
Chapter 3

Analytical and iterative factor
modeling

Modeling a process which generated a given multivariate time series dataset for the
purpose of learning motivates this thesis. In Chapter 2, the essential time series analysis
tools that are needed in the modeling were presented; whereas in this chapter the
elements of building the model itself will be discussed. Models with parameters that
could be tuned to fit the statistical characteristics of the dataset at hand will be chosen;
this tuning is called parametric estimation. It may be seen as a limitation because it
warrants assumptions on the type of the data generation process involved. However,
essential precautions will be taken by modeling on a dataset that is representative
enough of the process. Moreover, in order to avoid any overfitting, learning methods
which caution when wide deviations from the assumptions on the model and data are
detected will be used.

The treatment of this chapter from the rest of the thesis has one main difference;
here, any temporal correlation of the data samples in the given dataset is ignored. Yet,
later on in the thesis, the parametric modeling techniques presented herein with the
time series techniques of Chapter 2 will be utilized to achieve the thesis objectives.

In Section 3.1, a well-founded modeling strategy based on the principle of max-
imum likelihood will be introduced [96]. The principle assumes that the data has
been generated by a known class of probability distributions whose parameters are to
be estimated such that the likelihood of observing the data is maximized.

In Section 3.2, the concept of a linear model whose parameters are linear combina-
tions of the data samples will be introduced. The derivation of the optimal parameters
will be summarized by the Gauss-Markov theorem. The ideas of unbiased and
efficient parameters defined there are desirable properties for any parametric model.

In Section 3.3, the factor model is presented. While the linear model of Section
3.2 utilizes some measured variables of the dataset to explain themselves or other
measured variables, the factor model is remarkably different. The latter assumes ex-
istence of a fewer number of unmeasured latent variables responsible for generating
all measured variables of a given dataset. The transformation from latent variables to
measured variables is assumed to be non-random but unknown; this transformation will
account for the covariations in the data. However, in the measured data, there will be
deviations unexplained by such a generative model. Those deviations will be assumed
unique to each of the measured variables and the variables that absorb these unique
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deviations will be called unique factors. This characteristic of the factor model is
actually facilitated by imposing a diagonal structure on the covariance matrix of the
unique factors; whereas the latent variables are transformed such that they absorb the
common variation of the measured variables. The transformed latent variables are,
hence, called common factors.

Note that the parameters of the factor model are (i) transformation matrix of
the latent variables to the measured variables and (ii) variances of the unique fac-
tors. The principle of maximum likelihood cannot yield these two sets of parameters
independently. By assuming knowledge or guessing one of them, an estimate for the
other parameter could be found.

In Section 3.4.1, the principal factor model first estimates the covariance ma-
trix of the unique factors in order to estimate the transformation matrix; the reverse
procedure is followed in principal component factor model of Section 3.4.2.

In Section 3.5, the Expectation - Maximization (EM) algorithm for maximum
likelihood estimation of the factor model will be first narrated in an original manner. It
is an iterative scheme established by [33]. The expression for complete log-likelihood
of the measured variables as well as the latent variables are written out. However, its
analytical tediousness in direct maximization is realized. This is overcome by probing
its lower bound. It turns out that the local maximum of the lower bound is attained
whenever the complete log-likelihood converges to the log-likelihood of the measured
variables. Hence, starting with a set of guessed parameters, iteratively maximizing
the complete log-likelihood converges towards the standard log-likelihood. Writing the
lower bound of the complete log-likelihood scheme in an a posteriori expectation format
and maximizing it for the optimal parameters is the crux of the EM algorithm.

In Sections 3.6 and 3.7, the scheme for using the EM algorithm for iteratively
estimating factor model parameters is presented; it is partly along the lines of [14]. In
doing so, the expression for the log-likelihood in the complete log-likelihood form is
first written out; the latter is conducive for use with the algorithm. In the E-step of
the algorithm presented in Section 3.7.1, the a posteriori mean and covariance of the
latent variables are derived. In the M-step of Section 3.7.2, a posteriori expectation
format of the log-likelihood is maximized; the parameters of the factor model, viz.,
transformation matrix of the common factors and covariance matrix of the unique
factors, are thereby estimated.

3.1 Maximum likelihood model

This section starts by presenting some notions and usages that will help in explaining
the characteristics of the data to be modeled. The primary assumption is that the
data is a collection of samples of some relevant variables measured in an experiment;
this collection will be denoted by D and will be called simply the dataset. Let D be
constituted by n data samples written in the sequence D = {yl}, l = 1, . . . , n and yl
be called the l-th sample.

In this chapter, unlike in Chapter 2, any sequential dependence of the value or
occurrence of a data sample on next or any other sample is ignored. So there is no
need to sort the data samples based on the time of data acquisition or any other
criteria. But an index to identify the samples individually may be used.

Let the samples in D be realizations of the sequence yl of random variables. Let pyl
denote density functions of their respective probability distributions. Throughout this
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chapter, it is assumed that the samples encompassing D adhere to the characteristic
defined below [108]:

Definition 3.1. A dataset {yl}, l = 1, . . . , n due to its respective random variables
yl is said to be independently and identically distributed or iid if its joint
probability density function is

∏n
l=1 p

y(yl), where y is a random variable such that
py(yl) = pyl(yl) ∀l = 1, . . . , n.

Based on Definition 3.1, D is interpreted as n realizations of a random variable y whose
probability density function is py. Therefore, any realization y of y has a corresponding
probability density py(y). Extending py(y) based on Definition 3.1 to D leads to the
joint probability density of the dataset, which is simply denoted by py(D), and is given
by

(3.1) py(D) !
n∏

l=1

py(yl).

In order to maintain simplicity for the model which generated D, a set of parameters
θ will be introduced for the model. In the context of Definition 3.1, θ refers to the
set of parameters of the probability density function of y. However, θ is unknown and
has to be estimated. In this setup, py|θ(D | θ) will be termed as the likelihood of the
dataset whilst the parameters θ are available. Note that the distribution is over y and
the likelihood is a function of non-random θ.

At a set of parameters θ, due to (3.1), the likelihood of the dataset D consisting
of iid samples yl, l = 1, . . . , n factorizes as

(3.2) py|θ(D | θ) =
n∏

l=1

py|θ(yl | θ).

In order to find an appropriate model for a given dataset, the intention is to utilize the

following statistical methodology [96].

Definition 3.2. According to the principle of maximum likelihood, an optimal
set of parameters θ̂ for the model corresponding to a dataset D is the set of
parameters θ for which the likelihood of D is maximized, i.e.,

(3.3) θ̂ = argmax
θ

py|θ(D | θ).

A modification to (3.3) is made now: Since probability density is a non-negative func-
tion, the logarithm of the likelihood is maximized to arrive at the same solution for the
optimal parameters as per Definition 3.2. Such an analysis of the exponential family
of probability density functions will lead to substantial simplification [96]. Hence, (3.3)
may be rewritten equivalently as

θ̂ = argmax
θ

L(θ),(3.4)

where

L(θ) = loge py|θ(D | θ).(3.5)
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3.2 Linear model

In Section 3.1, an appropriate estimate θ̂ of θ is considered as parameter for a model
given the dataset D. It is assumed that θ is a non-random quantity. Now consider the
estimator Θ of θ, i.e., Θ is a random variable. It is hoped that Θ gives a reasonably
good estimate of the true set of parameters θ given D. Denoting mean of Θ by µΘ

and variance by γΘ, the following properties indicate the quality of Θ; refer §4.4 of
[70] and §10.3 of [94]:

Property 3.1. An estimator Θ of θ is unbiased if µΘ = θ.

Property 3.2. An estimator Θ of θ is efficient if Θ = argmin
Θ̃∈C

γΘ̃, where C is the

class of all unbiased estimators of θ.

A modeling strategy in Section 3.1 with a dataset constituted by iid samples was
considered. Another popular parametric modeling paradigm called linear model in-
volves treating a set of r-variate iid samples y1, . . . , yn as dependent on a set of
q-variate iid samples x1, . . . , xn, where n > q. The simplest of linear models regresses
xl towards yl ∀l = 1, . . . , n through the relation

(3.6) yl = Wxl + zl,

where W ∈ Rr×q is a linear function of xl ∈ Rq and zl ∈ Rr is the error in the
regression [119, 109]. The model parameters θ discussed above refer to W here.
Suppose the modeling errors zl are realizations of the vector random variable z, then
the measurements yl may also be treated as realizations of the vector random variable
y. The linear model may then be effectively written as

(3.7) y = Wx+ z,

for any x ∈ Rq. By restricting the quality of the regression error z, the following
theorem defines a popular linear model; for details one may refer to §6.2.1 of [62],
§7.1 of [38] or §8.1 of [51] among plenty of references in the literature: Suppose each
realization yl ∈ Rr of the vector random variable y is related to xl ∈ Rq, l = 1, . . . , n
through (3.6) or (3.7) where zl are due to zero mean uncorrelated Gaussian vector
random variable z. According to the Gauss-Markov theorem, an efficient estimator of
W is given by

(3.8) Ŵ = [y1 · · · yn]X ′
(
XX ′

)−1
,

where X = (x1 · · · xn) ∈ Rq×n has rank(X) = q. Then, the error estimate for the l-th
sample becomes ẑl = (ẑ1l · · · ẑrl)′ = yl− Ŵxl ∀l = 1, . . . , n. The unbiased estimator
of the covariance matrix Γz = diag(γz1 , . . . , γzr) of z is given by

γzk =
1

n− q

n∑

l=1

ẑ2kl ∀k = 1, . . . , r.(3.9)
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3.3 Factor model

The linear model reviewed in Section 3.2 could be seen as the q-variables of the iid
samples xl, l = 1, . . . , n together explaining the r-variables of each and every iid
sample yl, where both these sets of measured variables are available as part of the
dataset D. Suppose yl and xl , l = 1, . . . , n are treated to be due to vector random
variables y and x, respectively, so that y is the result of the transformation W x, where
W ∈ Rr×q. Then, the challenge is to explain y when x is unavailable or inaccessible
in D. One way to proceed is by assuming latent existence of the q-dimensional vector
random variable x in generating the r-dimensional vector random variable y. In that
context, y is named the set of measured variables and x the latent variables.
It is wished to pursue here a parametric model by involving the probability density
function; this will help extract the statistical characteristics of the dataset in a finite
number of parameters. Hence, if the probability density function of x is assumed
known in the transformation y = W x, then W serves as the parameter that needs to
be estimated from the measured y.
However, the model y = W x is very restrictive because it assumes that any randomness
in y is due to x whose characteristics are assumed. The model is relaxed by introducing
an r-dimensional random variable z uncorrelated with x and designated to absorb all
deviations in y that cannot be retained by

(3.10) v ! W x.

Thus, the measured variables y are split into the common factors v = W x and unique
factors z; the following is such a model [80]:

Definition 3.3. A factor model is defined as

(3.11) y = W x+ z,

where y and z are r-dimensional vector random variables, x is a q-dimensional vector
random variable, W ∈ Rr×q is a non-random transformation matrix, and

(3.12) µx = 0, µy = 0, µz = 0,

(3.13) Γx = Iq,

(3.14) Γz is diagonal, and

(3.15) Γx,z = 0.

Given a dataset of realizations of y, the parameters of the factor model that need to
be estimated are W and the covariance matrix Γz of z. The factor model, in contrast
to the linear model of (3.6), does not observe any realizations of x.
The following essential result for the moments of a function of a vector random vari-
able is summarily provided; refer Chapter 6 of [35]: For v = W x, µv = Wµx and
Γv = WΓxW ′. Therefore, applying (3.13) gives

(3.16) Γv = WW ′.
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In the factor model, the condition (3.15) of zero correlation between x and z is crucial.
Naturally, it leads to Γv,z = 0. Therefore, taking the second-order moments on both
sides of (3.11) gives

(3.17) Γy = Γv + Γz = WW ′ + Γz.

Due to (3.14), the r components of z are uncorrelated, or, all cross-covariances between
the r components of y are inherited by only the covariance matrix Γv = WW ′ of
v = W x and not by Γz. This can be seen as each component of z inheriting only a part
of the variance unique to its corresponding component in y. Hence, the components
of z are called the unique factors. Since no part of the covariance of y common to
all its components are held by z but instead by the transformation v = W x, v is called
the common factors.
Note that in the factor model, the rq elements of W and r diagonal elements of Γz

are to be estimated. Since (3.17) is just one equation with two unknowns, i.e., W and
Γz, it cannot be solved uniquely; more conditions and assumptions may be placed to
restrict possible solutions.

3.4 Maximum likelihood factor model

Well-known is the following assumption towards a proper solution of the factor model
parameters, e.g., refer §3.5 of [62]: The measured variables follow a Gaussian distribu-
tion with parameters θ = {µy,Γy}, i.e.,

py|θ(y | θ) = N (y | µy,Γy),(3.18)

as defined in (2.26).
Given samples yl , l = 1, . . . , n of the measured variables y, the principle of

maximum likelihood as per Definition 3.2 could be used to estimate an optimal set
of parameters according to (3.4). The maximum likelihood parameters µ̂y and Γ̂y of
the mean and covariance matrix of the Gaussian distribution in (3.18) are the sample
mean and sample covariance matrix, respectively, i.e.,

µ̂y =
1

n

n∑

l=1

yl,(3.19)

Γ̂y =
1

n

n∑

l=1

(yl − µ̂y)(yl − µ̂y)′.(3.20)

Then (3.20) may be substituted in (3.17) to get

(3.21) Γ̂y = WW ′ + Γz.

However, it gives no clue regarding the maximum likelihood W and Γz, which are the
parameters of interest to the factor model. In what follows, two relevant methods which
derive appropriate solutions on the basis of the general maximum likelihood solution
are briefly presented.
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3.4.1 Principal factor model

One of the approaches to finding possible solutions to the maximum likelihood factor
model of the r-dimensional measured variables y using q-dimensional common factors
x and r-dimensional unique factors z as per Definition 3.3 starts with a good guess Γ̂z

of Γz. The approach is called the principal factor model. One may refer to §10.2 of
[54] or §6.3 of [46] to know how this guess could be made reliable; the details which
are unnecessary for the objective of the present discussion are skipped. Substituting
Γ̂z in (3.21) gives

(3.22) Γ̂y = WW ′ + Γ̂z.

The problem then is to estimate a W such that WW ′ = Γ̂y − Γ̂z subject to some
quality criterion. Suppose columns u1, . . . , ur of U ∈ Rr×r are the eigenvectors of
Γ̂y − Γ̂z whose corresponding eigenvalues d21 ≥ · · · ≥ d2r > 0 constitute the diagonal
elements of a diagonal matrix D2 from top-left to bottom-right. If the eigenvalue-
eigenvector decomposition of WW ′ = UD2U ′ and the subscript 1 : q is used to refer
the first q column indices of a matrix, then the optimal transformation matrix of the
principal factor model is

(3.23) Ŵ = U1:qD1:q.

If necessary, the estimation between Γ̂z and Ŵ may alternate iteratively.

3.4.2 Principal component factor model

Another approach, for which [103] is referred to, involves first estimating W and then
the covariance matrix Γz of the unique factors. In order to estimate Γv and W , first, it
has to be reminded that WW ′ is of rank q. Second, note that the relation (3.21) may
be thought as WW ′ approximating the variance-covariance of the measured variables
y as contained in Γy. There could be infinitely many ways WW ′ could approximate Γy

and an approximation with respect to the Frobenius norm ‖Γ̂y−Γv‖F seems reasonable
and standard practice; refer §10.2 of [54] and and §2.12 of [103]. In that context, the
following theorem is used; refer Lecture 5 of [120]:

Theorem 3.1. For full rank matrix A ∈ Cr×r with eigenvectors u1, . . . , ur whose
corresponding eigenvalues are α1 ≥ · · · ≥ αr, matrix Ã ∈ Cr×r with rank(Ã) =
q < r defined as

(3.24) Ã = [u1 . . . uq] diag(α1, . . . ,αq) [u1 . . . uq]
∗

is such that

(3.25) ‖A− Ã‖F = inf
B∈Cr×r

rank(B)=q

‖A−B‖F = αq+1.

Due to Theorem 3.1, the optimal approximation of Γy using WW ′ in the Frobenius
norm sense is declared as ŴŴ ′ = E1:qΛ2

1:qE
′
1:q, where columns of E are eigenvectors

of Γ̂y whose corresponding eigenvalues in decreasing order form the diagonal of Λ2.
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Therefore, if the subscript 1 : q to refer to the first q column indices of a matrix, the
estimate of W sought is given by

(3.26) Ŵ = E1:qΛ1:q.

Since Γz ought to be diagonal due to uncorrelated z, taking into account (3.21), an
approximate solution for Γz is

(3.27) Γ̂z ≈ d̃iag(Γ̂y − Ŵ Ŵ ′),

where d̃iag refers to setting the off-diagonal elements to zero.

3.5 EM algorithm

Now a presentation of the Expectation-Maximization (EM) algorithm is attempted; as
stated in the introduction of this chapter, it is a popular iterative method for maximum
likelihood estimation.

Note 3.1. In this section, x is assumed a discrete and univariate random variable;
this is to avoid any unnecessary analytical complications otherwise leading to equiv-
alent conclusions. E.g. the summation over x has to be replaced by an integration
for continuous x. And, a summation or integration across all dimensions of x is to
be applied had x been a vector random variable.

Note the following lemma (refer §4.5 of [49]):

Lemma 3.1. If a random variable x is marginalized from its joint distribution px,y

with the random variable y, the result is the distribution of y, i.e.,

(3.28) py(y) =
∑

x

px,y(x, y).

The definition of log-likelihood in (3.5) may be rewritten through Lemma 3.1 as

(3.29) L(θ) = loge
∑

x

py,x|θ(D, x | θ);

the maximization of this expression for the log-likelihood is intractable due to the
summation inside the logarithm. In order to evade this situation, a dummy function
η(x) such that

(3.30)
∑

x

η(x) = 1; η(x) > 0

is introduced and the complete log-likelihood

(3.31) L(θ, η) = loge
∑

x

η(x)
py,x|θ(D, x | θ)

η(x)
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is formed. The purpose in introducing η(x) is to seek possibilities to maximize L(θ, η)
in lieu of L(θ). In that pursuit, as shown in Section B.1.1, the logarithm may be
brought inside the summation, i.e.,

(3.32) L(θ, η) ≥
∑

x

η(x)loge
py,x|θ(D, x | θ)

η(x)
.

Referring to Section B.1.2, it is possible to decompose the complete log-likelihood as

(3.33) L(θ, η) ≥ L(θ) + K(θ, η),

where

K(θ, η) =
∑

x

η(x)loge
px|y,Θ(x | D, θ)

η(x)
.(3.34)

Now think of two iterative steps:

Step 1 − Find optimal η for a fixed θ: For a particular θ = θi, let η̂i = argmax
η

L(θi, η). Since local increase of L(θ, η) is guaranteed by locally maximizing its
global lower bound L(θ) +K(θ, η), η̂i = argmax

η
K(θi, η); one may refer [87] for

more details. By differentiating (3.34) with respect to η(x), it may be found
that

(3.35) η̂i = px|y,Θ(x | D, θi).

However, K(θi, η̂i) = 0 whereby

(3.36) L(θi, η̂i) = L(θi).

Note that for a Gaussian density for y, the conditional probability for η̂i in (3.35)
is tractable.

Step 2 − Find optimal θ for a fixed η: Having found the locally optimal η for
a fixed θ, the locally optimal θ for a fixed η = η̂i is pursued. Based on (3.33)
and (3.36), it may be written that

(3.37) θi+1 = argmax
θ

L(θ, η̂i)

Note that (3.36) ensures that likelihood L(θi) is approached in every i-th iteration
whenever L(θi, η̂i) is maximized to obtain the i + 1-th estimate θi+1; in other words,
the iterations converge to a local maximum of L(θi).

E and M steps

The two steps arrived at above are now compiled. Suppose there is an initial guess θ0
of θ. Then a local maximization of likelihood may be performed such that, in the i-th
iteration, where i = 1, 2, . . ., has the two steps:
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Step 1: estimate η̂i based on θi, and

Step 2: locally maximize the likelihood to obtain θi+1.

These steps of an iteration become explicit if we note as shown in Section B.1.3 that

θi+1 = argmax
θi

Ex|y,θ
[
logep

y,x|θ(D, x | θi)
]
.(3.38)

Hence, the i-th iteration involves:

Step 1 (Expectation): Evaluating the expectation Ex|y,θ
[
logep

y,x|θ(D, x | θi)
]
,

and

Step 2 (Maximization): Maximizing Ex|y,θ
[
logep

y,x|θ(D, x | θi)
]

locally with
respect to θi.

3.6 Basic setup of EM algorithm for factor modeling

The difference between the linear model and the factor model is obvious and wide.
While access to the samples xn and yn in (3.6) of the linear model is available, x in
(3.11) is assumed inaccessible in the factor model. Hence, for the factor model, the
conditional distribution py|x of y given x is of interest.
Firstly, using the properties of the conditional distribution, e.g. refer §8 in Chapter 1
of [110], it could easily be shown for the factor model that Ey|x[y|x] = W x + Ez|x[z]
= W x because z is independent of x and has zero mean.
Secondly, the conditional variance Γy|x is Ey|x[yy′|x] −(Ey|x[y|x]) (Ey|x[y|x])′. On ex-
pansion based on (3.11), Γy|x = Ey|x [(W x + z)(W x + z)′|x] −(W x)(W x)′. Upon
term-by-term expansion, due to the independence of z and x and since Ez[z] = 0, the
only surviving term will be Ez|x[zz′ | x], which becomes Ez[zz′] = Γz.
It is also well-known that the distribution of a Gaussian random vector conditioned
on another is itself Gaussian; one may refer of §4.8 of [48] or Theorem 3.10.1 of [15]
among many methods to verify it. Therefore, the Gaussian probability density of y | x
with parameters θ = {W,Γz} for the factor model may be written as

(3.39) py|x,θ(y | x, θ) = N (y | W x,Γz).

Note that θ in py|x,θ refers to the availability of the set of parameters; the distribution
is conditioned only on x. Based on the discussions in Section 3.1, the conditional
probability density py|x,θ underpins the likelihood of the factor model. As with (3.1),
the dataset D is considered to consist of the iid samples yl, l = 1, . . . , n of y. The
likelihood of the dataset is

(3.40) py|x,θ(D | x, θ) =
n∏

l=1

py|x,θ(yl | x, θ).

Using Theorem B.1 known as Bayes theorem, py,x|θ(D, x | θ) = py|x,θ(D | x, θ)px(x).
If it is assumed that the distribution px(x) to be independent of θ, then (3.38) of the
EM-algorithm reduces to iteratively solving

(3.41) θi+1 = argmax
θi

Ex|y,θ
[
logep

y|x,θ(D | x, θi)
]
.
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From the above three equations, it may be written that

θi+1 = argmax
θi

Ex|y,θ[f(θi, x)],(3.42)

f(θi, x) = logep
y|x,θ(D | x, θi)

=
n∑

l=1

logeN (yl | Wix,Γ
z
i ),

(3.43)

where the parameters

(3.44) θi ! {Wi,Γ
z
i}

correspond to the ith iteration.

3.7 Two steps of EM algorithm for factor modeling

In light of the discussion in Section 3.5 and the parameter update equations of (3.42), it
may be stated that the i-th iteration of the factor model estimation alternates between:

1. Expectation-step Evaluate the expectation Ex|y,θ
[
f(θi, x)

]
, and

2. Maximization-step Update θi+1 ← θi by maximizing Ex|y,θ
[
f(θi, x)

]
with re-

spect to θi.

To proceed note that in (3.43) that f(θi, x) = −n loge(det(Γ
z
i ))−

∑n
l=1M(yl,Wix,Γz

i ),
where for any compatible vectors a, b and matrix C

(3.45) M(a, b, C) = (a− b)′C−1(a− b),

whose expansion gives M(yl,Wix,Γz
i ) = y′l(Γ

z
i )

−1yl− 2y′l(Γ
z
i )

−1Wix+ tr((Γz
i )

−1Wixx
′W ′

i ).
Note the presence of terms with random variables x and xx′ in M(yl,Wix,Γz

i ). There-
fore, the EM algorithm, as a result of this expansion of M(yl,Wix,Γz

i ), will involve
alternating between:

1. Expectation-step Evaluate, for l = 1, . . . , n,

〈x〉i,l ! Ex|y,θ[x | yl, θi],

〈xx′〉i,l ! Ex|y,θ[xx′ | yl, θi],
(3.46)

where 〈x〉i,l ∈ Rq and 〈xx′〉i,l ∈ Rq×q, and

2. Maximization-step Update θi+1 ← θi by maximizing f(θi, x) with respect to
θi, where x and xx′ are replaced by their corresponding a posteriori estimates,
i.e., in (3.43)

x ⇐= 〈x〉i,l
xx′ ⇐= 〈xx′〉i,l.

(3.47)

The following analysis between (3.48) and (3.52) is inspired by [14].
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3.7.1 E-step

Note that 〈x〉i,l is the mean of the Gaussian distribution px|y,θ(x | yl, θi), which is
evaluated in Appendix B.2 to be

〈x〉i,l = ΩiW
′
i (Γ

z
i )

−1yl,

Ωi = (Iq +W ′
i (Γ

z
i )

−1Wi)
−1,

(3.48)

where Ωi ∈ Rq×q. From the classical relation of mean and covariance of any distri-
bution, it is known that 〈xx′〉i,l is the sum of 〈x〉i,l〈x′〉i,l and covariance of x | yl, θi,
i.e.,

(3.49) 〈xx′〉i,l = 〈x〉i,l〈x′〉i,l + Ωi.

This completes the E-step of the EM Algorithm.

3.7.2 M-step

Towards the M-step of the EM algorithm, the substitutions in (3.47) give

Ex|y,θ[f(θi, x)] = −n loge(det(Γ
z
i ))−

n∑

l=1

tr((Γz
i )

−1Wi〈xx′〉i,lW ′
i )

− 2y′l(Γ
z
i )

−1Wi〈x〉i,l + y′l(Γ
z
i )

−1yl.

(3.50)

Now Ex|y,θ[f(θi, x)] may be maximized to update the parameters Wi and Γz
i :

Update Wi : The problem that has to be solved is

Wi+1 = argmax
Wi

Ex|y,θ[f(θi, x)]

= arg
Wi

(
∂

∂Wi
Ex|y,θ[f(θi, x)] = 0

)
.

(3.51)

It is easy to see using matrix differentiation rules, e.g., refer [98], that

∂

∂Wi
Ex|y,θ[f(θi, x)] = −

n∑

l=1

2(Γz
i )

−1Wi〈xx′〉i,l − 2(Γz
i )

−1yl〈x′〉i,l,

which when equated to zero gives

Wi+1 =

( n∑

l=1

yl〈x′〉i,l
)( n∑

l=1

〈xx′〉i,l
)−1

.(3.52)

Update Γz
i : The access to the updated Wi+1 is available and if

vi,l = Wi+1〈x〉i,l,
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then Ex|y,θ[f(θi, x)] = −n loge(det(Γ
z
i )) −

∑n
l=1M(yl, vi,l,Γz

i ). Now, consider
the update

Γz
i+1 = arg

Wi

(
∂

∂Wi
Ex|y,θ[f(θi, x)] = 0

)
.(3.53)

For Γz
i = diag(γz1i , . . . , γzri ) it can be seen that

Ex|y,θ[f(θi, x)] = −n
r∑

k=1

[loge(γ
zk
i ) +

1

γzki
azki ]

where

azki =
1

n

n∑

l=1

(yl − vi,l)
2.

Then, ∂Ex|y,θ[f(θi, x)]/∂γ
zk
i = 0 at

(3.54) γzki+1 = azki .

Factor model estimation via EM algorithm

Given the dataset, in Algorithm 2, the results of the analysis of the iterative parametric
estimation of the factor model using the EM algorithm are summarized.

Algorithm 2: EM algorithm for the factor model
Input: D = {yl}, l = 1, . . . n

Output: Ŵ , Γ̂z = diag(γ̂z1 , . . . , γ̂zr)
initialize i = 0;
initialize randomly Wi,Γz

i ;
do

E-step:
for l = 1 to n do

compute
〈x〉i,l using (3.48);
〈xx′〉i,l using (3.49);

end
M-step: update

Wi+1 using (3.52);
γzki+1 ∀k = 1, . . . , r using (3.54);

i ←− i+ 1;
ε←− Ex|y,θ[f(θi, x)]− Ex|y,θ[f(θi−1, x)] using (3.50);

while ε > 10−8 and i < 20 ;
Ŵ ←− Wi, γ̂zk ←− γzki ∀k = 1, . . . , r;

A major drawback of the EM algorithm is the possibility that the estimation might
get trapped in a local maximum of the log-likelihood and hence might require random
restarts or other heuristic measures to be more certain regarding the estimates.
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3.8 Summary

Two possibilities of modeling an r-dimensional measured vector random variable y
were considered, viz., (i) the linear model where a measured variable x ∈ Rq, q < r is
transformed to y and (ii) the factor model where a latent q-variate random variable
x is transformed to y. Essentially, a factor model transforms a latent vector random
variable of known probability distribution to a measured vector random variable of
higher dimensionality that is perturbed by independent and uncorrelated noise. For the
linear model, an efficient estimator of the transformation matrix was presented; whereas
for the factor model there is no unique transformation. However, by restricting the
variances unique to each of the measured variable, it is possible to estimate meaningful
transformations. Thus, from a parametric modeling perspective, the transformation
matrix and the unique variances are the parameters of the factor model.
In order to estimate the factor model parameters, two approaches based on the principle
of maximum likelihood were discussed: The analytical estimation approach involves
approximating the covariance structure of the measured variables using that of the
transformed variables. For the iterative approach based on the EM algorithm, the log-
likelihood function being lower bound by the a posteriori expectation of the logarithm
of the joint probability density of the measured variables and the latent variables was
exploited. Starting from guesses of the parameters, the EM algorithm maximizes the
complete log-likelihood function of the latent variables and the measured variables by
iteratively converging to the log-likelihood with every update of the parameters.
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