Chapter 4

Dynamic and spectral factor
models

Recall the linear model y = Wx + z of (3.7). The intention there was to linearly
relate the set of r-variate independent samples {y;}, { = 1,...,n, which are thought to
be realizations of a vector random variable y to the corresponding set of g-variate
samples {x;}, 1 =1,...,n. However, both {z;} and {y;} were measured and available
in a given dataset.

Now, contrast the linear model with the factor model y = Wx + z of (3.11),
where x is a g-variate hidden or latent vector random variable while y is an r-variate
measured vector random variable.

The noticeable similarities between the linear model and the factor model are as-
sumptions that r > ¢, transformation matrix W is non-random, and z is an r-variate
vector random variable with uncorrelated components.

In this chapter, the assumption of Chapter 2 that a sequence of vector random
variables {y;} are temporally correlated is underpinned. Thence, based on the moti-
vations presented in Chapter 1, existence of a g-variate time series {x;} which gets
transformed by a non-stochastic matrix {1;} to obtain an r-variate time series {y;}
Vt € Z is assumed. The objective of this chapter is to define such a model and enable
it for learning problems.

In Section 4.1, the time-domain definition of the dynamic factor model and the
commonalities it represents are defined. In doing so, the assumptions made with
respect to the model are emphasized and the relations between the parameters of the
model, viz., the acvfs of the measured, latent, and idiosyncratic time series are
analyzed. Then, the dynamic factor model is defined.

In Section 4.2, the analysis is switched to Fourier-domain: Frequency-domain
counterparts of the measured, latent, and idiosyncratic time series are defined and the
frequency-domain equivalent of the dynamic factor model called the spectral factor
model is defined.

The following situates the developments in this chapter with respect to the state-
of-the-art:

> Definition 4.2 and Definition 4.3 define the dynamic and spectral factor models,
respectively.
These definitions include all model assumptions and the model objectives. In
[100, 104, 43, 36], both time and frequency domain analyses are called “dynamic
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factor model”; for convenience, “spectral factor model” is a term introduced here
to emphasize the frequency-domain analysis. The properties and assumptions
of interacting linear processes of the model used here are standard practice in
literature.

> Definition 4.1 introduces commonalities; relations (4.9) and (4.18) state the cri-
terion for inheriting them from the measured variables.
Unlike in the existing literature, cross-correlations are emphasized in the defini-
tions here of dynamic and spectral factor models through the concept of com-
monalities. Also, the existing literature does not specifically relate the dynamic
transformation to the commonalities nor its maximal inheritance as defined here.

4.1 Dynamic factor model

A multivariate time series model is to be designed where a g-variate latent time
series {x;} is transformed by a sequence of r x ¢ non-stochastic transformation
matrices {W;} to a measured r-variate time series {y;}, where » > ¢. Only those
actions of W; in transforming x; to y; that is intuitively appealing, theoretically valid,
practically feasible, and analytically sound will be allowed. In the simplest of forms,
such a time series model may be written as y; = f(Wy,x) +z;, where f is some linear
function of {W;} and {x;} Vt € Z, where {z;} is a vector random variable independent
of {x;} that offers itself as the error in the transformation.

It is also to be ensured that the transformation will take advantage of the frequency-
based techniques discussed in Chapter 2. In that case, existence of the spectral
density function of f(W;,x;) is a necessity. As discussed in Section 2.4, for a
weakly stationary vector random variable sequence {x;}, the Fourier transform of
any linear relation f(W;,x;) between W; and x; does not exist for no guarantee of
Y ez [ f (Wi x¢)| < oo could be made. But as long as the acvf of f(W;,x;) exists and
that acvf is absolutely summable as in (2.20), techniques of Fourier transform could
be pushed.

Take a look at one of the simplest linear operations for f(W;,x;) £ v;, which is an
r-variate vector random obtained when W; is convolved with x;, i.e., Vt € Z,

(41) V¢ = ZWth_j.

JET

If both {W;} and the acvf {I'}}Vh € Z of x; are absolutely summable, then v,
according to (4.1) exists; refer Theorem 2.7.1 of [18] for this result. Let r-variate
linear processes {y:}, {v:}, and {z;} be related according to

(4.2) Yt = Vi + Zg.

Further, if v; and z; are independent, then they have their acvfs related as
(4.3) Iy =T} +T%,

where Vh € Z is the lag parameter of the acvfs. It is further assumed that

(4.4) rank(I'}) = r.
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Thus, the measured r-variate vector random variable y; is assumed to be obtained
by adding two independent r-variate vector random variables v; and z;. And, v; is a
dynamic transformation of a latent g-variate vector random variable x; as per (4.1).

Recall that Chapter 1 hoped to dynamically transform a latent vector random
variable of known or presumed characteristics and that the dynamic transformation is
the one that is unknown. The similarity between the form of dynamic transformation
in (4.1) and the form of linear process defined in Definition 2.11 is evident. This
similarity entices to assume that {x;} is a g-variate zero mean white noise and that

(4.5) Y Wi <o Ve
t

It will deliver a {v;} that is a linear process resulting from a linear transformation
of {x;} by the sequence of parameters {W;}. Further, to simplify the analysis, it is
assumed that {x;} is a unit variance white noise process, i.e.,

(4.6) x =1, Yhel.

Such an assumption is admissible because it is not intended to estimate I'} anyway.
Then, referring back again to Definition 2.11, it is easy to see that

(4.7) L= WiW] Vhez,
JEL

and

(4.8) rank(I'}) = ¢.

The objective is to enable {v;} to maximally inherit the commonalities in the mea-
sured time series {y;}. And, in Chapter 1, commonalities of the measured time series
{y+} were regarded to be the temporal covariations of the r measured components of
vt = [y1, Y2, --- ¥r)- A good measure of the commonalities should be the expected
value of a suitable function combining the r random variables, e.g., their mean product.
Now, the following definition is arrived at:

Definition 4.1. For a weakly stationary time series {y;}, the commonalities are
the off-diagonal elements of its acvf T’} .

Appropriateness of Definition 4.1: Cross-covariances describe all the mutual char-
acteristics of the components of a zero-mean multivariate time series linear process.
The pairwise commonality between any two components y;, and y;, are the off-diagonal
elements of the acvf T} of the measured time series {y;}.

In Chapter 1, it was envisaged to estimate parameters of a model that will maxi-
mize the measured commonalities. Earlier in this section, the role of measured cross-
covariances as a suitable measure of the commonalities was confirmed. As a result,
the commonalities are retained in the cross-covariance terms of I'} upon a dynamic
transformation of {y;} to {v;} as discussed earlier in this section using {W,}. the
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proposed measure for the inheritance of the commonalities of I'} using I'}, is the sum
of square differences of the covariances across all measured dimensions and lags, i.e.,

(4.9) g=y_IT; - T}%.
heZ

Appropriateness of g: These reason the choice of the quality of approximation of
the commonalities:

1. Since I’} — I'}, is positive definite and T’} is of lower rank than positive definite
Iy, trace of T}, will also be lower than I'}, i.e., the unique variance terms of T}
will be also affected and has to approximated in a low-rank sense.

2. It has a direct equivalence in the frequency domain; this is through relation
(4.18).

3. It provides the properties of the residual process y; —v; easily; this is due to (5.7)
enabling (5.12) and (5.13).

4. lts analytical conveniences and properties are well-known; refer [84].

The optimal parameters using the measure in (4.9), with reference to (4.7) and (4.3),
are given by

(4.10) Wt,fz = argmin g.
Wt,l‘z

Since orthogonal rotations of W;V;j € Z lead to same I'} Vh € Z in (4.7), there is no
unique solution to the minimization problem (4.10).

Note 4.1. In this thesis, the choice of the latent dimensionality q is made arbitrarily.
No theoretical effort is spent towards the important problem of determining an
optimal q. In the experiments, however, performance of the dynamic factor model
across q will be evaluated. Asymptotic properties of the dynamic factors in the
latent space with respect to larger measured number of samples and dimensionality
is available in [37].

The dynamic model defined by (4.1) - (4.8) implies that the measured vector ran-
dom variable y; is an addition of an independent linear process to another linear process
formed by the dynamic transformation of a lower dimensional unit variance white noise.
Apart from the time series aspect of the measured variables, the dynamic model bears
much resemblance to the factor model: In (3.11), a latent vector random variable is
transformed to an unobserved higher dimensional vector random variable which is per-
turbed by independent noise resulting in the measured vector random variable. This
similarity invites the following definition:

Definition 4.2. Let a g-variate latent zero mean unit variance white noise {x;}
be dynamically transformed by non-stochastic {W;} to an r-variate linear process
{vi}. Suppose an independent r-variate linear process {z;} is added to {v;} to
obtain an r-variate weakly stationary measured time series {y;}. Such a vector
time series model which satisfies the conditions (4.1) - (4.8) and solves (4.10) is
called a dynamic factor model.
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Model assumptions: Recall the original list of model assumptions in Section 1.2.
With the dynamic factor model as per Definition 4.2, they may be concretely restated
as follows:

1. the measured time series is a linear process,

2. the measured time series is a dynamic transformation of a zero-mean unit variance
white noise of a dimensionality lower than that of the measured time series,

3. the acvf of the dynamically transformed process is a low rank approximation in
a Frobenius norm sense of the measured acvf,

4. the residual time series is a linear process independent of the latent time series
and has finite unique variances.

4.2 Spectral factor model

The objective of the dynamic factor model is to estimate the optimal parameters
that maximize the commonalities of the measured time series {y;} inherited by the
unobserved time series {v;}. However, what stands out is the concern regarding how
to perform such a maximization that adheres to the transformation of I'Y to W, as per
(4.7).

Motivation for a Fourier-domain approach: It is clear from (4.7) that T is
the correlation of the sequence {W;} in the time domain. According to the autocor-
relation theorem of Fourier transform, which is also known as the Wiener-Khinchin-
Einstein theorem, the autocorrelation of a function and power spectrum of that function
are Fourier transform pairs; refer §10.1.1 in [77]. Then, Vh € Z, —% <w< %

(4.11) bl SV (w) = W(w)WH (),

where W, <2 W (w) refers to the discrete time Fourier transform as per Definition
2.15 and SY(w) is the spectral density function of v whose (i, j)-th matrix element is

sVivi(w) Vh € Z,—% <w< % Note that applying the definition of the Fourier

transform to the relation (4.3) gives
(4.12) S (w) = SY(w) + S*(w).
It is further assumed that
(4.13) rank(S*(w)) = r.
Also, it emerges from Property 2.7 that |SY(w)| = [W(w)W*(w)| # 0 Vw €
3.1l e
11
(4.14) IW(w)| #0 Vwe [—5, 5]

For a finite 7-length realization of the process, combining (4.1) and (4.2) gives y; =
> j=1 Wjzt_j + z. As per Definition 2.17, the discrete Fourier transform of these
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realizations are y(wy,) = W (wg)x(wi) + z(wy), at frequencies —1 < wy, < 1, k =
1,...,7.

To proceed, recall Theorem 2.5 where the spectral density function S¥(w;) becomes
the covariance matrix of the complex Gaussian distribution of the discrete Fourier
transform components sufficiently close to w; so that

(4.15) y(w;) = W(w;)x(w;) + z(wj),

are complex Gaussian vector random variables {x(w;), y(w;),z(w;)}. Then, x(w;) be-
comes a vector random variable whose complex Gaussian distribution has a covariance
matrix

(4.16) S*(wj) = 1.
Note that the equivalent for (4.8) is
(4.17) rank(S¥(w)) = ¢.

Note that the form in (4.15) is very much reminiscent of the factor model, where
x(w;) is a latent factor of known Fourier characteristics transformed by a non-stochastic
W (w;) perturbed by independent vector random variable z(w;). Hence, the motivation
for pursuing a Fourier domain approach for the solution of the dynamic factor model
is the possibility that classical factor model methods as reviewed in Chapter 3 might
be availed to solve for W; in (4.1).

Dynamic factor model equivalent in the Fourier-domain: Armed with a Gaus-
sian probability distribution for the measured discrete Fourier transform y(w;), the
maximum likelihood estimation for the factor modeling should follow naturally. In that
pursuit, the hope is to attain a relation connecting the maximum likelihood spectral
density function S¥(w;), S*(w;), and SY(w;). Certainly, their inverse Fourier transform
should yield their unique acvfs of T'Y, T'%, and I'}, respectively, which are also of in-
terest.

However, some estimate of the parameters of the interest is not satisfactory because
the objective is to find those that will maximize the commonalities. Next, applying
Theorem 2.1, the sum in (4.9) may be written as

(4.18) g= / 8 (w) — §(w)2 d.

N

Thereafter, in line with the arguments for (4.10), it could be deduced that the optimal
parameters in the Fourier domain are

(4.19) W (w),S*(w) := argmin g.
W (w),5#(w)

Since orthogonal rotations of W(w) lead to same SY(w) in (4.11), there is no unique
solution to the minimization problem in (4.19).

Due to the Fourier domain similarities of the dynamic factor model with the clas-
sical factor model, the following definition arrives:
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Definition 4.3. Let a g-variate latent zero mean unit variance discrete Fourier
transform vector random variable x(w;) be transformed by non-stochastic W (w;)
to an r-variate zero mean discrete Fourier transform vector random variable v(wj).
Suppose an r-variate discrete Fourier transform vector random variable z(w;) that
is independent of x(w;) is added to v(w;) resulting in an r-variate measured vector
random variable y(w;). Such a vector discrete Fourier transform model which
satisfies the conditions (4.11) - (4.17) and solves (4.19) is called a spectral factor
model.

Model assumptions: Recall the list of model assumptions in Section 1.2 and
subsequent to Definition 4.2. With the spectral factor model as per Definition 4.3,
they may be restated as follows:

1. the measured discrete Fourier transform components (‘spectra’) are asymptoti-
cally Gaussian within small subbands,

2. the measured spectra are transformations of a zero-mean unit variance Gaussian
spectra of lower dimensionality,

3. the spectral density function of the transformed spectra is a low rank approxi-
mation in a Frobenius norm sense of the measured spectra,

4. the residual spectra is a Gaussian independent of the latent spectra and has finite
unique variances.

Basic goal of the spectral factor model: The dynamic and spectral factor models
and the accompanying problem of maximization of the commonalities of a measured
multivariate time series were defined in this chapter. The maximum commonalities
transformation matrix is the best approximation, in a Frobenius norm sense, using a
lower number of variables of the cross-covariances of the measured time series. Since
there exist problems, as the examples in Section 1.2 show, where commonalities will aid
learning, the goal is to adapt the transformation matrix for classification and prediction
problems. This will be done by deriving the required parameters of the spectral factor
model in Chapter 5 using the principle of maximum likelihood fostered by the constraint
of maximum commonalities. Classification and prediction algorithms will be developed
in Chapter 6.

4.3 Summary

In this chapter, the dynamic factor model and the spectral factor model were intro-
duced. Conceptually, the dynamic and spectral factor models transform a latent vector
random process by maximally inheriting the measured commonalities. It was discussed
why the cross-covariances could be called as commonalities. A criterion based on
approximating the acvfs in a Frobenius norm sense such that it will correspond to
maximizing the commonalities was formulated. It was claimed that the inheritance of
the commonalities of a vector random process by another increases if the Frobenius
norm of the difference between their autocovariance functions across all lags decreases;
an equivalent criterion for the spectral density function was also formulated. It was
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assessed how the spectral factor model for measured discrete Fourier transform com-
ponents in a ‘small’ bandwidth resembles the classical factor model.

The impediments of complex-valued parametric estimation should be overcame to ex-
tend the classical factor model estimation techniques reviewed in Chapter 3 to maximize
the commonalities of the spectral factor model.

62



