to be made publicly available
through the Comprehensive R Archive Network [4].

7.1 Classification of magnetoencephalography signals

In the first of the introductory examples in Section 1.2, the problem of dynamic factor
model using the exercise of classification of wrist movements based on magnetoen-
cephalogram (MEG) measurements was described. The task was originally part of a
prestigious international competition which has concluded; its solutions have already
been published and the winners were announced [1]. The typical approach of par-
ticipants in the competition involved processing time series to extract certain static
time and frequency domain signatures which are then fed to state-of-the-art classifiers.
Nevertheless, the competition is attempted here to demonstrate the capability of the
spectral factor model in utilizing much of the commonalities captured by the the latent
time series presumed for the measured MEG variables for the purpose of determining
the particular class of wrist movements responsible for modulating the MEG.
Briefly recap the discussion in Chapter 1 regarding what classification of time series

implies: A class of time series may be regarded as an ensemble of finite length time
series episodes if they are realizations of the same dynamic transformation of the same
latent time series. The dynamic transformation thus represents a class of measured
time series process. But remember that the dynamic transformation is such that it al-
lows inheritance of the commonalities maximally from the measured time series. Hence,
by comparing the dynamic or spectral transformation matrix of any two measured time
series processes, it should be possible to decide which among them a new unclassified
measured time series is closest to.

Detailed description and information of the task are available in the competition
website of [1]; the data was contributed by [2]. In summary, there are c = 4 classes
of wrist movements for which 10 MEG time series are recorded. All movements are
appropriately resampled to have τ = 400 samples and have similar stimulus cues and
movement procedures. Independent data sets D1 and D2 are available for two human
subjects; each subject produces 40 example movements per class and with 73 and 74
unlabeled test movements, respectively. The number of test movements per class per
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Figure 7.1: MEG signals of a human subject D1 corresponding to five brain spots
(V 2, V 4, V 6, V 8, V 10) during four classes of wrist movements.

subject is also unknown. For neither learning nor testing, there is a need to mix the
data from D1 and D2 whereas tests are assessed on their average count of classification
accuracies, a1 and a2, respectively.

Testing latent dimensionality: Since it is a prerogative to estimate an appropriate
latent dimensionality q for a given measured dimensionality r, the classification accuracy
on all possibilities, viz., q = 1, . . . , r − 1 will be tested. However, as discussed in
Section 6.1, there ought to be sufficient number of samples n within a subband of the
discrete Fourier transform of the measured factor model for enhancing reliability of the
estimated parameters W ∈ Cr×q.

Testing number of target frequencies: Yet another constraint that was summa-
rized in Section 6.1 was the number ̂ of target frequencies; the sampling rate should be
high enough so that sufficiently large ̂ number of target frequencies may be assigned
to meet the conditions of the asymptotic theory of spectral estimates. Unfortunately,
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Figure 7.2: MEG signals of a human subject D2 corresponding to five brain spots
(V 2, V 4, V 6, V 8, V 10) during four classes of wrist movements.

the number of samples for the data was just 400.
Balancing asymptotic Gaussanity and curse of dimensionality: A balance

has to be struck between the demands for a large number of samples n within a
subband for estimating the parameters for a latent dimensionality up to q = r−1 while
ensuring that increasing n would not hamper the large number ̂ of target frequencies
required. It is not the intention to pre-process the data to increase the sample rate
or perform other modifications that might lead to explainable bias in comparison of
spectral factor model performance with others. As a result, it was decided to use
r = 5 measured signals only from among the 10 measured signals. In Figures 7.1 and
7.2, these are marked as (V 2, V 4, V 6, V 8, V 10) instead of (V 1, . . . , V 10) of Figure
1.3. The signals V 1, . . . , V 10 correspond to spatially adjacent parts of the brain; other
than that no set of signals seem qualitatively more similar to another set of signals
and no particular criteria was used to select the set (V 2, V 4, V 6, V 8, V 10) of five
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measured signals. Obviously, using only part of the measured variables for such a
tedious classification exercise invites the risk of losing information rich data that might
reflect in poor classification accuracy. As a validation, however, the exercise with the
other set (V 1, V 3, V 5, V 7, V 9) of measured signals will also be carried out.

̂ = 20 ̂ = 25 ̂ = 30
q a1 a2 a1 a2 a1 a2
1 40.54 32.88 40.54 32.88 40.54 26.03
2 40.54 32.88 40.54 32.88 40.54 26.03
3 40.54 32.88 40.54 32.88 39.19 31.51
4 40.54 32.88 40.54 32.88 39.19 30.14

Table 7.1: Percentages of average accuracies a1 and a2 in classifying c = 4 classes of wrist
movements on two subjects D1 and D2, respectively, based on their 5-variate MEG
(V 2, V 4, V 6, V 8, V 10). The classifier was based on Algorithm 7 using κ = 3 for
various values for the latent dimensionality q and number of target frequencies ̂.

̂ = 20 ̂ = 25 ̂ = 30
q a1 a2 a1 a2 a1 a2
1 40.54 32.88 35.14 32.88 40.54 32.88
2 39.19 32.88 36.49 32.88 41.89 26.03
3 39.19 32.88 36.49 32.88 41.89 31.51
4 35.14 32.88 35.14 32.88 40.54 30.14

Table 7.2: Results of the experiments for the 5-variate MEG (V 1, V 3, V 5, V 7, V 9) with the
same setup as in Table 7.1.

The accuracy of the classification are available in Tables 7.1 and 7.2. Note that the
data obtained for both those tables are from the same set of processes with a different
set of measured variables. However, within a table there are some accuracies which do
not seem to change with dimensionality q or number of subbands ̂. Explaining such
results is attempted below:

Class imbalance: The number of test episodes per class was unequal. Note that,
had the classes were balanced, the classification is considered to be worse than
random classification if accuracies a1 and a2 were below 1

c = 25%; whereas
perfect classification will imply 100% in any case.

Nearest neighbours: Tests on κ = 5 proved to be not significantly different from
those presented in Tables 7.1 and 7.2 for κ = 3. Whereas for larger κ, the
accuracies were poorer especially for larger q possibly due to the sparsity of
consistent training samples against a larger set of features.

Asymptotic Gaussanity The subbands tend to lose their distinct Gaussanity with in-
creasing bandwidth, e.g., ̂ = 25 and ̂ = 20. In such situations, the classification
accuracy becomes invariant as more Gaussian subbands are merged. Subbands
could not be increased disproportionately because of the following reason.
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Rank a1 a2 Competing methods

1 59.5 34.3 Reported access to ‘bipolar’ time series unavailable to others.
Fourier and wavelet features selected via genetic algorithm.
Support vector and linear discriminant classifiers.

2 31.1 19.2 0-0.5 s segment with 0.5-8 Hz + 20 Hz subsampling
Principal Fisher discriminant time and Fourier features.
Fisher discriminant classifiers.

3 16.2 31.5 Fourier, wavelet features selected via genetic algorithm.
Support vector classifiers.

4 23.0 17.8 0-0.5 s segment with 0.5-8 Hz.
Principal Fisher discriminant time and Fourier features.
Fisher discriminant classifiers.

Table 7.3: Percentage of average accuracies of the winners published by [1].

Curse of dimensionality: With τ = 400 and 20 being the number of transformation
matrix parameters for q = 4, the subbands with n = 20; ̂ = 20; n = 16; ̂ = 20;
and n ≈ 13; ̂ = 20 will all challenge the asymptotic theory and suffer from the
curse of dimensionality.

Competition: It is noteworthy that had the spectral factor model competed in [1]
with any q and ̂ setting, as shown in Table 7.3, the spectral factor model
would have bettered all reported accuracies except against the topper. The
topper of the competition seemingly had an advantage of prior knowledge or
extra information regarding the time series. Also, no pre-processing of the time
series was done unlike the competitors; this is because expertise on the scientific
procedure of the data acquisition was lacking nor was it desired to skew the
benchmarking of the spectral factor model through unexplainable effects of data
pre-processing. However, a basic Bartlett-Hann windowing [50] is performed.
This is a standard procedure for discrete Fourier transform techniques to reduce
the Gibbs phenomenon as the theoretically periodic finite length realization of a
time series is truncated [52].

Moreover, based on available results at [1], the spectral factor model results are
a clear front runner despite not requiring any of the advanced process knowledge and
preprocessing of the competitors. Also, it is very likely that there was a handicap in
the accuracy of the classification due to the inability to use all the measured MEG
variables due to the low data sampling rate as explained earlier. Nevertheless, the
results obtained demonstrate sufficient classification capabilities of the spectral factor
model.

7.2 Prediction of yield rates of shares

In Section 1.2, the discussion on the setup of the prediction experiments was initiated
through the example of a portfolio of shares obtained from [6]. The same motivation,
data and setup are continued here. There is access to a multivariate time series
consisting of synchronously sampled daily share prices of 6 German companies over a
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period of 2747 trading days during 01/01/1983 - 30/12/1993. As shown in Figure 1.5,
the component time series demonstrate similar dynamic covariations when they increase
or decrease with observable patterns which are not necessarily readily quantifiable.

It may be verified from Figure 1.5 that there exist increasing and decreasing general
trend patterns over a substantial number of samples. Hence, regression detrending on
the training series [22] will be performed. The current test series subject to prediction
is detrended using the parameters of the regression; the result is displayed in Figure
7.3. Despite this detrending, there still exists obvious non-stationarity in the data.
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Figure 7.3: Original share prices shown in Figure 1.5 are regression detrended and split (by
the gray vertical line) into the training series followed by the test series. The test
series is corrected using the regression parameters of the training series.

Hence, this prediction exercise will implicitly also test the robustness of the spectral
factor model in deviations from the assumption of weak stationarity.

Another pre-processing is effected in the frequency-domain for the robustness of
spectral estimates. Prior to estimation of the spectral factor model, windowing of the
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time series is performed to reduce the Gibbs phenomenon arising due to disparities
between the ends of the finite length realization of the time series [52]. As with the
previous experiment, a basic Bartlett-Hann windowing [50] will be performed to the
measured time series.

How hard is this chosen problem of prediction of multivariate time series? To
answer this question, the predictability of each component series of the multivariate
time series has to be checked. In Algorithm 8, the estimate for the time series {yt} for
a horizon s given the current sample yt and the past p − 1 samples of the series was
developed. On the other hand, a very naïve prediction is to assume that the future
evolution is held on the current value. Obviously, the naïvety will incur errors given the
stochastic nature of the time series. To measure the accuracy of the prediction, the
ratio of the mean of the square errors normalized to the variance of the true time series,
called the normalized mean square error (nmse), is used. The sample counterpart of
the population nmse will be used to assess predictive performance.

naïve prediction

s bmw mru vow kar sie bas

1 1.24 0.83 1.33 0.96 1.53 1.8
2 2.84 1.77 2.66 1.97 3.11 3.57
3 4.65 2.78 3.94 2.97 4.8 5.25
4 6.54 3.83 5.24 3.83 6.36 6.66
5 8.58 4.84 6.55 4.72 8.14 8.14
6 10.57 5.97 7.99 5.69 10.04 9.71
7 12.47 7.07 9.35 6.73 11.81 11.12
8 14.37 8.25 10.77 7.75 13.55 12.61
9 16.36 9.48 12.34 8.86 15.40 13.91
10 18.30 10.78 13.90 9.95 17.20 15.09
20 37.09 22.56 30.79 21.08 37.44 31.08

Table 7.4: nmse% of the naïve prediction ŷt+s|t = yt of each component share price of the
portfolio for various horizons s.

Table 7.4 gives the nmse for the naïve prediction of each component measured
time series for various horizons s. Note that for s = 1, i.e., for the next trading day,
the naïve prediction is reasonable as the nmse registers just about 1% prediction error
of the variance of their true evolution. For s = 5, which generally corresponds to a
week-ahead prediction records individual prediction error nmse averaging between 4 -
9 %, which is neither trivial nor grossly incorrect. For s = 10 and s = 20 in Table 7.4,
it may be seen that the naïve prediction deteriorates substantially for larger horizons.

The spectral factor model prediction methodology is due to Algorithm 8. Following
the notations in earlier chapters, the measured dimensionality is r = 6 and a latent
dimensionality q < r for the spectral factor model is presumed. Within the sufficiency
of the number of samples required for a reliable estimation of transformation matrix
W ∈ Cr×q, an optimal setting of the spectral factor model was tested in trials using
a part of the time series dataset for training and another for testing.

As input to Algorithm 8, the ̂ spectral factor transformation matrices {W(ωj)}, j =
1, . . . , ̂ could be provided via either Algorithms 3 or 5. As mentioned earlier, the EM
algorithm requires multiple restarts and the parameters that correspond to the maxi-
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mum of the converged likelihood could be chosen for maximizing the commonalities.
A numerical log-likelihood convergence difference of 10−8 and a maximum of 20 iter-
ations were considered appropriate [7]. For the share price portfolio dataset, the EM
algorithm typically converged in less than 10 iterations and a maximum of 20 restarts
were typically found appropriate in discovering a transformation matrix that is close to
to 1% of the log-likelihood of the analytical solution. For the ease of reporting and
with the focus on the prediction methodology, the experimental results presented here
were carried out with Algorithm 3.

The following observations were made on the prediction accuracy of Algorithm 8
using the spectral factor model as measured by the nmse on those trials:

(i) an autoregression of order p = 2 performed consistently much better than other
orders. Hence, p = 2 was chosen for the experiments and presenting the results
of the tests with orders p 6= 2 is skipped.

(ii) increasing the number ̂ of subbands of frequencies as stipulated by the asymptotic
theory enhanced the prediction accuracy significantly only with q = 1. Hence,
̂ = 60 was picked for the experiments; it corresponds to n = 36 discrete frequency
transform components per subband which is reasonable for the estimation of the
spectral factor model parameters for r = 6 measured time series.

It is wished to do predictions of the share prices in terms of a number of trading
days, i.e., for the next day (s = 1), one week ahead (s = 5), a fortnight ahead
(s = 10), and a month ahead (s = 22). Table 7.5 gives the results of the prediction
exercise using the spectral factor model as per Algorithm 8 for horizons s = 1, s = 5,
and s = 10.

It shows that increasing the latent dimensionality q increases the prediction accu-
racy with q = 1 substantially worse than others and q = 5 being the best. This is a
logical progression of accuracy that as you increase the latent dimensionality, the com-
monalities of the measured time series that the spectral transformation could inherit is
larger. Hence, higher the latent dimensionality, higher the accuracy or lower the nmse.

It is the aim to pick a suitable latent dimensionality q by trading accuracy of the
prediction nmse for the number of parameters rq. It is numerically obvious from Table
7.5 that there is a significant advantage in terms of the nmse in picking q /∈ {1, 2} but
q ∈ {3, 4, 5}. Moreover, picking q > 3 seems not to improve the accuracy much. On
comparing the nmse from Table 7.4 for various horizon with Table 7.5, it is evident
that the spectral factor model for q ∈ {3, 4, 5} is a much more accurate long-term
predictor than sample acvf -based classical autoregressive predictor.

Algorithm 8 recommended replacing the acvf Γy
h of the measured time series {yt}

with the acvf Γv
h of the dynamically transformed latent variables obtained through

the spectral factor model estimation. As a result, spectral factor model predictions
are assessed with the accuracy of the original predictions with the sample acvf using
the classical vector autoregression of (6.10). Table 7.6 gives the nmse% of ŷt+1|t

according to (6.10) for various orders p of autoregression. The sharp decline in the
prediction of most of the component time series with increasing orders shows that
the sample acvf estimates are very unreliable; the predictions ŷt+5|t in Table 7.6 also
corroborate such a conclusion. Moreover, on comparing Table 7.6 with Table 7.5, it
is seen that for s = 1 the performance of the spectral factor model with q ∈ {3, 4, 5}
is similar in performance to the classical vector autoregression with p = 1. On the
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spectral factor model-based vector autoregression

q bmw mru vow kar sie bas

s = 1
1 97.79 70.25 73.77 58.32 60.39 12.65
2 5.66 9.78 6.05 6.36 3.12 5.68
3 3.47 3.99 1.60 3.69 1.52 2.36
4 2.45 2.14 1.20 3.41 1.19 1.69
5 2.36 2.05 1.17 3.32 1.17 1.64

s = 5
1 39.75 94.31 205.65 15.35 174.06 15.96
2 29.11 28.55 22.78 26.06 11.10 19.52
3 9.53 9.57 4.26 9.97 4.06 5.40
4 7.36 5.56 3.24 9.42 3.36 4.19
5 7.28 5.44 3.23 9.58 3.36 4.19

s = 10
1 92.17 236.98 143.46 168.84 195.85 29.74
2 52.52 30.86 9.70 63.44 11.35 10.91
3 13.96 10.27 7.05 17.02 7.83 7.95
4 13.96 9.61 6.62 16.81 6.98 7.90
5 13.51 9.43 6.36 16.73 6.74 7.72

s = 22
1 191.34 390.07 213.13 310.42 458.14 96.42
2 89.85 82.62 23.09 112.64 32.94 25.56
3 37.23 24.44 17.46 33.91 23.74 18.37
4 33.37 20.90 15.11 32.29 17.68 18.15
5 32.51 20.47 14.62 33.44 17.02 17.54

Table 7.5: nmse% of the predictions for the next day (s = 1), one week ahead (s = 5),
a fortnight ahead (s = 10), and a month ahead (s = 22) for each component
share price of the portfolio for various latent dimensions q; ̂ = 60 and p = 2 were
chosen.

other hand, for s = 5, spectral factor model with q ∈ {3, 4, 5} is clearly outperforming
the classical vector autoregression. For even higher horizons of s = 10 and s = 20,
the classical vector autoregression is immensely worse in performance than the spectral
factor model and the results are, hence, not presented.
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classical vector autoregression

p bmw mru vow kar sie bas
s = 1

1 1.26 0.88 2.05 1.79 1.83 2.82
2 5.26 0.99 18.32 10.58 23.43 87.87
3 8.83 1.03 35.63 18.58 41.21 183.35
4 12.18 1.10 59.40 30.03 60.94 287.96
5 17.71 1.24 90.14 44.09 85.69 437.76

s = 5

1 9.60 5.75 28.25 30.88 17.35 46.99
2 17.38 5.77 60.54 46.12 50.35 191.55
3 23.60 5.78 91.18 58.54 75.25 323.58
5 38.84 5.89 175.62 89.47 136.50 668.26
10 111.52 7.15 498.85 161.82 330.19 2438.70

Table 7.6: nmse% of one day ahead (s = 1) and one week ahead (s = 5) predictions of each
component share price of the portfolio for various orders p of autoregression.





Chapter 8

Extensions

We had set out to build a model for multivariate time series that will enable developing
strategies to predict or classify unseen data. In Chapter 4, the spectral factor model
as the frequency-domain counterpart of the time-domain dynamic factor model was
proposed. It was argued how dynamic transformation of a latent time series to a mul-
tivariate measured time series may be modeled to imbibe the characteristics that are
common to any two measured variables. Those characteristics were called the com-
monalities. Maximally inheriting the maximum-likelihood cross-covariations was the
estimation strategy adopted in Chapter 5 to model the commonalities. There, analyt-
ical formulae as well as an iterative algorithm for estimating the spectral factor model
parameters corresponding to the optimal commonalities were presented. In Chapter
6, a classification rule was derived and a prediction methodology for multivariate time
series based on the spectral factor model was designed. The experiments presented
in Chapter 7 validate that the commonalities as defined, designed, and determined for
the spectral factor model possess substantial classification and prediction capabilities
for many real-world multivariate time series problems.
This thesis is concluded by highlighting a large number of possibilities that await in
extending the spectral factor model. As pointed out, there are some improvements to
the presented work that could be attained by overcoming the limitations and relaxing
the assumptions.

The spectral factor model was developed aiming for applications involving mul-
tivariate time series learning. As seen in earlier chapters, the spectral factor model
transformation matrix was the parameter that took the most focus in classification and
prediction experiments that were carried out. There could be many more other appli-
cations possible through the spectral factor model along the same concepts as were
presented. However, there are certain strong assumptions the spectral factor model is
grounded on; they might pose some challenges for its widespread use. Therefore, in
what follows, possibilities of developing the spectral factor model beyond the current
design are investigated; some of the essential further investigations that are wished to
be performed more formally are listed.

8.1 Challenges

Certain aspects that have come across as limitations and annoyances for the spectral
factor model are as follow:
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Linearity: The spectral factor model is rooted on the assumption that the measured
multivariate time series is a linear weakly stationary process; this was essential for uti-
lizing Theorem 2.5. In practice, given the samples of a realization of a time series, it
is not easy to validate its linearity [13, 67]. This important, but broader scoped, issue
was not addressed much in this thesis. The appropriateness of using Fourier domain
methods is also at the mercy of this assumption. Hence, in using spectral factor model
for the purposes dealt with in this thesis, it is recommended to tie the prediction or
classification results with some appropriate test of nonlinearity of the measured mul-
tivariate time series data. Alternatively, lazy learning formalism of the spectral factor
model could also be pursued whereby the model parameters will adapt to reflect the
locality of the operating regime [16].
Commonalities: In developing the spectral factor model, existence of physically valid
cross-covariation between the measured variables was naïvely assumed. It should, there-
fore, be borne in mind that applying it to independent or uncorrelated variables might
show up numerically non-trivial off-diagonal acvf but whose interpretations might most
certainly be illogical. In that respect, more robust estimation procedures of the sample
spectral density of the type in [106] would be a path forward.
Pre-processing: As seen in the experiments, certain pre-processing of the time series
was required to rectify obvious deviations of measured data from the assumption of
weak stationarity. A rigorous and detailed study is envisaged for assessing the impact
of the two preprocessing steps that used, viz., detrending and windowing [22, 65]; this
is beyond the realms of this thesis.
Sample size: It is required a sufficient number of samples within a subband be main-
tained in order to obtain a reliable estimate of the spectral factor model parameters
without inviting the curse of dimensionality [12]. Meanwhile, as dealt with in the ex-
periments and in Algorithm 1, a sufficiently large number of subbands as required by
Theorem 2.5 is to be maintained too. This balancing act was performed by testing
on an array of choices regarding the number of parameters to be estimated and the
sample size. This approach is perhaps not suitable when it is not clear whether the
spectral factor model has learned. E.g., had the future series in the prediction exercise
or true class labels in the classification experiments were lacking, evaluation of the
prediction or classification accuracy, and therefore, the quality of the estimation would
not have been possible. In essence, more theoretical efforts have to proceed beyond
experimental validation and benchmarking towards determining an appropriate latent
dimensionality q and the ̂ number of target frequencies for learning problems.

8.2 Further work

Certain realistic extensions to the spectral factor model beyond the objectives originally
meant for it are listed below:
Process understanding: With an agreeable performance in a learning problem, it
might be inferred that the presumed latent dimensionality q is credible. This hint re-
garding the dimensionality of the presumed latent process {xt} is a preliminary step
towards better understanding of a complicated high-dimensional time series generating
system. In addition, there is a possibility to assert any process knowledge gained from
human experience through the acvf Γx

h of the latent linear process. Such an acvf could
replace the default assumption in (4.6) of {xt} being a zero mean unit variance white
noise.

98



Two other quantities that certainly will aid better understanding of the process under
investigation are x(ωl) as per (5.30) and computed in (5.20) as well as ṽ(ωl) estimated
in (5.34). An inverse discrete Fourier transform of these quantities should enable now-
casting [10], which is to provide a better assessment of the present and the past of the
latent characteristics of the process.
Clustering: Suppose there are no class labels for an ensemble of various episodes from
various time series processes and it is the intention to cluster them based on the char-
acteristics of their commonalities. Then, a scheme similar to κ-means clustering [64]
or any variations thereof might be adopted. Towards such a purpose, ρ(i, k) =

∑̂
j=1

δ ({W(ωj)}i, {W(ωj)}k) may be used as the distance between any two time series
episodes {yt}i and {yt}k computed across all the ̂ spectral factor model subbands
where δ ({W(ωj)}i, {W(ωj)}k) = |det({W(ωj)}∗i {W(ωj)}k)| is the overlap for the
j-th subband according to (6.1).
Real-time implementation: The computational aspects of a practical implementation
of the spectral factor model was discussed in Section 6.1. There exist many multivariate
monitoring applications, e.g., algorithmic trading [21], industrial plant monitoring [76],
automated anesthesia [56], where frequent assessment and update of the model are
necessary but prohibitive. In such problems, it is envisaged to use either the inexpen-
sive EM-algorithm for incremental updates or approaches such as with online principal
component analysis [73] for a real-time update to the analytical spectral factor model
solution.

8.3 Summary

In everyday life, in business, health, search engines, etc., we are witnessing an immensely
increasing demand for robust and efficient models for machine learning. Such models
are necessary to meet objectives ranging from real-time computational decision support
to scalable pattern recognition based on the multivariate time series they generate. It
was demonstrated through reviews, contributions, and experiments that the dynamic
and spectral factor models are live and active fields of research due to the simplified
understanding of a complicated process they offer. The improvements and extensions
to the modeling and learning frameworks of this thesis are near and feasible for them
to deal with more diverse and real-world time series challenges. The spectral factor
model promises to be a viable way forward for mastering the process generating the
increasing volumes of multivariate streaming data.
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Appendix A

A.1 Differentiation of real-valued functions of complex

variables

Some properties of functions which map complex-valued variables to real-valued images
is reviewed here. For details and applications of such an analysis, [57] is referred to.
Suppose A ⊂ C is an open set and a complex function f(u) : A → C is defined. The
function f(u) is said to be differentiable at û ∈ A if its derivative at û defined as

(A.1)
d

du
f(u)

∣∣∣∣
û

= lim
u→û

f(u)− f(û)

u− û
,

exists. The function f(u) is said to be analytical if the derivative exists for all û ∈ A.
For analytical functions, the stationary points are located wherever

(A.2)
d

du
f(u) = 0.

The differential of an analytical f(u) is given by

(A.3) df(u) =
∂

∂u
f(u)du+

∂

∂ū
f(u)dū,

where ū = u1 − iu2 is the complex conjugate of u = u1 + iu2, where u1, u2 ∈ R and

∂

∂u
=

1

2

(
∂

∂u1
− i

∂

∂u2

)
,

∂

∂ū
=

1

2

(
∂

∂u1
+ i

∂

∂u2

)(A.4)

are called Wirtinger derivatives. Also, note a direct consequence of (A.4) that

(A.5)
∂

∂ū
u =

∂

∂u
ū = 0,

or ū may be regarded as a constant when differentiating with respect to u, and vice-
versa.
For any f(u) that is not necessarily analytical, based on the condition (A.2), the
stationary points may now be found by searching where

(A.6) df(u) = 0.

107



Let f(u) = f1(u1, u2)+ if2(u1, u2), where f1, f2 : R
2 → R. For f(u) to be analytical,

it is necessary that it satisfies the Cauchy-Riemann conditions

(A.7)
∂

∂u1
f1 =

∂

∂u2
f2,

∂

∂u2
f1 = −

∂

∂u1
f2.

Now, focus the situation in which f(u) : A → R. Firstly, the conditions (A.7) show
that f(u) is analytical if and only if f(u) is constant. Secondly, df = 2ℜ( ∂

∂uf(u)du) =

2ℜ( ∂
∂ūf(u)dū), which vanishes if and only if

(A.8)
∂

∂u
f(u) = 0.

Hence, for finding the stationary points of a non-analytical function, the trick involves
writing the differential in the form of (A.3) and set the term corresponding to ∂

∂uf(u)
to zero.
In the multivariate case [71, 59], for the complex-valued function f(u) : A ⊂ C with
A ⊂ Cr,

df =
∂

∂u′
f(u) du+

∂

∂u∗
f(u) d(ū),(A.9)

where u∗ ≡ ū′ is the conjugate transpose of u. It then easily follows that the differential
df of a real-valued function f(u) : A → R ∀u ∈ A ⊂ Cn vanishes if and only if the
Wirtinger derivative is zero, i.e.,

(A.10) df(u) = 0⇔ ∂

∂u
f(u) = 0.
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Appendix B

B.1 Certain details of the EM Algorithm

To enable a smooth reading of the EM Algorithm developed in Section 3.5, certain
details are let to reside separately. They are elucidated here:

B.1.1 Log-likelihood as summation of logarithms

The following lemma is well-known; refer §16.5.4 of [30]:

Lemma B.1. Suppose that u1, . . . , um are points in the interval U and
c1, . . . , cm ≥ 0 are such that

∑m
l=1 cl = 1 and f is a concave function in U . Ac-

cording to Jensen’s inequality f(c1u1+ · · ·+cmum) ≥ c1f(u1)+ · · ·+cmf(um).

With f ← loge, cl ← g(xl), and ul ← py,xl|θ(D, xl | θ)/g(xl), (3.32) is got.

B.1.2 Decomposition of the complete log-likelihood

Using Theorem B.1, py,x|θ(D, x | θ) = py|θ(D | θ) px|y,θ(x | D, θ) is obtained. Hence,
the right side of (3.32) may be factorized so that

L(θ, g) ≥
∑

x

g(x)logep
y|θ(D | θ) +

∑

x

g(x)loge
px|y,θ(x | D, θ)

g(x)
,

where the first term reduces to L(θ) due to (3.5) and (3.30).

B.1.3 Maximization of an expectation

If ĝi of (3.35) is substituted in (3.32)

L(θ, ĝi) =
∑

x

px|y,θ(x | D, θi)loge
py,x|θ(D, x | θ)

px|y,θ(x | D, θi)
,
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where the denominator in the logarithm being independent of θ may be eliminated. As
a result, (3.37) boils down to

θ̂i+1 = argmax
θi

L(θi, ĝi)

= argmax
θi

∑

x

px|y,θ(x | D, θi) logepy,x|θ(D, x | θi),

= argmax
θi

Ex|y,θ
[
logep

y,x|θ(D, x | θi)
]
.

B.2 Posterior density with a Gaussian prior

Refer [113, 74] and §6.2 of [95] for the following theorem:

Theorem B.1. According to the Bayes theorem for continuous probability density
functions, the conditional distribution of a random variable y with any realization y
given a set of random variables x with any realization x is related to the conditional
distribution of x given y according to

px(x)py|x(y | x) = py(y) px|y(x | y) ≡ py,x(y, x).

Due to Theorem B.1, px|y(x | y) = px(x)py|x(y|x)
py(y) ; so, given the parameters θ, it follows

that px|y,θ(x | y, θ) = px|θ(x|θ)py|x(y|x,θ)
py(y|θ) . While a Gaussian has been accepted for the

denominator py(y | θ) according to (3.18), py|x(y | x, θ) in the numerator is also a
Gaussian as per (3.39). Assuming yet another Gaussian for

px|θ(x | θ) = px(x) = N (x | 0, Iq).

Therefore,

(B.1) px|y,θ(x | y, θ) =
N (x | 0, Iq)N (y | Wx,Γz)

N (y | µy,Γy)
.

Suppose c1, . . . , c4 are factors independent of x such that

N (x | 0, Iq) = c1 exp(−0.5x′x),

N (y | Wx,Γz) = c2 exp(−0.5x′W ′(Γz)−1Wx+ x′W ′(Γz)−1y),

N (y | µy,Γy) = c3,

c4 =
c1c2
c3

.

Then, (B.1) may be written as

px|y,θ(x | y, θ) = c4 exp(−0.5x′Ω−1x+ x′Ω−1ΩW ′(Γz)−1y),

where
Ω−1 = Iq +W ′(Γz)−1W.

110



The probability density function of a Gaussian ξ with mean a and covariance matrix
B may be written as N (ξ | a,B) = c exp(−0.5 ξ′B−1ξ+ ξ′B−1a), where c is a factor
independent of ξ. Thus, px|y,θ(x | y, θ) is a Gaussian with mean ΩW ′(Γz)−1y and
covariance matrix Ω. It can be seen that

px|y,θ(x | y, θ) = N (x | ΩW ′(Γz)−1y,Ω).

B.3 Posterior density with a complex Gaussian prior

The extension of Section B.2 to complex Gaussian densities is straightforward. In that
order of equations and interpretations therein, the following relations hold:

px|θ(x | θ) = NC(x | 0, Iq)

(B.2) px|y,θ(x | y, θ) =
NC(x | 0, Iq)NC(y | Wx,Sz)

NC(y | 0,Sy) .

Suppose c1, . . . , c4 are factors independent of x such that

NC(x | 0, Iq) = c1 exp(−x∗x),

NC(y | Wx,Sz) = c2 exp(−x∗W∗(Sz)−1Wx+ 2ℜ(x∗W∗(Sz)−1y)),

NC(y | 0,Sy) = c3,

c4 =
c1c2
c3

.

Then, (B.2) may be written using

Ω−1 = Iq +W∗(Sz)−1W.

as

px|y,θ(x | y, θ) = c4 exp(−x∗Ω−1x+ 2ℜ(x∗Ω−1ΩW∗(Sz)−1y))

The probability density function of a complex Gaussian ξ with mean a and covari-
ance matrix B may be written as NC(ξ | a,B) = c exp(−ξ∗B−1ξ + 2ℜ(ξ∗B−1a)),
where c consists of the normalization factor of the distribution independent of ξ. This
shows that px|y,θ(x | y, θ) above is a complex Gaussian with mean ΩW∗(Sz)−1y and
covariance matrix Ω, i.e.,

px|y,θ(x | y, θ) = NC(x | ΩW∗(Sz)−1y,Ω).
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