
Chapter 6

Learning via spectral factor
model

In Chapter 1, the objective of learning a time series process was discussed with ex-
amples. Two challenges to prove the learning worth of the spectral factor model were
proposed there. Firstly, a given measured time series has to be classified as belonging
to one of the several possible processes that could have generated it. In this chapter,
classification is done based on the proximity of the optimal spectral factor model pa-
rameters of the unclassified time series with that of the time series of various classes of
possible processes. Secondly, prediction of the future evolution of a current measured
time series is done. In this chapter, prediction is performed by enriching classical vector
autoregression parameters of the measured time series in the prediction equation with
commonalities.

In Section 6.1, before moving to either of those learning applications, it is necessary
to consider the computational requirements of the spectral factor model estimation.
In particular, strategies to choose the best of the two possible estimation procedures
developed in Chapter 5 are considered from a practical perspective of using them in a
learning problem.

In Section 6.2, the classification problem is defined concretely. The strategy involves
comparing projection of the subspace spanned by the transformation matrix of the test
time series episodes onto those of a number of training time series episodes. An
approach based on the nearest neighbors in terms of the projection is used to decide
whether a test episode belongs to one class or another; this is made available in
Algorithm 7.

In Section 6.3, the prediction problem is taken up. The strategy there is simple:
The measured acvf is an addition of two acvf s, one of them inheriting the common-
alities and the other not. All occurrences of the measured acvf in the classical vector
autoregression prediction equations are replaced with the part of the measured acvf
that inherits the commonalities. This is demonstrated in Algorithm 8.

The following situates the developments in this chapter with respect to the state-
of-the-art:

! Spectral factor model based classification.
The classification metric of (6.4) compares the maximum commonality transfor-
mations of any two multivariate time series. The metric quantifies the overlap
of maximum commonality subspaces despite (i) multiplicity of maximum likeli-
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hood solution due to orthogonal rotations, (ii) the transformation matrices being
complex-valued, and (iii) the transformations for all the subbands are to be com-
pared. The closest work in the literature to this is that of [66] who struggle to
achieve a proper metric that will compare two classes of spectral densities despite
working with their full-rank sample estimates.

! Commonalities driven multivariate time series prediction.
For predicting measured multivariate time series believed to consist of substantial
commonalities, an estimate of the acvf is obtained by inverting its commonalities
enriched spectral density function. Classical vector autoregression on current and
past samples with orthogonal errors, as prevalent in literature [102, 51], is used
to obtain the predictions. Except, here, the measured acvf is replaced by that
of the commonalities estimate.
On the other hand, the focus of eminent works in dynamic factor model liter-
ature such as [36] is in the prediction of the commonalities, which is typically
unmeasured. E.g., [104] wants to model business cycles whereas [118] predicts
diffusion index based on other measurable indicators.

6.1 Practicalities of spectral factor model estimation

It is clear that learning problems would require estimation of the spectral factor model
parameters that inherit commonalities maximally. Hence, as a prelude to using com-
monalities for learning problems, Algorithm 6 is followed to estimate these parameters
given a finite τ length time series {yt}, t = 1, 2, . . . , τ . The output of the algo-
rithm is the set of spectral model parameters {W(ωj),Sz(ωj)} at ̂ target frequencies
ωj ∈ [0, 1), j = 1, . . . , ̂.

Algorithm 6: Estimate optimal spectral factor model per subband
Input: {yt}, t = 1, . . . , τ ; yt ∈ Rr;
Output: {W(ωj)}; j = 1, . . . , ̂
compute {y(ωj,l)}; j = 1, . . . , ̂; l = 1, . . . , n using Algorithm 1;
foreach j = 1, . . . , ̂ do

gather D = {y(ωj,l)}, l = 1, . . . , n;
estimate {W(ωj),Sz(ωj)} with input D to Algorithms 3 or 5;

end

The following observations regarding Algorithm 6 may be noted:

1. The procedures of Chapter 5 estimated the maximum commonalities spectral
factor model within a spectral subband as per the asymptotic theory discussed
in Section 2.5. Hence, the discrete Fourier transform components are split into
̂ subbands using Algorithm 1.

2. Each subband should have a sufficiently large n number of samples for a reliable
estimation of the spectral factor model parameters; this may typically be set to
n ≈ r2 to ensure consistency of sample estimates without inviting the curse of
dimensionality issues [106, 12].
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3. Although informative, the parameter Sz is needed for neither the classification
nor the prediction exercises because it contains no commonalities which are all
available through W.

4. Depending on the computational demands and application, either Algorithms 3
or 5 may be chosen for computing the optimal parameters of the spectral factor
model.

The last of the above requires further discussion. Theoretically, the analytical solu-
tion of Algorithm 3 is elegant and unique till orthogonal rotations of the transformation
matrix. However, in favor of the iterative Algorithm 5 are the following practical as-
pects:

! For an r-variate measured time series, computing its spectral density function as
well as computing its eigenvalue decomposition are typically O(r3) operations
[32]. This makes Algorithm 3 very prohibitive as the number r of measured
variables grows. For q-variate latent time series, the intensive operations of the
EM algorithm-based estimation in Algorithm 5 are q×q matrix inverses; they are
typically O(q3) operations and q $ r is the practical choice. Note that (Sz)−1

in the EM Algorithm would involve only scalar reciprocals of its diagonal. Hence,
practically, for online or real-time implementations where complexity is always a
constraint, spectral factor model updates could be done better using Algorithm
5.
On the down side, as mentioned in Note 5.4, the issue of local minima in the
EM algorithm poses some risk. Hence, it is desirable to confirm iterative esti-
mates with an occasional update via Algorithm 3. Or, the randomization of the
parameters in the beginning of the EM algorithm might be replaced by analytical
estimates.

! In many time series, especially in econometrics, seasonality leads to distinct
spikes in the spectral components. Their adjusting or correction leads to unde-
sired consequences including elimination of true and introduction of misleading
non-seasonal characteristics as well as distortion of commonalities [91]. Sup-
pose the discrete Fourier transform components of the unadjusted seasonal time
series corresponding to the suspected seasonalities are assumed missing. EM
algorithm could be extended to impute the missing values using approaches such
as Monte Carlo EM [123] and Stochastic Approximation EM [31]. This allows
the possibility to model and learn the commonalities without inviting unnecessary
pre-processing.

6.2 Multivariate time series classification

Let an r-variate measured time series be denoted by {yt}. The objective of the clas-
sification problem is to assign {yt} to one and only one of the c exhaustive classes of
time series Ci, i = 1, . . . , c. It is necessary to clarify what a class of time series means.
A class of time series is a stochastic process, which is distinct from other processes
according to an expert who has measured the time series. Such a distinction might be
due to some dynamic characteristics of the time series the class is associated with that
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is objectively or subjectively obvious to the expert. Or, the expert might believe that
the physical process that generated a class of time series is dissimilar to others.

To ease the discussion on classification of time series, revisit the first of the two
examples in Section 1.2. There, the computer gamer has to make joystick movements
which require her to position the cursor from the center of the screen to any one of the
four corners. During the game, the magnetoencephalography sequences corresponding
to ten spatial spots in the brain were recorded via a magnetoencephalography scanner.
Existence of a set of two latent signals, viz., her cognition and reaction sequences, of
known general characteristics which generate the measured time series is presumed.
When a joystick is moved, these latent signals must undergo a dynamic transformation
corresponding to that particular class of joystick movements. In this example, an expert
might have witnessed several episodes of the gamer making these four movements and
understood the dynamic characteristics of the measured time series. Each episode is
a finite length multivariate time series realization. Suppose access is available to a
historical database of many such episodes which have been classified by the expert;
they may be called the training episodes. It is wished to classify more episodes
without the aid of the expert one by one; each of them will be called a test episode.

The challenge to reliably classify a test episode of a multivariate time series process
based on the dynamic characteristics of a given dataset of classified training episodes
is the time series classification problem. Hence, the classification process will have
two phases: In the training phase, the summary of the dynamic characteristics of many
training episodes are extracted. Obviously, the summary here implies the parameters
of the spectral factor model. In the testing phase, the test episode is fed as input to
the classification system. Its dynamic characteristics are compared with the dynamic
characteristics of all the classes, and the most appropriate class label is given as the
output of the system. Effectively, the spectral factor model parameters of the test
episode is compared with those of the training episodes.

Such a classification system is indeed a learning system because of two reasons:
First, the essential dynamic characteristics from all training episodes have to be ap-
propriately summarized, which in this thesis’s context will be in model parameters.
Second, the classification system demonstrates the ability to use past experiences of
training episodes to respond to a new test episode which it has not witnessed earlier.

Proposal for a classification system

The motivation so far has been that, firstly, each of the components of a multivari-
ate measured time series contribute towards the commonalities shared amongst them,
and, secondly, the dynamic transformation should maximally inherit the commonalities.
Then, the following steps are devised in the time series classification strategy:

1. Estimate the optimal dynamic transformation for the test episode and all training
episodes whereby the latent dimensionality maximally inherits the commonalities.
From this thesis’s perspective, this is equivalent to estimating the maximum
commonalities spectral factor model as done by Algorithm 6.

2. Create a neighborhood for the test episode by computing its proximity with each
of the training episodes with respect to their optimal dynamic transformation
parameters.
For this step, the proximity of the test episode has to be compared to the training
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episodes with respect to their maximal inheritance of commonalities, which are
believed to distinguish one class from another. The spectral factor model pa-
rameters W are known to correspond to maximal inheritance of commonalities.
Hence, the proximity of the optimal W of the test episode ought to be compared
with the optimal W of the training episodes.

3. Classify test episode to the class in which majority of the training episodes in the
former’s immediate neighborhood belong to.
For this step, one should be able to design a distance metric between the trans-
formation matrices of any two time series. Then, with respect to the distance
metric, the concepts of ‘neighborhood’ of the transformation matrices as well as
the ‘closeness’ between them may be used. Specifically, one may decide in favor
of the class which has κ training episodes closer to the test episode than any
other class; this strategy is generally known as the κ-nearest neighbor classifica-
tion [28].

The last two steps above beg elaboration. Suppose access is available to time series
from c classes Ci, i = 1, . . . , c each with |Ci| examples and an unclassified time series
episode. To proceed further, let the following notations be compiled:

{yt}l@i, l = 1, . . . , |Ci| l-th example time series in the class Ci
{W(ωj)}l@i spectral transformation of {yt}l@i at ωj

{yt}? unclassified test episode
{W(ωj)}? spectral transformation of {yt}? at ωj

δ ({W(ωj)}l@i, {W(ωj)}?) similarity between {W(ωj)}l@i and {W(ωj)}?
ρ(l@i, ?) proximity between {yt}? and {yt}l@i

ρ(↓ l@i, ?) decreasing sort of ρ(l@i, ?) over l

Since the spectral factor models at ̂ target frequencies are independent of one another,
it is proposed that

ρ(l@i, ?) =
̂∑

j=1

δ ({W(ωj)}l@i, {W(ωj)}?) .(6.1)

Then, {yt}? may be associated with Cı̂, if

(6.2) ı̂ = argmax
i

κ∑

l=1

ρ(↓ l@i, ?),

where a tie is broken at random and κ is a suitable integer, e.g., κ = 5.

Classification metric

Recall from solution (5.10) that columns of W ∈ Cr×q form a set of scaled unitary
vectors which define a q-dimensional space embedded in Cr. These vectors carve a
hyperparallelopiped in Cr whose sides are norms of these columns [112]. Then, a
possible measure of disparity or similarity between any two transformation matrices is
to compare the overlap of the volumes.
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What the overlap of volumes really implies is specified now. The overlap for a, b ∈
Cr is defined as δ(a, b) = |a∗ b|, which is the absolute 2-norm of the unitary projection
of a onto the span of b. Consider a set of linearly independent columns vectors of some
matrix A spanning a subspace MA ⊂ Cr; rank(MA) = q which is unitarily projected
onto a subspace MB ⊂ Cr; rank(MB) = q of another matrix B. This projection may
be thought of as carving a volume measured as the absolute determinant |det(A∗B)|
of the unitary projection of the vectors spanning MA onto MB [75, 84]. In [85], it is
available that

(6.3) |det(A∗B)| = vol(A)vol(B) cos{R(A),R(B)}
where vol(A) ! det(R(A)), where R(A) is the range space of A and cos{R(A),R(B)}
refers to the product of the principal angles between compatible matrices A and B. In
[40], it is shown that cos{R(A),R(B)} =

∏q
k=1 |a

∗
k bk|, where ak and bk correspond

to the k-th principal singular vector pair of A and B, respectively. For the purposes
here, it is appropriate to use (6.3) to find

(6.4) δ ({W(ωj)}l@i, {W(ωj)}?) ! |det({W(ωj)}∗l@i {W(ωj)}?)|.
Salient features of the classification metric: The metric due to (6.1) and

(6.4) is superior to those proposed by [66] for multivariate time series classification
because (i) it evaluates the latent structure (ii) is invariant to orthogonal rotations of
the transformation matrix, (iii) applicable in rank-deficient spectral density functions,
and (iv) scalable with the number of subbands.

Classification algorithm

It is now ready to classify a test series {yt}? based on class affiliations and distances to
the κ-nearest neighbor training series from classes Ci, i = 1, . . . , c each with |Ci| train-
ing series whose l-th example is {yt}l@i, l = 1, . . . , |Ci|. The classification procedure
is simple and is given in Algorithm 7:

Algorithm 7: Spectral factor model classification
Input: {yt}?, {yt}l@i, i = 1, . . . , c; l = 1, . . . , |Ci|;
Output: ı̂ : {yt}? ∈ Cı̂
choose Algorithm 3 in Algorithm 6 and for
j = 1, . . . , ̂

estimate output {W(ωj)}? with input {yt}?;
estimate output {W(ωj)}l@i with input {yt}l@i;

compute ρ(l@i, ?) using (6.1) and (6.4);
compute ı̂ using (6.2);

Note 6.1. Algorithm 3 was insisted in Algorithm 7 because the solution based
on EM algorithm of Algorithm 5 does not guarantee orthogonal columns for the
spectral transformation matrix W for the metric (6.4) to be directly applicable.

Note 6.2. The optimal parameters of the training episodes {W(ωj)}l@i, j =
1, . . . , ̂, l = 1, . . . , |Ci| may be computed offline and only once.
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6.3 Multivariate time series prediction

The prediction problem, as introduced in Chapter 1, meant reliable estimation of the
future evolution of a given time series realization. Subsequently, through the spectral
factor model, a parametric time series model was developed; it assumes existence of
latent time series that could be dynamically transformed to imitate a higher dimensional
multivariate measured time series by inheriting the commonalities of the measured
variables. As a solution, it is hoped to drive the future evolution of a given realization
by using the commonalities and avoiding the idiosyncarsies.

Prediction methodology

Insofar as to validate the robustness of the spectral factor model and its underlying
assumptions, the intention is to predict the evolution of the time series using the
commonalities the spectral factor model could extract from the data. In order to
validate that the predictions are benchmarked appropriately, it is necessary to compare
the prediction accuracy of the spectral factor model with those of the state-of-the-art
multivariate time series models. Then, it seems reasonable to modify the parameters
of the state-of-the-art models to be dependent on the commonalities only and assess
the accuracy upon that modification.

Fortunately, the aforementioned modification of the state-of-the-art model in the
context of this thesis is easy. This is because the spectral factor model was built on the
spectral density function or equivalently on the acvf of stationary processes; whereas
the acvf s decompose into parts which are commonalities-dependent and commonalities-
independent as per (4.3).

Predicting a multivariate measured time series using commonalities dependent
state-of-the-art prediction models accurately should strongly hint that the evolution
of the time series is driven by the commonalities. Then, the assumption regarding a
latent time series will stand vindicated. On the contrary, if the component time series
are all uncorrelated there will not be much to gain in prediction through this approach.

Classical vector autoregressive prediction

One of the most widely used family of equivalent time series models based on classical
vector autoregressive modeling of linear processes will be used [102, 51]. This is
because the prediction framework in that model is simple to comprehend, popularly
tested, and easy to implement. Later, the classical model will be adapted such that its
parameters are maximal carriers of commonalities.

The basic principle of vector autoregression is to estimate a future sample of a
given realization as a weighted sum of the current and past samples. One may refer
[51] among many references to pick from a wide ranging approaches ranging from
maximum likehihood estimation, Kalman filter, Bayesian analysis, etc. to time series
prediction; in moving forward, just one of those approaches based on linear projections
is used. For now, the classical vector autoregressive model may be summarized as
follows: For an r-variate linear process {yt} up to the current sample yt, a simple and
valuable version of the prediction problem involves estimating the s-th next sample
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yt+s|t as a linear function of a finite number p of the present and past samples as

(6.5) yt+s|t = εt+s +
p−1∑

j=0

φy
j+1,syt−j ,

where εt+i = yt+i − yt+i|t ∀i = 1, 2, . . . is the estimation error and φy
l,s ∈ Rr×r ∀l =

1, 2, . . . , p are the autoregression coefficient matrices. The condition that ensures
minimum mean square error are when the errors εt+i above are uncorrelated, i.e.,
E[εt+iy

′
t−j ] = 0 ∀j = 0, . . . , p− 1; refer, e.g., Theorem 4.5 of [48], for this well-known

result. It gives rise to the relation between the acvf s and the coefficient matrices:

Φy
p,s = [φy

1,s φ
y
2,s · · · φy

p,s]
′ = (Ξy

p)
−1ρyp,s,(6.6)

where

ρyp,s =
[
Γy
s Γ

y
s+1 · · ·Γ

y
s+p−1

]′
,(6.7)

and

Ξy
p =





Γy
0 Γy

1 · · · Γy
p−1

Γy
−1 Γy

0 · · · Γy
p−2

...
...

. . .
...

Γy
−p+1 Γy

−p+2 · · · Γy
0




.(6.8)

In practical problems of interest (Ξy
p)−1 will exist. Therefore, for any given p-length

subsequence of {yt} written as

(6.9) *yt,p = vec(yt, yt−1, . . . , yt−p+1) ∈ R
pr,

for the classical vector autoregression on past samples as per (6.5), referring to §4.3
of [51], the minimum mean square error prediction is

(6.10) ŷt+s|t = Φy
p,s *yt,p.

Spectral factor model prediction

Based on the prediction methodology envisaged in Section 6.3, Γy
h may be replaced in

(6.7) and (6.8) by the part of the acvf which inherits the commonalities. The spectral
factor model was developed based on the decomposition of the measured multivariate
time series yt as per (4.2) to vt and zt, which inherit the commonalities and the
idiosyncrasies, respectively. The decomposition (4.3) of the acvf of Γy

h into Γv
h and

Γz
h was also seen. It was further found out that the best approximation of Γy

h in the
sense of inheriting the commonalities is Γv

h obtained via the spectral factor model. The
optimal spectral factor model parameter Sv is related to Γv

h through (4.11).
Suppose a maximum commonalities spectral factor model is computed based on a
training set of measured time series either via the analytical approach of Section 5.1
or the iterative approach of Section 5.2 according to Algorithm 6. As a result, the
optimal transformation matrices {W(ωj)}, j = 1, . . . , ̂ at ̂ target frequencies may be
assumed available. Then, given any subsequence *yt,p of the measured time series, by
replacing Γy

h with Γv
h in the prediction equations, predictions may be performed as per

Algorithm 8:
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Algorithm 8: Spectral factor model prediction
Input: *yt,p; {W(ωj)}, j = 1, . . . , ̂
Output: ŷt+s|t

compute Γv
h using (4.11);

compute ρvp,s replacing Γy
h → Γv

h in (6.7);
compute Ξv

p replacing Γy
h → Γv

h in (6.8);
compute Φv

p,s = (Ξv
p)

−1ρvp,s;
estimate ŷt+s|t = Φv

p,s *yt,p;

6.4 Summary

In practical learning problems one is bound to use spectral factor model with limited
computational resources. In Section 6.1, choosing the estimation procedure was dis-
cussed; it was based on either (i) the cheaper EM algorithm but with necessary caution
to evade local optimum traps or (ii) the accurate but expensive analytical formulas of
the low-rank approximation.

For classification of multivariate time series based on the similarities of their com-
monalities, a metric in (6.1) and a κ-nearest neighbor classification rule in (6.2) was
designed. A test multivariate time series may be classified as belonging to the class
of training multivariate time series for which the subspaces spanned by their optimal
spectral factor transformation matrices overlap maximally.

For prediction of multivariate time series based on the spectral factor model, the
classical vector autoregression prediction models was modified by replacing the mea-
sured acvf with the acvf corresponding to the optimal commonalities.
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