Appendix A

A. 1 Differentiation of real-valued functions of complex variables

Some properties of functions which map complex-valued variables to real-valued images is reviewed here. For details and applications of such an analysis, [57] is referred to. Suppose $\mathcal{A} \subset \mathbb{C}$ is an open set and a complex function $f(u): \mathcal{A} \rightarrow \mathbb{C}$ is defined. The function $f(u)$ is said to be differentiable at $\hat{u} \in \mathcal{A}$ if its derivative at \hat{u} defined as

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} u} f(u)\right|_{\hat{u}}=\lim _{u \rightarrow \hat{u}} \frac{f(u)-f(\hat{u})}{u-\hat{u}}, \tag{A.1}
\end{equation*}
$$

exists. The function $f(u)$ is said to be analytical if the derivative exists for all $\hat{u} \in \mathcal{A}$. For analytical functions, the stationary points are located wherever

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} u} f(u)=0 \tag{A.2}
\end{equation*}
$$

The differential of an analytical $f(u)$ is given by

$$
\begin{equation*}
\mathrm{d} f(u)=\frac{\partial}{\partial u} f(u) \mathrm{d} u+\frac{\partial}{\partial \bar{u}} f(u) \mathrm{d} \bar{u}, \tag{A.3}
\end{equation*}
$$

where $\bar{u}=u_{1}-\mathrm{i} u_{2}$ is the complex conjugate of $u=u_{1}+\mathrm{i} u_{2}$, where $u_{1}, u_{2} \in \mathbb{R}$ and

$$
\begin{align*}
\frac{\partial}{\partial u} & =\frac{1}{2}\left(\frac{\partial}{\partial u_{1}}-\mathrm{i} \frac{\partial}{\partial u_{2}}\right), \\
\frac{\partial}{\partial \bar{u}} & =\frac{1}{2}\left(\frac{\partial}{\partial u_{1}}+\mathrm{i} \frac{\partial}{\partial u_{2}}\right) \tag{A.4}
\end{align*}
$$

are called Wirtinger derivatives. Also, note a direct consequence of (A.4) that

$$
\begin{equation*}
\frac{\partial}{\partial \bar{u}} u=\frac{\partial}{\partial u} \bar{u}=0, \tag{A.5}
\end{equation*}
$$

or \bar{u} may be regarded as a constant when differentiating with respect to u, and viceversa.
For any $f(u)$ that is not necessarily analytical, based on the condition (A.2), the stationary points may now be found by searching where

$$
\begin{equation*}
\mathrm{d} f(u)=0 . \tag{A.6}
\end{equation*}
$$

Let $f(u)=f_{1}\left(u_{1}, u_{2}\right)+\mathrm{i} f_{2}\left(u_{1}, u_{2}\right)$, where $f_{1}, f_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$. For $f(u)$ to be analytical, it is necessary that it satisfies the Cauchy-Riemann conditions

$$
\begin{equation*}
\frac{\partial}{\partial u_{1}} f_{1}=\frac{\partial}{\partial u_{2}} f_{2}, \quad \frac{\partial}{\partial u_{2}} f_{1}=-\frac{\partial}{\partial u_{1}} f_{2} \tag{A.7}
\end{equation*}
$$

Now, focus the situation in which $f(u): \mathcal{A} \rightarrow \mathbb{R}$. Firstly, the conditions (A.7) show that $f(u)$ is analytical if and only if $f(u)$ is constant. Secondly, $\mathrm{d} f=2 \Re\left(\frac{\partial}{\partial u} f(u) \mathrm{d} u\right)=$ $2 \Re\left(\frac{\partial}{\partial \bar{u}} f(u) \mathrm{d} \bar{u}\right)$, which vanishes if and only if

$$
\begin{equation*}
\frac{\partial}{\partial u} f(u)=0 \tag{A.8}
\end{equation*}
$$

Hence, for finding the stationary points of a non-analytical function, the trick involves writing the differential in the form of (A.3) and set the term corresponding to $\frac{\partial}{\partial u} f(u)$ to zero.
In the multivariate case [71,59], for the complex-valued function $f(u): \mathcal{A} \subset \mathbb{C}$ with $\mathcal{A} \subset \mathbb{C}^{r}$,

$$
\begin{equation*}
\mathrm{d} f=\frac{\partial}{\partial u^{\prime}} f(u) \mathrm{d} u+\frac{\partial}{\partial u^{*}} f(u) \mathrm{d}(\bar{u}), \tag{A.9}
\end{equation*}
$$

where $u^{*} \equiv \bar{u}^{\prime}$ is the conjugate transpose of u. It then easily follows that the differential $\mathrm{d} f$ of a real-valued function $f(u): \mathcal{A} \rightarrow \mathbb{R} \forall u \in \mathcal{A} \subset \mathbb{C}^{n}$ vanishes if and only if the Wirtinger derivative is zero, i.e.,

$$
\begin{equation*}
\mathrm{d} f(u)=0 \Leftrightarrow \frac{\partial}{\partial u} f(u)=0 \tag{A.10}
\end{equation*}
$$

Appendix B

B. 1 Certain details of the EM Algorithm

To enable a smooth reading of the EM Algorithm developed in Section 3.5, certain details are let to reside separately. They are elucidated here:

B.1.1 Log-likelihood as summation of logarithms

The following lemma is well-known; refer §16.5.4 of [30]:
Lemma B.1. Suppose that u_{1}, \ldots, u_{m} are points in the interval \mathcal{U} and $c_{1}, \ldots, c_{m} \geq 0$ are such that $\sum_{l=1}^{m} c_{l}=1$ and f is a concave function in \mathcal{U}. According to Jensen's inequality $f\left(c_{1} u_{1}+\cdots+c_{m} u_{m}\right) \geq c_{1} f\left(u_{1}\right)+\cdots+c_{m} f\left(u_{m}\right)$.

With $f \leftarrow \log _{e}, c_{l} \leftarrow g\left(x_{l}\right)$, and $u_{l} \leftarrow \mathrm{p}^{\mathrm{y}, \mathrm{x}_{l} \mid \theta}\left(\mathcal{D}, x_{l} \mid \theta\right) / g\left(x_{l}\right)$, (3.32) is got.

B.1.2 Decomposition of the complete log-likelihood

Using Theorem B.1, $\mathrm{p}^{\mathrm{y}, \mathrm{x} \mid \theta}(\mathcal{D}, x \mid \theta)=\mathrm{p}^{\mathrm{y} \mid \theta}(\mathcal{D} \mid \theta) \mathrm{p}^{\mathrm{x} \mid \mathrm{y}, \theta}(x \mid \mathcal{D}, \theta)$ is obtained. Hence, the right side of (3.32) may be factorized so that

$$
\mathrm{L}(\theta, g) \geq \sum_{\mathrm{x}} g(x) \log _{e} \mathrm{p}^{\mathrm{y} \mid \theta}(\mathcal{D} \mid \theta)+\sum_{\mathrm{x}} g(x) \log _{e} \frac{\mathrm{p}^{\mathrm{x} \mid \mathrm{y}, \theta}(x \mid \mathcal{D}, \theta)}{g(x)}
$$

where the first term reduces to $L(\theta)$ due to (3.5) and (3.30).

B.1.3 Maximization of an expectation

If \hat{g}_{i} of (3.35) is substituted in (3.32)

$$
\mathrm{L}\left(\theta, \hat{g}_{i}\right)=\sum_{x} \mathrm{p}^{\mathrm{x} \mid \mathrm{y}, \theta}\left(x \mid \mathcal{D}, \theta_{i}\right) \log _{e} \frac{\mathrm{p}^{\mathrm{y}, \mathrm{x} \mid \theta}(\mathcal{D}, x \mid \theta)}{\mathrm{p}^{\times \mid \mathrm{y}, \theta}\left(x \mid \mathcal{D}, \theta_{i}\right)}
$$

where the denominator in the logarithm being independent of θ may be eliminated. As a result, (3.37) boils down to

$$
\begin{aligned}
\hat{\theta}_{i+1} & =\underset{\theta_{i}}{\operatorname{argmax}} \mathrm{~L}\left(\theta_{i}, \hat{g}_{i}\right) \\
& =\underset{\theta_{i}}{\operatorname{argmax}} \sum_{x} \mathrm{p}^{\mathrm{x} \mid \mathrm{y}, \theta}\left(x \mid \mathcal{D}, \theta_{i}\right) \log _{e} \mathrm{p}^{\mathrm{y}, \times \mid \theta}\left(\mathcal{D}, x \mid \theta_{i}\right), \\
& =\underset{\theta_{i}}{\operatorname{argmax}} \mathrm{E}^{\times \mathrm{y}, \theta}\left[\log _{e} \mathrm{p}^{\mathrm{y} \times \times \mid \theta}\left(\mathcal{D}, x \mid \theta_{i}\right)\right] .
\end{aligned}
$$

B. 2 Posterior density with a Gaussian prior

Refer [113, 74] and $\S 6.2$ of [95] for the following theorem:
Theorem B.1. According to the Bayes theorem for continuous probability density functions, the conditional distribution of a random variable y with any realization y given a set of random variables \times with any realization x is related to the conditional distribution of x given y according to

$$
\mathrm{p}^{\mathrm{x}}(x) \mathrm{p}^{\mathrm{y} \mid \mathrm{x}}(y \mid x)=\mathrm{p}^{\mathrm{y}}(y) \mathrm{p}^{\mathrm{x} \mid \mathrm{y}}(x \mid y) \equiv \mathrm{p}^{\mathrm{y}, \mathrm{x}}(y, x)
$$

Due to Theorem B.1, $\mathrm{p}^{\mathrm{x} \mid \mathrm{y}}(x \mid y)=\frac{\mathbf{p}^{\mathrm{x}}(x) \mathrm{p}^{y \mid \times}(y \mid x)}{\mathrm{p}^{\mathrm{y}}(y)}$; so, given the parameters θ, it follows that $\mathrm{p}^{\mathrm{x} \mid \mathrm{y}, \theta}(x \mid y, \theta)=\frac{\mathrm{p}^{\mathrm{x} \mid \theta}(x \mid \theta) \mathrm{p}^{\mathrm{y} \mid \times}(y \mid x, \theta)}{\mathrm{p}^{\mathrm{y}}(y \mid \theta)}$. While a Gaussian has been accepted for the denominator $\mathrm{p}^{\mathrm{y}}(y \mid \theta)$ according to (3.18), $\mathrm{p}^{\mathrm{y} \mid \mathrm{x}}(y \mid x, \theta)$ in the numerator is also a Gaussian as per (3.39). Assuming yet another Gaussian for

$$
\mathrm{p}^{\times \mid \theta}(x \mid \theta)=\mathrm{p}^{\times}(x)=\mathcal{N}\left(x \mid 0, I_{q}\right)
$$

Therefore,

$$
\begin{equation*}
\mathrm{p}^{\times \mid \mathrm{y}, \theta}(x \mid y, \theta)=\frac{\mathcal{N}\left(x \mid 0, I_{q}\right) \mathcal{N}\left(y \mid W x, \Gamma^{\mathrm{z}}\right)}{\mathcal{N}\left(y \mid \mu^{\mathrm{y}}, \Gamma^{\mathrm{y}}\right)} \tag{B.1}
\end{equation*}
$$

Suppose c_{1}, \ldots, c_{4} are factors independent of x such that

$$
\begin{gathered}
\mathcal{N}\left(x \mid 0, I_{q}\right)=c_{1} \exp \left(-0.5 x^{\prime} x\right) \\
\mathcal{N}\left(y \mid W x, \Gamma^{\mathbf{z}}\right)=c_{2} \exp \left(-0.5 x^{\prime} W^{\prime}\left(\Gamma^{\mathrm{z}}\right)^{-1} W x+x^{\prime} W^{\prime}\left(\Gamma^{\mathrm{z}}\right)^{-1} y\right) \\
\mathcal{N}\left(y \mid \mu^{\mathrm{y}}, \Gamma^{\mathrm{y}}\right)=c_{3} \\
c_{4}=\frac{c_{1} c_{2}}{c_{3}}
\end{gathered}
$$

Then, (B.1) may be written as

$$
\mathrm{p}^{\mathrm{x} \mid \mathrm{y}, \theta}(x \mid y, \theta)=c_{4} \exp \left(-0.5 x^{\prime} \Omega^{-1} x+x^{\prime} \Omega^{-1} \Omega W^{\prime}\left(\Gamma^{\mathrm{z}}\right)^{-1} y\right)
$$

where

$$
\Omega^{-1}=I_{q}+W^{\prime}\left(\Gamma^{\mathrm{z}}\right)^{-1} W
$$

The probability density function of a Gaussian ξ with mean a and covariance matrix B may be written as $\mathcal{N}(\xi \mid a, B)=c \exp \left(-0.5 \xi^{\prime} B^{-1} \xi+\xi^{\prime} B^{-1} a\right)$, where c is a factor independent of ξ. Thus, $\mathrm{p}^{\mathrm{x} \mid \mathrm{y}, \theta}(x \mid y, \theta)$ is a Gaussian with mean $\Omega W^{\prime}\left(\Gamma^{\mathrm{z}}\right)^{-1} y$ and covariance matrix Ω. It can be seen that

$$
\mathrm{p}^{\mathrm{x} \mid \mathrm{y}, \theta}(x \mid y, \theta)=\mathcal{N}\left(x \mid \Omega W^{\prime}\left(\Gamma^{\mathrm{z}}\right)^{-1} y, \Omega\right) .
$$

B. 3 Posterior density with a complex Gaussian prior

The extension of Section B. 2 to complex Gaussian densities is straightforward. In that order of equations and interpretations therein, the following relations hold:

$$
\begin{equation*}
\mathrm{p}^{\times \mid y, \theta}(\mathbf{x} \mid \mathbf{y}, \theta)=\frac{\mathcal{N}_{\mathbb{C}}\left(\mathbf{x} \mid 0, I_{q}\right) \mathcal{N}_{\mathbb{C}}\left(\mathbf{y} \mid \mathbf{W} \mathbf{x}, \mathcal{S}^{z}\right)}{\mathcal{N}_{\mathbb{C}}\left(\mathbf{y} \mid 0, \mathcal{S}^{\mathrm{y}}\right)} . \tag{B.2}
\end{equation*}
$$

Suppose c_{1}, \ldots, c_{4} are factors independent of \mathbf{x} such that

$$
\begin{gathered}
\mathcal{N}_{\mathbb{C}}\left(\mathbf{x} \mid 0, I_{q}\right)=c_{1} \exp \left(-\mathbf{x}^{*} \mathbf{x}\right), \\
\mathcal{N}_{\mathbb{C}}\left(\mathbf{y} \mid \mathbf{W} \mathbf{x}, \mathcal{S}^{\mathbf{z}}\right)=c_{2} \exp \left(-\mathbf{x}^{*} \mathbf{W}^{*}\left(\mathcal{S}^{\mathbf{z}}\right)^{-1} \mathbf{W} \mathbf{x}+2 \Re\left(\mathbf{x}^{*} \mathbf{W}^{*}\left(\mathcal{S}^{\mathbf{z}}\right)^{-1} \mathbf{y}\right)\right), \\
\mathcal{N}_{\mathbb{C}}\left(\mathbf{y} \mid 0, \mathcal{S}^{\mathbf{y}}\right)=c_{3}, \\
c_{4}=\frac{c_{1} c_{2}}{c_{3}} .
\end{gathered}
$$

Then, (B.2) may be written using

$$
\mathbf{\Omega}^{-1}=I_{q}+\mathbf{W}^{*}\left(\mathcal{S}^{z}\right)^{-1} \mathbf{W}
$$

as

$$
\mathrm{p}^{\mathrm{x} \mid \mathrm{y}, \theta}(\mathbf{x} \mid \mathbf{y}, \theta)=c_{4} \exp \left(-\mathbf{x}^{*} \boldsymbol{\Omega}^{-1} \mathbf{x}+2 \Re\left(\mathbf{x}^{*} \boldsymbol{\Omega}^{-1} \boldsymbol{\Omega} \mathbf{W}^{*}\left(\mathcal{S}^{\mathbf{z}}\right)^{-1} \mathbf{y}\right)\right)
$$

The probability density function of a complex Gaussian ξ with mean a and covariance matrix B may be written as $\mathcal{N}_{\mathbb{C}}(\xi \mid a, B)=c \exp \left(-\xi^{*} B^{-1} \xi+2 \Re\left(\xi^{*} B^{-1} a\right)\right)$, where c consists of the normalization factor of the distribution independent of ξ. This shows that $\mathrm{p}^{\times} \times \mathbf{y}, \theta(\mathbf{x} \mid \mathbf{y}, \theta)$ above is a complex Gaussian with mean $\Omega \mathbf{W}^{*}\left(\mathcal{S}^{\mathbf{z}}\right)^{-1} \mathbf{y}$ and covariance matrix Ω, i.e.,

$$
\mathrm{p}^{\mathrm{x} \mid \mathrm{y}, \theta}(\mathrm{x} \mid \mathbf{y}, \theta)=\mathcal{N}_{\mathbb{C}}\left(\mathrm{x} \mid \boldsymbol{\Omega} \mathbf{W}^{*}\left(\mathcal{S}^{\mathbf{z}}\right)^{-1} \mathbf{y}, \boldsymbol{\Omega}\right) .
$$

