Appendix A

A.1 Differentiation of real-valued functions of complex
variables

Some properties of functions which map complex-valued variables to real-valued images
is reviewed here. For details and applications of such an analysis, [57] is referred to.
Suppose A C C is an open set and a complex function f(u) : A — C is defined. The
function f(u) is said to be differentiable at 4 € A if its derivative at @ defined as
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a
exists. The function f(u) is said to be analytical if the derivative exists for all 4 € A.
For analytical functions, the stationary points are located wherever

(A.2) % Fu) = 0.

The differential of an analytical f(u) is given by

(A3) 4 () = - f(u)du+ ~- (),

where % = w1 — iusg is the complex conjugate of u = uy + iug, where u1,us € R and
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are called Wirtinger derivatives. Also, note a direct consequence of (A.4) that

(A4)

(A.5) —u=—1u=0,

or & may be regarded as a constant when differentiating with respect to u, and vice-
versa.

For any f(u) that is not necessarily analytical, based on the condition (A.2), the
stationary points may now be found by searching where

(A.6) df(u) = 0.



Let f(u) = f1(u1,u2)+ifa(ur,uz), where f1, fo : R2 — R. For f(u) to be analytical,
it is necessary that it satisfies the Cauchy-Riemann conditions

0 0 0

(A7) LT (9—u2f2’ Dy

0
fi= _a—ulfQ'
Now, focus the situation in which f(u) : A — R. Firstly, the conditions (A.7) show
that f(u) is analytical if and only if f(u) is constant. Secondly, df = 2§R(a%f(u)du) =
2§R(a%f(u)dﬁ), which vanishes if and only if

(A.8) % F(u) = 0.

Hence, for finding the stationary points of a non-analytical function, the trick involves
writing the differential in the form of (A.3) and set the term corresponding to %f(u)
to zero.
In the multivariate case [71, 59], for the complex-valued function f(u) : A C C with
AcCcC,

0 0
= wf(u)du—k S

(A-9) df fu)d(a),

where u* = u' is the conjugate transpose of u. It then easily follows that the differential
df of a real-valued function f(u): A — RVu € A C C" vanishes if and only if the
Wirtinger derivative is zero, i.e.,

0

(A.10) df(w) = 0& = fu) = 0.
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Appendix B

B.1 Certain details of the EM Algorithm

To enable a smooth reading of the EM Algorithm developed in Section 3.5, certain
details are let to reside separately. They are elucidated here:

B.1.1 Log-likelihood as summation of logarithms

The following lemma is well-known; refer §16.5.4 of [30]:

Lemma B.1l. Suppose that wuq,...,w,, are points in the interval U and
C1,...,Cm > 0 are such that 3" ¢, = 1 and f is a concave function in U. Ac-
cording to Jensen'’s inequality f(ciui +- -+ cmnm) > c1f(ur)+- -+ cm fum).

With f < log,, ¢; < g(x;), and u; < p*” 1% (D,z; | 0)/g(x1), (3.32) is got.

B.1.2 Decomposition of the complete log-likelihood

Using Theorem B.1, p**l9(D,z | 6) = pY%(D | 6) pV?(x | D, 0) is obtained. Hence,
the right side of (3.32) may be factorized so that

x|y,0

p(z | D,0)

E;g x)logp!1?(D | 0) +§ ' g(x)log,—————=,
19) g(x)

where the first term reduces to L(#) due to (3.5) and (3.30).
B.1.3 Maximization of an expectation
If g; of (3.35) is substituted in (3.32)

pr (D,z | 0)
E : XIy, r \=e il
L(6, pY¥(z | D,0; )Ioge o0z | D.0;)
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where the denominator in the logarithm being independent of # may be eliminated. As
a result, (3.37) boils down to
0;41 = argmax L(0;, §i)
0;

— argmax S_ p*¥4 (x| D, ;) log,p* (D, x | 6;),

0,

= argmax EXIV:0 [Iogepy”"G(D,x | 6)].
0;

B.2 Posterior density with a Gaussian prior

Refer [113, 74] and §6.2 of [95] for the following theorem:

Theorem B.1. According to the Bayes theorem for continuous probability density
functions, the conditional distribution of a random variable y with any realization y
given a set of random variables x with any realization x is related to the conditional
distribution of x given'y according to

p*()p™(y | 2) = P (v) PP (2 | y) = P (v, 2).

Due to Theorem B.1, p*¥(z | y) = %’;@M); so, given the parameters 0, it follows

that pV9(z | y,0) = W. While a Gaussian has been accepted for the

denominator pY(y | 6) according to (3.18), p’*(y | x,6) in the numerator is also a
Gaussian as per (3.39). Assuming yet another Gaussian for

(x| 0) = p*(z) = N(x | 0,1,).

Therefore,

N(z |0, I)N(y | Wz, T?)
B.1 Pz |y, 0) = 4 .
(51 v IPIVERT)
Suppose c1, ..., ¢y are factors independent of x such that

N(z]0,1,;) = c1 exp(—0.52"z),
Ny | Wz,T?) = cyexp(—0.52' W (T3 Wz + 2/W/'(I%) " y),
Ny | W', 1Y) = cs,

C1C2
C3 '

cy =
Then, (B.1) may be written as
Y0z | y,0) = caexp(—0.52'Q7 e + 2/QTLQW! (1) 1y),

where
QO =1, + W)W
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The probability density function of a Gaussian & with mean a and covariance matrix
B may be written as (¢ | a, B) = cexp(—0.5&' B¢ + ¢’ B~1a), where c is a factor
independent of £&. Thus, p™?(z | 3,6) is a Gaussian with mean QW’(I'*)~'y and
covariance matrix €2. It can be seen that

px|y,€(x | y79) _ N(w | QW’(PZ)*ly,Q)-

B.3 Posterior density with a complex Gaussian prior

The extension of Section B.2 to complex Gaussian densities is straightforward. In that
order of equations and interpretations therein, the following relations hold:

(x| 6) = Ne(x 1 0,1,)

Ne(x | 0, TNz (y | Wx, %)

x|y,0 —
(B-2) PP (x [y, 0) Ne(y 10.87)

Suppose ¢, ..., cy are factors independent of x such that
Ne(x | 0,1,) = ¢ exp(—x"x),

Nely | W, 8%) = 2 exp(—x"W* (87) ™ W + 2R(x"W* (57) "y)),
Nely 0,8) = e,

C1C2
Cy = —.
C3

Then, (B.2) may be written using
Q' =1, + WS 'wW.
as
P (x | y,0) = crexp(—x" 2 1x + 2RI QWH(S7) 1y)

The probability density function of a complex Gaussian £ with mean a and covari-
ance matrix B may be written as N¢(€ | a, B) = cexp(—¢*B~Y¢ + 2R(¢* B~ a)),
where ¢ consists of the normalization factor of the distribution independent of £. This
shows that pXI¥-?(x | y,#) above is a complex Gaussian with mean QW*(S?)~'y and
covariance matrix €2, i.e.,

PP0(x | y.0) = Ne(x | QW*(8%) 'y, Q).
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