
Appendix A

A.1 Differentiation of real-valued functions of complex
variables

Some properties of functions which map complex-valued variables to real-valued images
is reviewed here. For details and applications of such an analysis, [57] is referred to.
Suppose A ⊂ C is an open set and a complex function f(u) : A → C is defined. The
function f(u) is said to be differentiable at û ∈ A if its derivative at û defined as

(A.1)
d

du
f(u)

∣∣∣∣
û

= lim
u→û

f(u)− f(û)

u− û
,

exists. The function f(u) is said to be analytical if the derivative exists for all û ∈ A.
For analytical functions, the stationary points are located wherever

(A.2)
d

du
f(u) = 0.

The differential of an analytical f(u) is given by

(A.3) df(u) =
∂

∂u
f(u)du+

∂

∂ū
f(u)dū,

where ū = u1 − iu2 is the complex conjugate of u = u1 + iu2, where u1, u2 ∈ R and

∂

∂u
=

1

2

(
∂

∂u1
− i

∂

∂u2

)
,

∂

∂ū
=

1

2

(
∂

∂u1
+ i

∂

∂u2

)(A.4)

are called Wirtinger derivatives. Also, note a direct consequence of (A.4) that

(A.5)
∂

∂ū
u =

∂

∂u
ū = 0,

or ū may be regarded as a constant when differentiating with respect to u, and vice-
versa.
For any f(u) that is not necessarily analytical, based on the condition (A.2), the
stationary points may now be found by searching where

(A.6) df(u) = 0.
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Let f(u) = f1(u1, u2)+ if2(u1, u2), where f1, f2 : R2 → R. For f(u) to be analytical,
it is necessary that it satisfies the Cauchy-Riemann conditions

(A.7)
∂

∂u1
f1 =

∂

∂u2
f2,

∂

∂u2
f1 = − ∂

∂u1
f2.

Now, focus the situation in which f(u) : A → R. Firstly, the conditions (A.7) show
that f(u) is analytical if and only if f(u) is constant. Secondly, df = 2%( ∂

∂uf(u)du) =

2%( ∂
∂ūf(u)dū), which vanishes if and only if

(A.8)
∂

∂u
f(u) = 0.

Hence, for finding the stationary points of a non-analytical function, the trick involves
writing the differential in the form of (A.3) and set the term corresponding to ∂

∂uf(u)
to zero.
In the multivariate case [71, 59], for the complex-valued function f(u) : A ⊂ C with
A ⊂ Cr,

df =
∂

∂u′
f(u) du+

∂

∂u∗
f(u) d(ū),(A.9)

where u∗ ≡ ū′ is the conjugate transpose of u. It then easily follows that the differential
df of a real-valued function f(u) : A → R ∀u ∈ A ⊂ Cn vanishes if and only if the
Wirtinger derivative is zero, i.e.,

(A.10) df(u) = 0 ⇔ ∂

∂u
f(u) = 0.
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Appendix B

B.1 Certain details of the EM Algorithm

To enable a smooth reading of the EM Algorithm developed in Section 3.5, certain
details are let to reside separately. They are elucidated here:

B.1.1 Log-likelihood as summation of logarithms

The following lemma is well-known; refer §16.5.4 of [30]:

Lemma B.1. Suppose that u1, . . . , um are points in the interval U and
c1, . . . , cm ≥ 0 are such that

∑m
l=1 cl = 1 and f is a concave function in U . Ac-

cording to Jensen’s inequality f(c1u1+ · · ·+cmum) ≥ c1f(u1)+ · · ·+cmf(um).

With f ← loge, cl ← g(xl), and ul ← py,xl|θ(D, xl | θ)/g(xl), (3.32) is got.

B.1.2 Decomposition of the complete log-likelihood

Using Theorem B.1, py,x|θ(D, x | θ) = py|θ(D | θ) px|y,θ(x | D, θ) is obtained. Hence,
the right side of (3.32) may be factorized so that

L(θ, g) ≥
∑

x

g(x)logep
y|θ(D | θ) +

∑

x

g(x)loge
px|y,θ(x | D, θ)

g(x)
,

where the first term reduces to L(θ) due to (3.5) and (3.30).

B.1.3 Maximization of an expectation

If ĝi of (3.35) is substituted in (3.32)

L(θ, ĝi) =
∑

x

px|y,θ(x | D, θi)loge
py,x|θ(D, x | θ)

px|y,θ(x | D, θi)
,
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where the denominator in the logarithm being independent of θ may be eliminated. As
a result, (3.37) boils down to

θ̂i+1 = argmax
θi

L(θi, ĝi)

= argmax
θi

∑

x

px|y,θ(x | D, θi) logep
y,x|θ(D, x | θi),

= argmax
θi

Ex|y,θ
[
logep

y,x|θ(D, x | θi)
]
.

B.2 Posterior density with a Gaussian prior

Refer [113, 74] and §6.2 of [95] for the following theorem:

Theorem B.1. According to the Bayes theorem for continuous probability density
functions, the conditional distribution of a random variable y with any realization y
given a set of random variables x with any realization x is related to the conditional
distribution of x given y according to

px(x)py|x(y | x) = py(y) px|y(x | y) ≡ py,x(y, x).

Due to Theorem B.1, px|y(x | y) = px(x)py|x(y|x)
py(y) ; so, given the parameters θ, it follows

that px|y,θ(x | y, θ) = px|θ(x|θ)py|x(y|x,θ)
py(y|θ) . While a Gaussian has been accepted for the

denominator py(y | θ) according to (3.18), py|x(y | x, θ) in the numerator is also a
Gaussian as per (3.39). Assuming yet another Gaussian for

px|θ(x | θ) = px(x) = N (x | 0, Iq).

Therefore,

(B.1) px|y,θ(x | y, θ) =
N (x | 0, Iq)N (y | Wx,Γz)

N (y | µy,Γy)
.

Suppose c1, . . . , c4 are factors independent of x such that

N (x | 0, Iq) = c1 exp(−0.5x′x),

N (y | Wx,Γz) = c2 exp(−0.5x′W ′(Γz)−1Wx+ x′W ′(Γz)−1y),

N (y | µy,Γy) = c3,

c4 =
c1c2
c3

.

Then, (B.1) may be written as

px|y,θ(x | y, θ) = c4 exp(−0.5x′Ω−1x+ x′Ω−1ΩW ′(Γz)−1y),

where
Ω−1 = Iq +W ′(Γz)−1W.
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The probability density function of a Gaussian ξ with mean a and covariance matrix
B may be written as N (ξ | a,B) = c exp(−0.5 ξ′B−1ξ+ ξ′B−1a), where c is a factor
independent of ξ. Thus, px|y,θ(x | y, θ) is a Gaussian with mean ΩW ′(Γz)−1y and
covariance matrix Ω. It can be seen that

px|y,θ(x | y, θ) = N (x | ΩW ′(Γz)−1y,Ω).

B.3 Posterior density with a complex Gaussian prior

The extension of Section B.2 to complex Gaussian densities is straightforward. In that
order of equations and interpretations therein, the following relations hold:

px|θ(x | θ) = NC(x | 0, Iq)

(B.2) px|y,θ(x | y, θ) =
NC(x | 0, Iq)NC(y | Wx,Sz)

NC(y | 0,Sy)
.

Suppose c1, . . . , c4 are factors independent of x such that

NC(x | 0, Iq) = c1 exp(−x∗x),

NC(y | Wx,Sz) = c2 exp(−x∗W∗(Sz)−1Wx+ 2%(x∗W∗(Sz)−1y)),

NC(y | 0,Sy) = c3,

c4 =
c1c2
c3

.

Then, (B.2) may be written using

Ω−1 = Iq +W∗(Sz)−1W.

as

px|y,θ(x | y, θ) = c4 exp(−x∗Ω−1x+ 2%(x∗Ω−1ΩW∗(Sz)−1y))

The probability density function of a complex Gaussian ξ with mean a and covari-
ance matrix B may be written as NC(ξ | a,B) = c exp(−ξ∗B−1ξ + 2%(ξ∗B−1a)),
where c consists of the normalization factor of the distribution independent of ξ. This
shows that px|y,θ(x | y, θ) above is a complex Gaussian with mean ΩW∗(Sz)−1y and
covariance matrix Ω, i.e.,

px|y,θ(x | y, θ) = NC(x | ΩW∗(Sz)−1y,Ω).
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