
Chapter 2

Multivariate time series
analysis: Some essential
notions

An overview of a modeling and learning framework for multivariate time series was
presented in Chapter 1. In this chapter, some notions on multivariate time series
analysis in time and frequency domains are succinctly introduced; tools and conventions
used herein are essential to appreciate the contributions later in the thesis. Although
they are widely available in textbooks, they have been adapted appropriately to suit
this thesis.

In Section 2.1, a multivariate time series model and the concept of weak sta-
tionarity are formally defined; only those time series that are weakly stationary are
considered throughout this thesis. Weak stationarity requires defining the autocovari-
ance function of a time series. Autocovariance characteristics of a few relevant types
of stationary multivariate time series are presented.

In Section 2.2, frequency or spectral domain concepts belonging to Fourier analysis
are introduced. The motion of a simple pendulum is used as an example to motivate
the presentation of Fourier series; this is subsequently extended to the Fourier trans-
form. Clearly, this example to introduce Fourier analysis is a detour to a continuous
time process; but it will enhance understanding of spectral domain tools, notations,
and definitions.

In Section 2.3, the discrete time process is introduced as a limiting case of contin-
uous time processes; this leads to discrete time Fourier transform. Discrete time
Fourier transform gives a periodic and continuous spectrum and it underpins impor-
tant developments in subsequent sections. There, discrete Fourier transform of a
discrete time process is also discussed.

In Section 2.4, after having defined time and spectral domain characteristics of
a deterministic process, spectral analysis of stationary time series is presented. The
two most important ideas that need to be taken from this chapter are presented next:
First, the relation between autocovariance function and spectral density function
is simply that of a Fourier transform. Second, the probability distribution of discrete
Fourier transform components of a linear process is complex-Gaussian within small
subbands of frequencies. The first idea is a direct application of Fourier analysis
derived in earlier sections. For the second idea, the asymptotic theory of spectral
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estimates is involved. In Section 2.5, therefore, the asymptotic probability distribution
function of discrete Fourier transform components is provided without proof.

2.1 Temporal analysis of stationary processes

In this section, an introductory review of the time-domain or temporal analysis of
time series is performed. It starts by adapting some definitions from the literature of
random processes [29, 68, 86, 47]; the presented definitions might be termed differently
by various authors elsewhere in the literature.

An infinite sequence of random variables forms a random process. Then, a vector
random process is defined as an infinite sequence of vector random variables that is a
set of random variables maintaining the same order of the vector components in every
realization.

Definition 2.1. A (multivariate) time series of a (vector) random process is a
connected subsequence formed by its constituent (vector) random variables.

A time series is called so because the index of the sequence is often attributed to time
instants. If yt is the random variable at time instant t ∈ Z of a random process of
interest, then {yt}, t = 1, . . . , τ shall be called a τ -length realization of a time series
whose t-th sample is yt. An r-dimensional vector random process generates an infinite
sequence {yt} of r-dimensional vector random variables yt = [y1t · · · yrt ]′, where yit ,
i = 1, . . . , r are the component random variables at time instant t ∈ Z. Figure 2.1
selects a realization of a τ -length r-variate time series whose t-th sample is the vector
yt ∈ Rr.

It may now be implied that when referring to the term ‘process’ in Chapter 1 in a
broad sense, it meant the vector random process underlying a multivariate time series.
On similar lines, the term ‘model’ there referred to the joint probability distribution
function of the samples of the time series; this is because it is a set of random variables
that is dealt with. Then, the model of a process corresponding to a τ -length r-
variate time series requires evaluating the τ×r-dimensional joint probability distribution
function P(y1 ≤ c1, . . ., yτ ≤ cτ ) for any constant vector ct ∈ Rr, t = 1, . . . , τ ,
where P denotes probability and the comparison of vectors are component-wise. Of
course, direct evaluation of such a probability distribution is very unwieldy. Therefore,
restricting the scope of the studies and bringing forth assumptions to simplify the
process is inevitable for modeling a process generating a multivariate time series.

Let a few useful terms associated with random variables be first defined [95].

Definition 2.2. The probability density function pu of a random variable u is
defined as pu(a) = d

daP(u ≤ a) ∀a ∈ R, wherever the derivative exists.

In the above definition, pu(a) is any positive finite real number wherever the derivative
does not exist. Then the joint probability density function pu1,...,ur of r random vari-
ables u1, . . . , ur may be given by pu1,...,ur (a1, . . . , ar) = ∂rP(u1 ≤ a1, . . . , ur ≤ ar)
/∂a1 · · · ∂ar ∀a = [a1 · · · ar]′ ∈ Rr and pu1,...,ur(a1, . . . , ar) is any positive finite
real number wherever the derivative does not exist.
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Figure 2.1: The second sample y2 of a realization of a τ -length r-variate time series {yt} is
highlighted.

Definition 2.3. The multivariate probability density function pu of an r-
dimensional vector random variable u = [u1 · · · ur]′ is defined as the joint
probability density function of its r component random variables, i.e., pu(a) =
pu1,...,ur(a1, . . . , ar) ∀a = [a1 · · · ar]′ ∈ Rr.

Definition 2.4. For an r-dimensional vector random variable u whose probability
density function pu(b) exists ∀b ∈ Rr, the expectation of a function g(u) with
respect to pu is defined as Eu[g(u)] =

∫∞

−∞
· · ·

∫∞

−∞
g(b) pu(b) db.

Definition 2.5. The mean µu ∈ Rr of an r-dimensional vector random variable u
is defined as its expectation with respect to its r-variate probability density function,
i.e., µu = Eu[u].
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Definition 2.6. The variance (covariance matrix) Γu of the (r- dimensional
vector) random variable u is defined as the expectation, with respect to its (mul-
tivariate) probability density function pu, of the (outer) product of the (vector)
random variable with itself about its mean µu, i.e., Γu = Eu [(u− µu) (u− µu)′].

Definition 2.7. The cross-covariance Γu,v between the (vector) random variables
u and v is defined as the expectation, with respect to their joint (multivariate)
probability density function pu,v, of the (outer) product of the random variables
about their respective means µu and µv, i.e., Γu,v = Eu,v [(u− µu) (v − µv)′].

Definition 2.8. The cross-covariance between any two constituent (vector) ran-
dom variables of the same (vector) random process is called the autocovariance
function between the (vector) random variables.

Therefore, the autocovariance function (acvf) between the r- dimensional vector ran-
dom variables yt and ys ∀t, s ∈ Z is

(2.1) Γyt,ys = Eyt,ys [(yt − µyt)(ys − µys)′].

Note 2.1. When it specifically concerns a univariate time series {yt} and not a
multivariate time series, its acvf will be denoted by γyt,ys . Then, for a multivariate
time series {yt} = {[y1t y2t · · · yrt ]′}, the (i, j)-th element of its acvf Γyt,ys may
be written as γyit ,yjs , which according to Definition 2.7, may be interpreted as the
cross-covariance between yit and yjs ∀i, j ∈ 1, . . . , r and ∀t, s ∈ Z.

Definition 2.9. A (vector) time series {yt} ∀t ∈ Z is weakly stationary if the
mean µyt is a constant (vector) µy and its acvf Γyt,ys between the (vector) random
variables yt and ys ∀s ∈ Z depends on s and t only through s− t.

The variable h = s− t of the acvf Γyt,ys
h will be referred to as the lag. It follows from

Definition 2.9 that the acvf between yt+h and yt of a weakly stationary time series
{yt} is

(2.2) Γy
h ! Γyt+h,yt = Eyt+h,yt [(yt+h − µy)(yt − µy)′] ∀h ∈ Z.

It is easy to verify that γyi,yjh = γ
yj ,yi
−h , which gives rise to the following property of the

acvf :

Property 2.1. A weakly stationary acvf is transpose symmetric about h = 0, i.e.,

(2.3) (Γy
h)

′ = Γy
−h.

In this thesis, the focus is on time series that are weakly stationary and the main
references on that topic are [102, 99, 111, 19, 20]. Now, take a look at a few examples
of weakly stationary multivariate time series.

28



Property 2.2. A weakly stationary r-variate time series {zt} is idiosyncratic if any
two components zit and zjt+h

∀h ∈ Z, i &= j of its corresponding vector random

variable zt = [z1t · · · zrt ] ∀t ∈ Z have zero cross-covariance, i.e., γzit ,zjt+h !

γ
zi,zj
h ∈ R is zero whenever i &= j ∀i, j ∈ 1, . . . , r and h ∈ Z.

Note 2.2. The diagonal elements of an acvf Γu of the vector random variable
ut = [u1t u2t · · · urt ]′ will be written simply as γuih ! γui,uih ∀i ∈ 1, . . . , r.

The acvf of an r-variate idiosyncratic time series {zt} due to vector random variable
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h = 0γz2,z1

h = 0

γzr,z1
h = 0 γzr,z2

h = 0

h

h

h

Figure 2.2: The structure of the r×r acvf matrix Γz
h

of an r-variate idiosyncratic time series
{zt} shows zeros off-diagonal due to no cross-correlation between its components.
The plots are hypothetical and interpolated for, an otherwise discrete h, for clarity.

zt = [z1t . . . zrt ]
′ has an r × r matrix structure shown in Figure 2.2. Following Note

2.2, the cross-covariance γ
zi,zj
h of Property 2.2 may be written as the acvf γzih of zi

whenever i = j, whereas γzi,zjh = 0 is zero otherwise. This means that the off-diagonal
elements of such an acvf are always zero. Let a special case of an idiosyncratic time
series whose each diagonal element of the acvf is an impulse function be now defined.

Definition 2.10. For a weakly stationary (vector) time series {xt}, if (the compo-
nents of) xt are independently and identically distributed ∀t ∈ Z, then {xt} is said
to be (multivariate) white noise.

Note that the acvf Γx
h of a q-variate white noise {xt} is Γx

h = 0q ∀h &= 0 and
det(Γx

0) &= 0. Definition 2.10 implies that mean-subtracted white noise components
may be defined completely by their component variances σ2

ih
= σ2

i ∀i = 1, . . . , q

so that Γx
h = diag(σ2

1 , . . . , σ
2
q ) ∀h ∈ Z, which is said to be isotropic if σi = σ,
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i = 1, 2, . . . , q. A special case of the zero-mean isotropic white noise is the following:
If the component random variables of a q-variate white noise {xt} have zero means
and unit variances so that Γx

h = diag(1, . . . , 1) ∈ Rq×q ∀h ∈ Z, then {xt} is termed
a zero-mean unit-variance white noise. The white noise is used as the ingredient
in many weakly stationary time series process models because of the simplicity of its
acvf . Defined below is one such model; refer §11.1 of [20] or §9.2 of [79] among many
references for its details.

Definition 2.11. For a q-variate zero-mean white noise {xt} ∀t ∈ Z and matrices
Cj ∈ Rq×q ∀j ∈ Z with absolutely summable elements, a linear process is defined
as the q-variate time series

(2.4) ut =
∑

j∈Z

Cjxt−j ,

which is weakly stationary with zero mean and acvf

(2.5) Γu
h =

∑

j∈Z

Cj+hΓ
x
0C

′
j .

2.2 Spectral analysis of continuous processes

The purpose of this section is to introduce certain Fourier analysis concepts required
for this thesis.

Note 2.3. This section deviates momentarily to discuss continuous time processes;
the time index is t ∈ R; everywhere else in this thesis t ∈ Z.

Consider the motion of a simple pendulum as an example of a periodic continuous
process. It is assumed for simplicity that the mass of the string attached to the bob
of the pendulum is negligible. The oscillation is restricted to a plane so that the
constant string length and an angle, viz., the instantaneous angle that the string forms
with respect to its equilibrium position, are sufficient to describe its motion. It is also
assumed that the amplitude α, which is the maximum displacement of the bob from
its position of equilibrium, is very small relative to the length of the pendulum. Refer
to Figure 2.3; let τ be the time period of oscillation so that τ−1 is the frequency of
oscillation. The standard association of 2π radians to be equivalent to one complete
oscillation may be made. Let φ radians be the part of 2π radians of an oscillation the
pendulum has completed at time t = 0; its sign depends on the choice of direction of
reference of the bob’s trajectory. If it is assumed that the pendulum is undamped by
any kinds of friction and disturbances, then the pendulum’s displacement with respect
to the equilibrium position of the string at time t ∈ R is yt = α cos(2π t

τ + φ). Basic
trigonometric identities enable writing yt in various combinations of sinusoids, e.g.,

(2.6) yt = a cos(2πt/τ) + b sin(2πt/τ),

where a = α cos(φ) and b = −α sin(φ).
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Figure 2.3: The motion of the simple pendulum registers a continuous function based on the
displacement of its bob.

Just seen is the decomposition of a basic equation of oscillation into two sinusoids
of frequency τ−1. Consider that yt was expressed as a weighted sum of two basis func-

tions; this is because the sinusoids here are orthogonal functions, i.e.,
∫ 1

2
τ

− 1
2
τ
cos(2πt/τ)

sin(2πt/τ) dt = 0. The necessity of orthogonal functions in many problems is anal-
ogous to the necessity of orthogonal coordinate axes in expressing the position of a
point in a Cartesian plane.

The decomposition of a time-domain process to its frequency components is known
as Fourier (spectral) analysis and the definitions presented in this and Section 2.3
on this topic can be found in references such as [99, 44, 93, 89]. Fourier analysis is
based on one of the most important contributions to the sciences originally formalized
by Joseph Fourier in 1807 that any ‘well-behaved’ deterministic continuous periodic
function yt could be expressed as a sum of orthogonal functions if and only if the or-
thogonal functions are sinusoids, where a ‘well-behaved’ function satisfies the following
condition:

Definition 2.12. A function yt ∀t ∈ R is said to be absolutely summable if

(2.7)
∫ ∞

−∞

|yt| dt < ∞.

The unique decomposition of such a deterministic periodic function yt into a possi-
bly infinite number of sinusoids is called its Fourier series representation: yt = a0

2

+
∑∞

n=1(an cos(2πnt/τ) +bn sin(2πnt/τ)), where am = 2
τ

∫ 1
2
τ

− 1
2
τ
yt cos(2mπt/τ) dt,

m = 0, 1, 2, . . . and bl =
2
τ

∫ 1
2
τ

− 1
2
τ
yt sin(2lπt/τ) dt, l = 1, 2, 3, . . .. It is often con-
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venient to use Euler identity eiθ = cos(θ) + i sin(θ) to reach the following definition
which holds for complex-valued functions also.

Definition 2.13. The Fourier series representation of a deterministic continuous
periodic function yt ∈ C ∀t ∈ R satisfying (2.7) is

(2.8) yt =
∞∑

m=−∞

cmei2πmt/τ

where cm ∈ C ∀m ∈ Z is

(2.9) cm =
1

τ

∫ 1
2
τ

− 1
2
τ
yte

−i2πmt/τdt.

Note that if cm = cm ∀m ∈ Z, then the function yt ∈ R, else yt ∈ C.
Involve frequency spacing ∆u = 2π/τ and write the Fourier series coefficients as

cm = ∆u
2π

∫ 1
2
τ

− 1
2
τ
yt e−imt∆udt. Substituting these coefficients back into the series

summation gives yt =
∑∞

m=−∞
∆u
2π

∫ 1
2
τ

− 1
2
τ
yte−int∆u dt eimt∆u. Suppose

y(n∆u) =

∫ 1
2
τ

− 1
2
τ
yte

−int∆udt,

then yt =
∑∞

m=−∞
∆u
2π y(n∆u) eimt∆u. As τ → ∞ or ∆u → 0,

yt =
1

2π

∫ ∞

u=−∞

y(u)eitudu.

This is regarded as the inverse relation of a very important transform in mathematics
that is defined below. The term y(u) in the above development is the result of limiting
∆u → 0 in y(n∆u) and acquires the following definition:

Definition 2.14. Fourier transform of a function yt ∀t ∈ R satisfying (2.7) is

(2.10) y(u) =

∫ ∞

−∞

yte
−itudt.

2.3 Spectral analysis of discrete processes

In the Fourier transform relation of (2.10), a continuous function defined for t ∈ R is
dealt with. Consider the continuous time function yt ∀t ∈ R such that yt = 0 whenever
t &= m∆τ ∀m ∈ Z for some constant ∆τ > 0. This is equivalent to sampling the
continuous function yt ∀t ∈ R at discrete instants separated by ∆τ and zero at all
other instants. Since only discrete instants are relevant here from the Fourier transform
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perspective, yt would be called a discrete time function. Therefore, the discrete time
Fourier transform using (2.10) becomes

y(u) =
∞∑

m=−∞

ym∆τe
−ium∆τ .

Denote ym ! ym∆τ and refer to it as the m-th sample. Then a sufficient condition
for the existence of such a relation is |y(u)| < ∞, i.e., |

∑∞
m=−∞ yme−ium∆τ | ≤∑∞

m=−∞ |ym| |e−ium∆τ | < ∞. This results in the absolute summability condition

(2.11)
∞∑

m=−∞

|ym| < ∞.

Using angular frequency ω as u∆τ = 2πω in the above development results in the
following definition of Fourier transform for discrete time functions.

Definition 2.15. The discrete time Fourier transform of a complex-valued dis-
crete function ym ∀m ∈ Z satisfying (2.11) is

(2.12) y(ω) =
∞∑

m=−∞

yme−i2πωm.

Although real-valued discrete functions were being discussed, the discrete time Fourier
transform is valid for complex-valued functions also. Furthermore, since ei2πk = 1∀k ∈
Z, the following property holds:

Property 2.3. The discrete time Fourier transform has unit periodicity, i.e.,

(2.13) y(ω) = y(k + ω)∀k ∈ Z.

Another easily verifiable property, which holds true for any absolutely summable dis-
crete or continuous function, is due to the following theorem; refer §22.1 of [41] or
Chapter 3 of [72]:

Theorem 2.1. According to the Plancherel-Parseval theorem for the discrete
time Fourier transform y(ω)∀ω ∈ [−1

2 ,
1
2 ] of the function ym ∀m ∈ Z,

(2.14)
∑

m∈Z

|ym|2 =
∫ 1

2

− 1
2

|y(ω)|2 dω.

Just as the discrete time Fourier transform was defined being valid for complex-valued
discrete functions, the Fourier series discussed earlier in (2.8) and (2.9) is applicable
to any complex valued periodic function defined over any continuous domain. Hence,
replacing (y,− t

τ ) → (y, ω) in (2.8) makes it equivalent to (2.12). In other words, the
discrete time Fourier transform of a sequence of equally spaced samples of a real func-
tion is also a Fourier series whose coefficients form the sequence. Therefore, allowing
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the same replacement in (2.9) gives the differential 1
τ dt → −dω and the integral limits

t = ±1
2τ → ω = ∓1

2 resulting in the following inverse of the relation in (2.12):

Definition 2.16. The inverse discrete time Fourier transform of a complex-
valued continuous function y(ω)∀ω ∈ R is defined as

(2.15) ym =

∫ 1
2

− 1
2

ei2πmωy(ω)dω.

The Fourier series gave discrete frequency components of a continuous time pro-
cess and the discrete time Fourier transform gave continuous frequency components
of a discrete time process. On the other hand, the following transform gives discrete
frequency components of a finite realization of a discrete time process:

Definition 2.17. The discrete Fourier transform of a series {yt}, t = 1, . . . , τ
is defined as

(2.16) y(ωj) =
1√
τ

τ∑

t=1

yte
−i2πωjt

at discrete frequencies ωj =
j
τ , j = 0, . . . , τ − 1 and the inverse discrete Fourier

transform at the discrete instants is defined as

(2.17) yt =
1√
τ

τ∑

t=1

y(ωj)e
i2πωjt.

The equivalent of Theorem 2.1 for the discrete Fourier transform is as follows [17]:

Property 2.4. According to the Plancherel-Parseval theorem for the discrete
Fourier transform y(ωj) of the sequence yt ∀j, t = 1, . . . , τ ,

(2.18)
τ∑

t=1

|yt|2 =
τ∑

j=1

|y(ωj)|2.

In this thesis, for a given finite length realization of a multivariate time series, certain
asymptotic properties of the discrete Fourier transform will be used to define, derive,
and optimize the dynamic transformation of the latent time series into commonalities.
These asymptotic properties will be discussed in Section 2.5. The Plancherel-Parseval
theorem will enable measuring and containing the commonalities that are retained
during the transition between the time-domain and the frequency-domain. In Section
2.4, how the frequency-domain analysis finds utility in a stationary process will be
discussed. Specifically, in Theorem 2.2, it will be learned how the Fourier transform
relates two important statistical properties of a time series.
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2.4 Spectral analysis of stationary processes

Suppose the pendulum motion expressed in (2.6) is subject to random amplitude α
and phase φ disturbances so that (a, b) become uncorrelated zero-mean unit-variance
random variables (a, b). Moreover, the discrete time domain is considered so that the
equation of motion in (2.6) takes the form yt = a cos(2πωt) + b sin(2πωt) ∀t ∈ Z;
it will be called the ‘perturbed pendulum.’ Its mean µy = Ea,b[yt] = 0. The
acvf is γyh = Ea,b[yt+hyt], which due to non-correlated a and b takes the form
γyh = Ea,b[a2 cos(2πω(t+h)) cos(2πωt)] + Ea,b[b2 sin(2πω(t+h)) sin(2πωt)] ∀h ∈ Z.
Since it was assumed that Ea[a2] = Eb[b2] = 1, what one gets1 is γyh = cos(2πωh);
spectral analysis of such an acvf could be found in [111, 19]. Since µy and γyh are in-
dependent of t, it is found that {yt} is weakly stationary. And, since weakly stationary
{yt} does not satisfy (2.11), its Fourier transform simply does not exist.
Using Euler’s identity, the acvf of the perturbed pendulum is written as a summa-
tion γyh =

∑k
i=1 αig(ωi), where g(ω) = ei2πωh, k = 2, ω1 = −ω, ω2 = ω, and

α1 = α2 = 1
2 . But such a summation with a general g(ω) has an integral repre-

sentation
∑k

i=1 αig(ωi) =
∫
g(ω) dSy(ω), where Sy(ω) !

∑k
i=1 αi 1(ωi ≤ ω) is a

monotonically increasing function bounded between Sy(−∞) = 0 and Sy(∞) = 1,
and 1(ωi ≤ ω) is the step function which jumps from zero to unity at ω = ωi.
However, due to periodicity of g(ω) = ei2πωh in the above example of a perturbed

pendulum, the acvf is essentially represented in the integral form γyh =
∫ 1

2

− 1
2

ei2πωh

dSy(ω), where Sy(ω) is a monotonically increasing function bounded between [−1
2 ,

1
2 ]

while Sy(−1
2) = 0 and Sy(12 ) = γy0. The reader is referred to [99, 20] for the details

of this representation and other properties that Sy(ω) adheres to. The notion carried
forward is that whenever the derivate sy(ω) = d

dωS
y(ω) exists, it is possible to write

the acvf as

(2.19) γyh =

∫ 1
2

− 1
2

ei2πωh sy(ω) dω.

But if there are discontinuities in Sy(ω), e.g., the perturbed pendulum, it will not be
possible to write the acvf according to (2.19) because sy(ω) does not exist.
Now refer back to (2.15) to see its analogy with (2.19) which requires that a condition

(2.20)
∞∑

h=−∞

|γyh| < ∞,

equivalent to (2.11) be satisfied by γyh. This enables the following theorem and defini-
tion; refer §4.3 of [20]:

1Using the trigonometric identity cos(θ1 − θ2) = cosθ1 cosθ2 + sinθ1 sinθ2
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Theorem 2.2. For acvf γyh of a weakly stationary time series {yt} ∀t ∈ Z satisfying
(2.20), according to Herglotz’s theorem, the spectral density function sy(ω) at
the frequency ω ∈ R exists and is defined as the discrete time Fourier transform of
its acvf, i.e.,

(2.21) sy(ω) !
∞∑

h=−∞

γyhe
−i2πωh.

In this context, it may be noted that the perturbed pendulum does not satisfy the ab-
solute sum condition because

∑∞
h=−∞ |γyh| =

∑∞
h=−∞ | cos(2πfh)| = ∞ and it does

not have a spectral density function.
In light of (2.21) and similar to Property 2.3, the following property of the spectral
density function is arrived at:

Property 2.5. The spectral density function has unit periodicity, i.e., sy(ω) =
sy(k + ω)∀k ∈ Z.

For an r-variate time series {yt} ∀t ∈ Z, where yt = [y1t · · · yrt]′, let γ
yi,yj
h be the

(i, j)-th element of its autocovariance matrix Γy
h. Referring to §1.1.2 of [102], the

condition equivalent to (2.20) for vector random variables becomes

(2.22)
∞∑

h=−∞

|γyi,yjh | < ∞,

which is valid ∀i, j ∈ 1, . . . , r in defining the matrix of spectral density function
Sy(ω) ∈ Cr×r whose (i, j)-th element is syi,yj . Then, due to the development of
Property 2.1 and the relation (2.21), the following is easily got:

Property 2.6. The spectral density function Sy(ω) is Hermitian symmetric about
ω = 0, i.e.,

(2.23) (Sy(ω))′ = Sy(−ω) = S
y
(ω).

Referring to Theorem 2.7.1 of [18], Theorem 4.4.1 of [39], and [92, 34], another im-
portant property of the r-variate time series follows:

Property 2.7. If {yt} ∀t ∈ Z is a linear process, then |Sy(ω)| &= 0 ∀ω ∈ [0, 1].

The above discussion is very relevant to the intention in this thesis to assess the com-
monalities of a multivariate time series via its spectral density function. For the purpose
of learning multivariate time series based on the commonalities, the hope is to take the
following approaches: Firstly, two multivariate time series are compared by evaluating
how similar the components of their spectral density functions are. Secondly, the fu-
ture evolution of a multivariate time series is predicted by estimating the acvf , via its
spectral density function, that inherits maximum commonalities.
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2.5 Asymptotic properties of linear processes

In practical problems, it is infeasible to have a dataset consisting of an infinite collection
of samples to compute true statistical properties such as mean, acvf , variance, etc.
Characteristics of a time series have to be estimated from a given finite length subset
of its realization. With a limited number of samples, sample estimates may be ques-
tioned for their reliability. The field of study of asymptotic statistics strives to design
properties, procedures, tests, and estimators in the limit that the sample size becomes
large [122, 58]. A broad review of the asymptotic techniques will not be resorted to;
however, presented below are the essentials for the thesis’s purposes.

Consider the scenario in which, due to computational or limited access to data, time
series characteristics have to be gleaned from one realization forming a finite length
data stream. For a weakly stationary time series, these characteristics include its mean
and acvf for which, first, the following asymptotic properties referring to §11.2 of [20]
are presented:

Theorem 2.3. For a finite τ -length realization {yt} t = 1, . . . , τ of a weakly
stationary time series {yt} t ∈ Z whose acvf Γy

h satisfies (2.22), the sample mean

(2.24) ŷ =
1

τ

τ∑

t=1

yt

converges in a mean square sense to the population mean µy.

Theorem 2.4. For a finite τ -length realization {yt} t = 1, . . . , τ of a weakly
stationary time series {yt} t ∈ Z with sample mean ŷ, the r × r sample acvf

(2.25) Γ̂y
h =

{
1
τ

∑τ−h
t=1 (yt+h − ŷ)(yt+h − ŷ)′ 0 ≤ h ≤ τ − 1,

1
τ

∑τ
t=−h+1(yt+h − ŷ)(yt+h − ŷ)′ −τ + 1 ≤ h < 0

converges in probability to the population acvf Γy
h.

With the sample acvf Γ̂y
h for finite lags, the best hope is for estimates of the spectral

density function Sy(ωk) at finite discrete frequencies ωk = k
τ ∀|k| = 0, . . . , τ − 1

via inverse discrete Fourier transform. For an otherwise continuous spectral density
function Sy(ω), 0 ≤ ω < 1, those estimates at discrete frequencies is an approximation
of Sy(ωk) dependent on how good the sample estimation Γ̂y

h is. Therefore, in what
follows, described is the asymptotic property of Sy(ω) near any target frequency ωj =
j/̂ ∀j = 0, . . . , ̂− 1, or 0 ≤ ωj < 1 and ̂ + τ .

It starts by splitting a period of ω ∈ [0, 1) of the spectral density function into ̂ non-
overlapping frequency bands. Suppose there is a total of τ = n̂ discrete frequencies
that are considered for the splitting so that each band will have n discrete frequencies.
By the 0-th frequency band represented by the target frequency ω0 = 0, implied are
n discrete frequencies ω0,l > 0, l = 1, . . . , n closest to 0. By the j-th frequency band
ωj,l ∀l = 1, . . . , n; j = 1, . . . , ̂ − 1, implied are n frequencies closest to the target
frequency ωj = j/̂ and between ωj − b and ωj + b, where 2b = n/̂ is called the
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Figure 2.4: The scheme of splitting the frequency range ω = [0, 1) into ̂ non-overlapping
subbands containing n discrete frequency components each.

bandwidth. Suppose 2b < ω1 − b < ω̂−1 + b < 1 and n + ̂ is choosen so that the
bandwidth is very low.

For proceeding further, the following definitions are needed; refer to [45]:

Definition 2.18. An r-dimensional ‘complex-valued vector random variable’
ξ = [ξ1 · · · ξr]′ = ,(ξ) + i-(ξ) ∈ Cr is defined as the 2r-variate vector random
variable η = [,(ξ1)-(ξ1) · · · ,(ξr)-(ξr)]′ ∈ R2r formed by its real and imaginary
components.

As established in [45], the covariance matrix Γξ of an r-variate complex valued vector
random variable ξ is isomorphic, i.e., equivalent upto a row and a column permutation,
to the covariance matrix Γη of its corresponding 2r component vector random variable
η via

Γξ
! 2Γη; (Γξ)−1

!
1

2
(Γη)−1;

whereas the means are isomorphic via µξ ! µη. Also, it was shown there that det(Γξ) =

2r(det(Γη))
1
2 and ξ∗Γξξ = η′Γηη. Then, following the convention of a Gaussian

distribution of an r-variate random variable u with mean a and covariance matrix B
denoted by

(2.26) N (u|a,B) =
exp

(
−1

2(u− a)′B−1(u− a)
)

(2π)r (det(B))
1
2

,

the following definition could be arrived at:
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Definition 2.19. The r-variate ‘complex Gaussian probability density’ of a
complex valued random variable u with mean a ∈ Cr and covariance matrix B ∈
Cr×r is defined as

NC(u | a,B) =
exp

(
−(u− a)∗B−1(u− a)

)

πr det(B)
.(2.27)

Now an essential theorem for this thesis is presented; refer Theorem 4.4.1 of [18], §C.2
of [111], and [53].

Theorem 2.5. The discrete Fourier transform components of a realization of an r-
variate linear process at frequencies ωj,l such that lim

̂→∞
|ωj−ωj,l| → 0 ∀l ∈ 1, . . . , n;

∀j = 1, . . . , ̂ . n are iid samples of an r-dimensional ‘complex-valued vector
random variable’ yj at frequency ωj ∈ [0, 1] with a probability density

py(ωj)(u) =

{
NC(u | 0,Sy(ωj)), ωj ∈ (0, 1)
N (u | 0, 2Sy(ωj)), ωj ∈ {0, 1}.(2.28)

Theorem 2.5 furnishes a probabilistic model for discrete Fourier transform samples
obtained from a finite realization of a time series of a linear process. The theorem simply
recommends that discrete Fourier transform components within a ‘small’ bandwidth
near a target frequency ωj is Gaussian with the covariance matrix equal to the spectral
density function Sy(ωj); at zero frequency the covariance matrix is twice Sy(0).

In order to use this theorem, the following procedure is adhered to: Given τ samples
of a time series realization, first compute the τ -length discrete Fourier transform y(ωk),
k = 0, . . . , τ−1. Then, n discrete Fourier transform components y(ωj,l), l = 1, . . . , n;
j = 0, 1, . . . , ̂− 1, contained in the j-th subband may be assigned as

(2.29) ωj,l : |ωj − ωj,l| ≤ nτ−1; n + ̂.

For the j-th frequency band, the sample covariance matrix is computed as

(2.30) Ŝy(ωj) =
1

n

n∑

l=1

(y(ωj,l)− ŷ(ωj))(y(ωj,l)− ŷ(ωj))
∗,

and

ŷ(ωj) =
1

n

n∑

l=1

y(ωj,l)

is the sample mean of the discrete Fourier transform y(ωk) and ωj − b < ωk < ωj + b.
To ensure robustness of the estimate Ŝy(ωj), typically, one would also want to maintain

(2.31) n ≥ r2,

refer [106, 12].
It could be shown, as done in §4.2 of [18] or §12.4 of [25] that for a linear process

(2.32) lim
n→∞

Ey[Ŝy(ω | n)] = Sy(ω) ∀ω ∈ [0, 1).
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Hence, while maintaining ̂ . n, a sufficiently large n should provide an unbiased
estimate of Sy(ωj) through (2.30). This process is given in Algorithm 1, where care
should be taken to ensure that there are sufficient subbands as required by Theorem
2.5.

Algorithm 1: Prepare discrete Fourier transform subbands
Input: D = {yt}, t = 1, . . . , τ ; yt ∈ Rr;n; ̂;

Output: {Ŝy(ωj)}; {y(ωj,l)}; j = 1, . . . , ̂; l = 1, . . . , n;

compute yt
F←→ y(ωk); ωk = k

τ , k = 0, . . . , τ − 1 using (2.16);
assign y(ωj,l); j = 1, . . . , ̂; l = 1, . . . , n using (2.29);
estimate Ŝy(ωj) using (2.30);

2.6 Summary

This chapter introduced certain frequently sought after notions pertaining to time
and frequency domain analyses of time series. These notions include acvf , spectral
density function, discrete Fourier transform, white noise, etc. The relation between the
spectral density function and the acvf was recapped on. Also introduced were some
of the notations adhered to for the remaining chapters. As discussed, the spectral
density function of a stationary time series is the Fourier transform of its autocovariance
function. The discrete Fourier transform components of a linear process within a
small bandwidth around a target frequency is approximately complex-Gaussian with
mean zero and covariance matrix equaling the spectral density function at the target
frequency.

Our goal for this thesis is to model and learn a measured multivariate time se-
ries by dynamically transforming a low-dimensional latent time series. The hope is to
use classical probabilistic modeling concepts introduced in the next chapter to achieve
this goal. Most of those concepts will be based on fitting popular probability density
function models on time and lag independent data; but it is time series data that is
dealt with. In order to elicit a similar and manageable probability density function that
applies to a wide class of time series, the asymptotic theory of discrete Fourier trans-
form components was approached. This is because those components within a small
bandwidth may be considered as realizations of a complex-valued Gaussian vector ran-
dom variable. This enables the possibility of applying standard probabilistic modeling
techniques, as reviewed in the next chapter, to multivariate time series modeling.
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