
Chapter 5

Maximum likelihood
commonalities

The objective of this chapter is to solve the maximization problem defined as part
of the spectral factor model in Section 4.2. That problem refers to maximizing the
commonalities retained by the latent spectral factor transformation. It will be shown
that its solution requires estimating the maximum likelihood spectral density func-
tion. Two methods are developed to arrive at the maximum likelihood spectral density
function estimates: The first method is analytical and is the topic of Section 5.1; it
gains traction from the estimation procedures summarized in Section 3.4. The second
method discussed in Section 5.2 is iterative; it is along the lines of the EM algorithm
presented in Section 3.6.

In Section 5.1, as part of the analytical method, optimal parameters of the spectral
factor model are made available in (5.10) and (5.13). In order to arrive at those results,
the expression for the log-likelihood function of the spectral factor model is written. Due
to difficulties in maximizing such a real-valued function of complex-valued parameters,
Wirtinger relaxation rules of complex differentiation are sought. Such an approach
gives the relation (5.5) connecting the spectral density functions of the latent and
the idiosyncratic processes to the sample measured spectral density function. Sadly, it
evades delivering a unique solution. Therefore and subsequently, a much restricted class
of maximum likelihood solutions is pursued where the commonalities will be maximized
as well. Towards the end of that pursuit, the low-rank approximation technique of
Section 3.4.2 is used to arrive at a suitable solution.

In Section 5.2, the objective is to iteratively solve the commonality maximization
problem defined as part of the spectral factor model in Section 4.2. The optimal pa-
rameters of the spectral factor model are made available in (5.33) and (5.34). Just as
with the analytical method in Section 5.1, first the maximum likelihood parameters of
the spectral factor model are obtained; here it is done iteratively using the EM algo-
rithm. In doing so, the line of the estimation approach in Section 3.6 for Section 5.2 is
towed by which the definition of the ‘E’ and ‘M’ steps are laid out. For this purpose,
the formulae for the a posteriori expectation and the maximum likelihood parameters
are carried out just as they were derived in Sections 3.7.1 and 3.7.2. However, the
analysis is tedious because of the non-analytic nature of the real-valued log-likelihood
function of complex-valued parameters. As in Section 5.1, this difficulty is overcame
by employing Wirtinger relaxations. The equations (5.25) and (5.29) give the maxi-
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mum likelihood parameters of the spectral factor model at each iteration of the EM
algorithm. Once the EM algorithm has converged, the parameters that maximize the
commonalities are found in Section 5.2.3 using the idea of an efficient unbiased esti-
mator reviewed in Section 3.2.

Note 5.1. For the analysis in this chapter, the focus is on any one and only one
target frequency in the set of target frequencies obtained on application of Theorem
2.5. Hence, for brevity of notations in this chapter, the index specifying different
subbands will be dropped. Therefore, the sans-serif script without any subscripts as
in y will be used to refer to the discrete Fourier transform vector random variable
at the target frequency of interest. As a result, the spectral density function at the
target frequency is simply Sy and the transformation matrix is W.

Maximum likelihood estimation of linear processes in time-domain

The attempt in this thesis is to use the principle of maximum likelihood to estimate pa-
rameters of the dynamic factor model in the frequency domain. Despite the challenges
posed by complex-valued parameters of the model, such an approach was motivated
by the established route of maximum likelihood in factor analysis.
An alternative route that should easily be motivated by the maximum likelihood prin-
ciple is the estimation of the dynamic factor model in the time domain [78]; however,
it is not pursued in this thesis. It involves expressing the large sample approximation
of the likelihood function in terms of finite-order vector autoregressive moving average
process parameters; the maximum likelihood parameters are known to be consistent
and asymptotically Gaussian. The derivative of the likelihood function with respect to
the parameters are typically non-linear. Hence, iterative algorithms such as Newton
- Raphson scoring algorithm [8] or state-space Expectation - Maximization algorithm
[83] are used to maximize the log-likelihood. These iterative procedures in the time-
domain for vector autoregressive moving average processes are complicated owing to
a large set of parameters requiring reliable initial values as well as convergence issues
requiring robust estimates of model orders; refer Chapter 12 of [78]. The efficacy of
adopting these methods to dynamic factor model estimation in the time-domain is yet
to be seen.
On the other hand, the frequency-domain method as presented in this thesis exploits
proven methodologies to solve the estimation problem. The analytical approach of
Section 5.1 offers an intuitive computationally stable closed-form solution; it uses low-
rank approximation theorem and Weyl’s theorem to arrive at maximum commonalities
parameters. The iterative approach of Section 5.2 uses the EM algorithm for complex-
Gaussian estimation and Gauss-Markov theorem. Beyond the known-issue of local
minima, it does not suffer from over-parameterization and, as presented in this thesis,
is computational stable for Gaussian factor model estimation [14].

The following situates the developments in this chapter with respect to the state-
of-the-art:

! The analytical solution for spectral factor model is derived in (5.10) using low-
rank approximation theorem.
The solution, which involves the principal components of the sample spectral
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density function, coincides with that of the the projection theorem solution of
[36]; they have a motivation and approach to dynamic factor model not depen-
dent on commonalities.

! An iterative solution for spectral factor model is derived in Section 5.2 using the
Expectation - Maximization algorithm. The converged maximum likelihood pa-
rameters in Section 5.2.3 that maximally inherit the commonalities are extracted
by applying the Gauss - Markov theorem.
Iterative solutions recommended by [104] and [100] were based on Fletcher-
Powell-Davidon numerical methods.

! Mild cross-correlation property of the difference between the maximally inherited
commonalities and the measured variables in Property 5.1 is obtained via Weyl’s
theorem.
In [37], a similar result is obtained via “monotone convergence theorem”.

! Wirtinger relaxations are used for maximizing log-likelihood.
Relations (5.4) - (5.6) in Section 5.1 states a well-known fact that the sample
spectral density maximizes the log-likelihood; e.g., [104] calls it the “unobservable
index model”. They are retold here using Wirtinger relaxations to emphasize
nonexistence, in the Cauchy-Riemann sense, of a non-trivial derivative of the
real-valued log-likelihood function of complex-valued variables. The relaxations
are introduced in the very familiar setting of Section 5.1 in anticipation of its use
in Section 5.2. An alternative of using the isomorphic relations of a complex-
Gaussian with that of a real-Gaussian as discussed in Section 2.5 could prove
tedious for the purposes in Section 5.2.

5.1 Analytical estimation of maximum likelihood com-
monalities

Note 5.2. Since the selected target frequency represents a subband of frequencies
near it, the realization of y corresponding to the l-th frequency sample within the
subband near the target frequency is referred to by y(ωl).

In Theorem 2.5, an asymptotic property of the discrete Fourier transform was reviewed.
It involved treating the discrete Fourier transform at a target frequency ω as a com-
plex vector random variable y whose realizations are asymptotically the discrete Fourier
transform samples y(ωl) ∈ Cr at appropriately spaced frequencies ωl near ω. It was
observed there that these samples may be thought to have been generated from a
complex Gaussian probability density

(5.1) py(y(ωl)) = π−r(det(Sy))−1 exp(−y′(ωl)(S
y)−1y(ωl)),

where Sy ∈ Cr×r is the spectral density function at frequency ω. For n such discrete
Fourier transform samples y(ωl), l = 1, . . . , n, their log-likelihood function may be
written as −rnlog(π) − nlog(det(Sy)) −

∑n
l=1 y

′(ωl)(Sy)−1y(ωl). The terms which
are independent of Sy may be discarded and the effective log-likelihood is written as

(5.2) L(Sy) = −log(det(Sy))− tr((Sy)−1Šy),
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where Šy ∈ Cr×r is the sample spectral density function as per (2.30). Note that the
inner product of two vectors is converted to the trace of their outer product.

The log-likelihood function L(Sy) is a real-valued function of complex valued vari-
ables in Sy. Hence, it is a non-analytical function and its stationary points have to
be found from its vanishing differential dL(Sy). Presenting the details of deriving the
differentials of common real-valued functions of complex-valued matrices is skipped.
A comprehensive treatment starting from the basic idea mentioned in Appendix A.1
to a full-fledged multivariate complex calculus is beyond the scope of this thesis. In-
stead, among many good references, the reader is referred to [57]. Referring to Ta-
bles II and V of [57], it is easy to verify that d log(det(Sy)) = tr((Sy)−1dSy) and
d tr((Sy)−1Šy) = −tr((Sy)−1Šy(Sy)−1dSy), and their sum may be written as

dL(Sy) = −tr(((Sy)−1 − (Sy)−1Šy(Sy)−1)dSy).

Based on this differential and from the trace form of the differentials in Table III of
[57],

(5.3)
∂

∂Sy
L(Sy) = −(Sy)−1 + (Sy)−1Šy(Sy)−1.

As mentioned in Appendix A.1, the stationary points of L(Sy) occur wherever dL(Sy)
vanishes. Since (Sy)−1 = 0 is prohibited for the existence of Sy, the maximum likeli-
hood solution is

(5.4) Ŝy = Šy

wherever ∂
∂Sy L(S

y) = 0. Now substitute (4.12) in the maximum likelihood solution for
Sy in (5.4); it follows that

(5.5) Sv + Sz = Šy,

where the check denotes the sample estimate of the spectral density function. Based
on (4.11) the maximum likelihood estimates may be further rewritten as

(5.6) WW∗ + Sz = Šy.

Since maximum likelihood solution for the parameters W and Sz have to be gleaned
from just one relation in (5.6), there will not be any unique solution.

In order to find the parameters that maximize the commonalities of y amongst the
maximum likelihood parameters W and Sz of (5.6), further restrictions on the quality
of the solutions will have to be imposed. Recall that Definition 4.1 of the commonalities
led the formulation of (4.19) which meant v will inherit the covariation in y maximally
according to relation (4.18).

However, note that the trivial solution that the diagonal matrix Sz(ω) = 0 ∀ω ∈
[−π,π] and Šy(ω) = Sv(ω) is forbidden because rank(Šy) = r $= rank(Sv) = q.

Parameters due to commonalities

Note that the function to be minimized in (4.19) is nonnegative for every ω in the
integral in (4.18). Hence, ‖Šy(ω)−Sv(ω)‖2F may be minimized for each ω individually
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and specifying the variable ω may be dropped for brevity. Therefore, the maximum
commonalities maximum likelihood solution should solve

W̃ = argmin
W

‖Šy − Sv‖2F ,

rank(Sv) = q < rank(Šy) = r.
(5.7)

Recall that according to Theorem 3.1, for the eigenvalue decomposition

(5.8) Šy = Udiag(λ1, · · · ,λr)U
∗,

where U = [u1 · · · ur] is unitary and λ1 ≥ λr > 0 are the eigenvalues of Šy, the best
q rank approximation in the Frobenius norm sense is

(5.9) S̃v = [u1 · · · uq] diag(λ1, · · · ,λq) [u1 · · · uq]∗.

Then it is straightforward to observe that for Sv = WW∗ in (4.11), a possible
decomposition for the optimal W is

(5.10) W̃ = [u1 · · · uq] diag(
√

λ1, · · · ,
√

λq).

Comparing the result (5.10) with that of classical principal components analysis [88],
it can be seen that columns of W̃ are seeking directions in which the sample measured
variances are maximally retained.

Properties of non-commonalities

Note at this juncture from (5.5) that

(5.11) tr(S̃v) =
q∑

i=1

λi,

which enables

(5.12) tr(S̃z) = tr(Šy)− tr(S̃v) =
r∑

i=q+1

λi.

For the following lemma, refer Chapter 1 §4.4 of [116]:

Theorem 5.1. (Weyl’s theorem) For A,B,C ∈ Cr×r whose eigenvalues are a1 ≥
· · · ≥ ar, b1 ≥ · · · ≥ br, and c1 ≥ · · · ≥ cr, respectively, if A = B + C, then
bi + c1 ≥ ai ≥ bi + cr.

Let Šy, S̃v, S̃z correspond to A,B,C, respectively, in Theorem 5.1. Recall that the
least r − q eigenvalues of S̃v are equal to zero. Then, it follows that any S̃z satisfying
(5.12) may be chosen such that

tr(S̃v) > c1 ≥ (r − q)−1tr(S̃z) ≥ cr > 0.(5.13)
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This inequality establishes the following property for z while preserving the Frobenius
norm criterion for the inheritance of commonalities defined through 5.7.

Property 5.1. The variables forming the non-commonalities {zt} of the dynamic
factor model in (4.2) may be ‘mildly cross-correlated’ as per (5.12) and (5.13).

Property 5.1 suggests that z need not be strictly idiosyncratic.

Suppose the discrete Fourier transform components D = {y(ωl)}, l = 1, . . . n
within a subband as per Algorithm 1 are obtained. The solution proposed in Algorithm
3 provides the analytical solution of the spectral factor model within a subband.

Algorithm 3: Analytical solution for the spectral factor
model in a subband

Input: D = {y(ωl)}, l = 1, . . . n

Output: W̃
estimate Ŝy using (5.4) and (2.30);
compute pairs (λk, uk) ∀k = 1, . . . , r using (5.8);
estimate W̃ as in (5.10);

5.2 Iterative estimation of maximum likelihood com-
monalities

In Section 3.6, an iterative solution for the parameters of the classical factor model of
(3.11) was developed. Based on the EM algorithm presented therein, in this section,
an iterative procedure for the estimation of the maximum likelihood parameters which
is also enforced to maximally inherit the measured commonalities will be developed.
Such a motivation to do so is due to the similarity of the relations of the classical
factor model in (3.11) and the spectral factor model (4.15). This similarity is obvious
if it is supposed that the parameters of the factor model are θ ! {W,Sz} and that
the random vectors y and z at a target frequency realize y and z at nearby frequencies
according to Theorem 2.5.

Note 5.3. As in the previous section, the realization of y corresponding to the
l-th frequency sample within the subband near the target frequency is denoted by
y(ωl). In addition, in this section, Syi and Wi are used to refer to the i-th iterative
estimate of the spectral density function Sy and the transformation matrix W at
the target frequency, respectively.

As in Section 3.6, first notice that the spectral factor model equivalent of (3.39) is

(5.14) py|x,θ(y | x, θ) = NC(y | Wx,Sz).

Let a dataset D render the discrete Fourier transform samples y(ωl), l = 1, . . . , n
at frequencies within the subband represented by the random vector y. At the target
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frequency under consideration, the likelihood of D to correspond to the spectral factor
model is

(5.15) py|x,θ(D | x, θ) =
n∏

l=1

py|x,θ(y(ωl) | x, θ).

Now, in line with (3.41), (3.43), and (3.42), the direct extension of the estimation of
the spectral factor model parameters in the i-th iteration of the EM algorithm gives:

(5.16) θ̂i+1 = argmax
θi

Ex|y,θ
[
logep

y|x,θ(D | x, θi)
]

and for

θi ! {Wi,S
z
i},

θ̂i+1 = argmax
θi

Ex|y,θ[f(θi, x)],

f(θi, x) !
n∑

l=1

logeNC(y(ωl) | Wix,S
z
i ).

Expanding f(θi, x) will lead to terms in x and xx∗. So, as with (3.46), first define

〈x〉i,l ! Ex|y,θ[x | y(ωl), θi],

〈xx∗〉i,l ! Ex|y,θ[xx∗ | y(ωl), θi].
(5.17)

Note that 〈x〉i,l ∈ Cq and 〈xx∗〉i,l ∈ Cq×q; whereas their estimation will define the
E-step of the EM-algorithm. Then, as in (3.51), it may be written that

Wi+1 = arg
Wi

(
∂

∂Wi
Ex|y,θ[f(θi, x)] = 0

)
.(5.18)

Similarly, as in (3.53),

Szi+1 = arg
Szi

(
∂

∂Szi
Ex|y,θ[f(θi, x)] = 0

)
.(5.19)

These optimizations complete the M-step of the EM-algorithm.

Hence, starting from initial guesses, the i-th iteration alternates between:

1. Expectation-step Evaluate 〈x〉i,l and 〈xx∗〉i,l using (5.17), and

2. Maximization-step Update Wi+1 using (5.18) and Szi+1 using (5.19).

It is clear that the EM algorithm leads to non-unique maximum likelihood solutions
depending on the starting conditions.
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5.2.1 EM steps and form of the maximum likelihood parameters

As in the previous sections, note that ωl corresponds to the l-th frequency sample
within the subband near the target frequency. Also, Syi and Wi refer to the i-th
iterative estimate of the spectral density function Sy and the transformation matrix W
at the target frequency, respectively.

In this section, the solutions encountered in the two steps of the algorithm will
be analyzed and the usability of an iterative solution in lieu of or complementing an
analytical solution assessed. In doing so, the derivations due to Section 3.6 will be of
sufficient aid and will be the main reference.

First, note from Appendix B.3 and relations (3.48) and (3.49) that the E-step of
the EM algorithm is simply

〈x〉i,l = ΩiW
∗
i (S

z
i )

−1y(ωl)(5.20)

Ωi = (Iq +W∗
i (S

z
i )

−1Wi)
−1,(5.21)

〈xx∗〉i,l = 〈x〉i,l〈x〉∗i,l +Ωi,(5.22)

where the inverse of Ωi ∈ Cq×q, in general, exists. For evaluating Wi+1 according to
(5.18), first write

Ex|y,θ[f(θi, x)] =
n∑

l=1

Ex|y,θ[loge(NC(y(ωl) | Wix,S
z
i ))]

= −n loge(|Szi |)

−
n∑

l=1

tr((Szi )
−1Wi〈xx∗〉i,lW∗

i ) + y∗(ωl)(S
z
i )

−1y(ωl)

− 2)(y∗(ωl)(S
z
i )

−1Wi〈x〉i,l),

(5.23)

where eliminated are terms independent of Wi or Szi . The reader is referred to [57] to
verify using Wirtinger relaxations that

(5.24)
∂

∂Wi
Ex|y,θ[f(θi, x)] = (Szi )

−1
n∑

l=1

(Wi〈xx∗〉′i,l − y(ωl)〈x〉′i,l).

Then, due to (5.18),

(5.25) Wi+1 =

( n∑

l=1

y(ωl)(〈x〉i,l)∗
)( n∑

l=1

〈xx∗〉i,l
)−1

.

Just as in Section 3.7.2, let

(5.26) vi(ωl) ! Wi+1〈x〉i,l.

For Szi = diag(sz1i , . . . , szri ) it can easily be seen that

Ex|y,θ[f(θi, x)] = −n
r∑

k=1

[loge(s
zk
i ) +

1

szki
bzki ](5.27)
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where

(5.28) bzki =
1

n

n∑

l=1

|yk(ωl)− vki(ωl)|2.

Note that Szi is a real-valued diagonal matrix and the derivative with respect to it is
straightforward. Then ∂Ex|y,θ[f(θi, x)]/∂s

zk
i = 0 at

szki+1 = bzki ,

Szi+1 = diag(sz1i+1, · · · , s
zr
i+1).

(5.29)

The relations (5.25) and (5.29) stand for the M-step of the EM algorithm for the
maximum likelihood parameters of the spectral factor model.

5.2.2 EM algorithm for spectral factor model

The following pseudocode of the EM algorithm for the maximum likelihood spectral
factor model may now be provided; this is in line with Algorithm 2 in Section 3.7.2.
In Algorithm 2, the input was the dataset D of iid data samples; whereas here it
is assumed that D is a set of discrete Fourier transform components near a target
frequency as recommended by the asymptotic requirements of Theorem 2.5.

Algorithm 4: EM algorithm for the spectral factor model
in a subband

Input: D = {y(ωl)}, l = 1, . . . n

Output: Ŵ, Ŝz = diag(ŝz1 , . . . , ŝzr)
initialize i = 0;
randomize Wi,Szi ;
do

E-step:
for l = 1 ton do

compute
〈x〉i,l using (5.20);
〈xx∗〉i,l using (5.22);

end
M-step: update

Wi+1 using (5.25);
szki+1 ∀k = 1, . . . , r using (5.29);

i ←− i+ 1;
ε ←− Ex|y,θ[f(θi, x)]− Ex|y,θ[f(θi−1, x)] using (5.23);

while ε > 10−8 and i < 20 ;
Ŵ ←− Wi, ŝzk ←− szki ∀k = 1, . . . , r;

Suppose the discrete Fourier transform components D = {y(ωl)}, l = 1, . . . n
within a subband are obtained as per Algorithm 1. Algorithm 4 demonstrates how the
E and M steps may be alternated, starting with a random initialization of the parame-
ters corresponding to a target frequency, to output the converged parameters Ŵ and
Ŝz of the spectral factor model.
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Note 5.4. For EM algorithm in Algorithm 4 converging towards a local maximum
of the log-likelihood is possible, converged parameters θ corresponding to the largest
Ex|y,θ[f(θ, x)] from a number of random restarts will be chosen.

5.2.3 Maximizing commonalities in spectral factor model

Note 5.5. In this section, it is assumed that the EM steps have converged. There-
fore, for notational brevity, any indexing of the iteration is dropped and the updated
parameters will be denoted by θ ! {Ŵ, Ŝz}. As in the previous sections, ωl corre-
sponds to the l-th frequency sample within the subband near the target frequency.

As seen, at the end of the iterations of a converged EM algorithm, access is available
to the estimate of the transformed factor to get

v(ωl) = Ŵx(ωl)

corresponding to the l-th realization y(ωl) ∀l ∈ 1, . . . , n, where

(5.30) x(ωl) = Ex|y,θ[x | y(ωl), θ]

as in (5.17) and computed in (5.20). Thus, in the context of (4.15),

(5.31) y(ωl) = Ŵx(ωl) + z(ωl) ∀l = 1, . . . , n

where z(ωl) is the error in regressing x(ωl) towards y(ωl). The regression errors are due
to zero mean isotropic Gaussian vector random variable z; this is not the assumption
but the result of Theorem 2.5.

Now it shall be seen why the same situation as in the linear model of Section 3.2
persists. From the form of (4.18) for inheritance by Sv of the commonalities of Sy, it is
clear that ‖Sy(ω) − Sv(ω)‖2F may be minimized for each ω individually. Then, (4.19)
implies that the optimal Sz is given by S̃z ! argmin

Sz
g = argmin

Sz
tr(Sz), or for each of

the diagonal elements szk of Sz

(5.32) s̃zk ! min(szk) ∀k = 1, . . . , r.

But szk is the variance of the zero mean Gaussian error in approximating yk(ωl) using
vk(ωl). Hence, a minimum variance unbiased regression of x(ωl) towards y(ωl) is
sought using v(ωl) = Wx(ωl).

As seen, maximizing the commonalities upon convergence of the EM algorithm
requires an efficient estimator of W. Therefore, if the Gauss-Markov solution of (3.8)
is used, the efficient estimator got is

(5.33) W̃ = [y(ω1) · · · y(ωn)]X
∗ (XX∗)−1 ,
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where, using x(ωl) referred to in (5.30 ) and computed via (5.20), the q × n matrix
X = [x(ω1) · · ·x(ωn)] having rank(X) = q is a maximum likelihood ‘latent data
matrix.’ And, as per (3.9), an unbiased estimate of Sz is

S̃z = diag(s̃z1 , . . . , s̃zr),

s̃zk =
1

n− q

n∑

l=1

|yk(ωl)− ṽk(ωl)|2, k = 1, . . . , r,

ṽ(ωl) = W̃x(ωl),

(5.34)

where x(ωl) referred to in (5.30 ) is computed via (5.20). It is important to un-
derstand that although the EM algorithm gives the maximum likelihood solution, the
maximization of the commonalities was achieved through (5.33).

Suppose the discrete Fourier transform components D = {y(ωl)}, l = 1, . . . n
within a subband as per Algorithm 1 are obtained. Then, as per Algorithm 5, the
procedure for estimating the maximum commonalities spectral factor model parameters
utilizing the EM algorithm developed in Algorithm 4 could be compiled.

Algorithm 5: Maximum commonalities spectral factor
model via EM algorithm

Input: D = {y(ωl)}, l = 1, . . . n

Output: W̃, S̃z

estimate {Ŵ, Ŝz} with input D to Algorithm 4;
compute x(ωl) as in (5.30);
estimate W̃ using (5.33);
estimate S̃z using (5.34);

5.3 Summary

The form of the spectral factor model in (4.15) is similar to the classical factor model
in (3.11). In this chapter, as reviewed for the classical factor model in Chapter 3,
two approaches for maximum likelihood estimation of the spectral factor model were
developed and within each of them the commonality maximization parameters were
found:

In the analytical approach put forth, the sample spectral density function computed
from the discrete Fourier transform samples of a measured vector random process
near a target frequency is the maximum likelihood spectral density function of the
process. The maximum likelihood maximum commonalities solution provided by (5.10)
is similar in interpretation to the low-rank approximation of the classical factor model
solution and (5.13) provides the leverage to choose idiosyncrasies the way the user
wants without destroying the rank stringencies of the transformation matrix. The
commonality maximizing maximum likelihood transformation was found to direct the
latent spectra along the principal components of the measured spectra. This analytical
solution was presented in Algorithm 3.

Again, as with the classical factor model, Algorithm 4 was designed to estimate the
maximum likelihood spectral factor model in an iterative fashion. The parameters of
the model thus estimated were improved in (5.33) and (5.34) by treating the maximum

73



likelihood transformation of the a posteriori mean of the latent variables of the spectral
model as a regression towards the measured spectral components. This enabled the
transformed latent spectra to maximally inherit the commonalities of the measured
spectra through the Gauss-Markov theorem.
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