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Abstract We introduce two new methods of deriving the classical PCA in the framework
of minimizing the mean square error upon performing a lower-dimensional approximation
of the data. These methods are based on two forms of the mean square error function. One of
the novelties of the presented methods is that the commonly employed process of subtraction
of the mean of the data becomes part of the solution of the optimization problem and not a
pre-analysis heuristic. We also derive the optimal basis and the minimum error of approxi-
mation in this framework and demonstrate the elegance of our solution in comparison with
a recent solution in the framework.

Keywords Principal components analysis · Eigenvalue · Matrix trace

1 Introduction

The problem of approximating a given set of data using a weighted linear combination of a
fewer number of vectors than the original dimensionality is classic. Many applications that
require such a dimensionality reduction desire that the new representation retain the maxi-
mum variability in the data for further analysis. A popular method that attains simultaneous
dimensionality reduction, minimum mean square error of approximation and retainment of
maximum variance of the original data representation in the new representation is called the
Principal Components Analysis (PCA) [7,11].

The most popular framework for deriving PCA starts with the analysis of variance. A
very common derivation of PCA in this framework generates the basis by iteratively find-
ing the orthogonal directions of maximum retained variances [7,10,11,14]. Since variance
is implied in the statement of the problem here, the mean is subtracted from the data as a
preliminary step. The second most predominant framework derives PCA by minimizing the
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mean square error of approximation [1–3]. Aided by the derivation in the variance-based
framework above, it has become acceptable to resort to mean subtraction of the data prior to
any analysis in this framework too in order to keep the analysis simple. In this letter our focus
is on the latter framework within which we demonstrate two distinct and elegant analytical
methods of deriving the PCA. In each of these methods of derivation, subtraction of data
mean becomes part of the solution instead of being an initial assumption.

The letter is organized as follows: in Sect. 2 we describe the motivation behind the need
for yet another derivation of the classical PCA. In particular, we highlight the issue of mean
centering in Sect. 2.1. The notations are introduced in Sect. 2.2 and the PCA problem and its
interpretations are discussed in Sect. 3. After reviewing a recent solution in Sect. 4, we make
it evident in Sect. 5 that our two methods are due to two forms of the optimization function.
Then we introduce these two methods of solving the PCA problem in Sects. 6 and 7 and
arrive at a simple common form of the optimization function in both these methods. This is
analyzed further in Sect. 8 where we show the relation of the variance to the optimal basis as
well as the minimum approximation error attained in PCA. In Sect. 8.3, we revisit a recent
solution in our framework of PCA introduced in Sect. 4 and equate it with our approach.

2 Motivation

There are many standard textbooks of multivariate and statistical analysis [10,11,14] detail-
ing PCA as a technique that seeks the best approximation of a given set of data points using
a linear combination of a set of vectors which retain maximum variance along their direc-
tions. Since this framework of PCA starts by finding the covariances, the mean has to be
subtracted from the data and becomes the de facto origin of the new coordinate system. The
subsequent analysis is simple: find the eigenvector corresponding to the largest eigenvalue
of the covariance matrix as the first basis vector. Then find the second basis vector on which
the data components bear zero correlation with the data components on the first basis vector.
This turns out to be the eigenvector corresponding to the second largest eigenvalue. In suc-
cessively finding the basis vectors that have uncorrelated components as the eigenvectors of
decreasing retained variances, the second order cross moments between the components are
successively eliminated.1 Computationally, a widely employed trick in this framework finds
the eigenvectors using singular value decomposition of the mean centered data matrix which
effectively diagonalizes the covariance matrix without actually computing it [11,14]. The set
of orthogonal vectors corresponding to the largest few singular values proportional to the vari-
ances yields those directions which retain the maximum variance in the new representation
of the data.

The second framework derives the PCA approximation by using its property of minimiz-
ing the mean square error. We think that this framework is more effective in introducing PCA
to a novice because the two outcomes of optimal dimensionality reduction, viz. error minimi-
zation and retained variance maximization, are attained here simultaneously. Following the
path of the retained variance maximization framework and to keep the analysis simple, many
textbooks [2,9,10,20] advocate a mean subtraction for this framework too without sensible
justification. Pearson stated in his now classical paper [18]:

“The second moment of a system about a series of parallel lines is always least for the
line going through the centroid. Hence: The best-fitting straight line for a system of
points in a space of any order goes through the centroid of the system.”

1 Elimination of higher order cross moments is dealt in Independent Components Analysis (ICA) [9].
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A procedure equivalent to rephrasing of this statement is followed in a much referenced
textbook [3] which reasons that since the mean is the zero-dimensional hyperplane which sat-
isfies the minimum average square error criterion, any higher dimensional hyperplane should
be excused to pass through it too. In order to keep our analysis coherent with the concept of
simultaneous dimensionality reduction, retained variance maximization and approximation
error minimization, we do not invite the reader to such geometric intuitions. Note that the
error minimization framework can also be viewed as a total least squares regression problem
with all variables thought to be free so that the task is to fit a lower dimensional hyperplane
that minimizes the perpendicular distances from the data points to the hyperplane [21].

We will also be reviewing [1] who derives PCA in the same framework as that of ours.
Unlike in their approach, we neither undertake a complete orthogonal decomposition nor
force any basis vectors to bear a common statistic enticed by the prospect of an eventual
mean subtraction. Also for the benefit of practitioners who would like to deal data as realiza-
tions of a random variable, our treatment in the data samples domain can be readily extended
to a population domain.

2.1 To Mean Center or Not

In the framework of finding the basis of a lower dimensional space which minimizes the
mean square error of approximation, the process of mean subtraction has so far been part of
the heuristics that the data needs to be centered before installing the new low-dimensional
coordinate system motivated by the philosophy according to [18] that, had the mean of the
data not been subtracted, the best fitting hyperplane would pass through the origin and not
through the centroid. But there exist situations where a hyperplane is merely expected to
partition the data space into orthogonal subspaces and as a result subtraction of mean is not
desired. Note that in such situations, the term ‘principal component’ does not strictly hold as
the basis vectors for the new space are not obtained from the data covariance matrix and the
main concern there is the decomposition of the data rather than its approximation.

One such set of situations are addressed by the Fukunaga–Koontz Transform [5,16] and
it works by not requiring a subtraction of mean but instead finds the principal components
of the autocorrelation matrices of two classes of data. It is widely used in automatic target
recognition where eigenvalue decomposition generates basis for a target space orthogonal
to the clutter space. But such is the issue of mean subtraction in using this transform that
researchers of [12] and [8] use autocorrelation and covariance matrices, respectively, for the
same task without a justification of the impact of their choice to mean center or not. A similar
approach called Eigenspace Separation Transformation [19] aimed at classification also does
not involve mean subtraction. A family of techniques called Orthogonal Subspace Projection
that is widely applied in noise rejection of signals use data that are not mean centered for the
generalized PCA that follows [6].

Although the theory of PCA demands mean subtraction for optimal low dimensional
approximation, for many applications it is not without consequence. For example, the research-
ers of ecology and climate studies have extensively debated the purpose and result of mean
centering for their PCA-based data analysis. In [17], the characteristics and apparent advan-
tages of the principal components generated without mean subtraction are compared for
data sampled homogenously in the original space or otherwise. The claim made therein is
that if data form distinct clusters, the influence of variance within a cluster on another can
be minimized by not subtracting the mean. Another ongoing debate named ‘Hockey Stick’
controversy [15] involves the appropriateness of mean subtraction for PCA in a much cited
global warming study [13].
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It should be borne in mind that this letter is neither solely about the aforementioned issue
of mean centering that researchers using PCA often take it for granted nor does it change the
results of PCA that is previously known to them. But we demonstrate in a new comprehensive
framework that (i) the mean subtraction becomes a solution to the optimization problem in
PCA and we reach this solution through two simple distinct methods that borrow little from
traditional textbook derivations of PCA, and (ii) the derivation of the basis for the low dimen-
sional space converges to minimum approximation error and maximum retained variance in
the framework. Consequently, we believe that many problems which raise questions about
their choice regarding mean subtraction can be revisited with ease using our proposed PCA
framework.

2.2 Notations

The notations that will be used
throughout this letter are
summarized in the table below

Jq : error function
q : new dimensionality
p : original dimensionality
n : number of samples
xk ∈ R

p ; kth data sample
x̂k ∈ R

p ; approximation of xk

θ ∈ R
p ; new general origin

x̃k = xk − θ ∈ R
p

ei ∈ R
p ; ith orthonormal basis vector of R

p

W = [e1 · · · eq ] ∈ R
p×q

B = I − WWT ∈ R
p×p

˜W = [eq+1 · · · ep] ∈ R
p×p−q

zk ∈ R
q ; dependent on xk

b ∈ R
p−q ; a constant

Tr(A) : Trace of the matrix A

rank(A) : Rank of the matrix A

µ ∈ R
p ; sample mean

S ∈ R
p×p ; sample covariance matrix

λi : ith largest eigenvalue of S

r = rank(S)

3 Problem Definition in the Sample Domain

Let xk ∈ R
p, k = 1, . . . , n be a given set of data points. Suppose we are interested in ortho-

normal vectors ei ∈ R
p, i = 1, . . . , q ≤ p whose resultant of weighted linear combination

x̂k ∈ R
p can approximate xk with a minimum average (sample mean) square error or in other

words minimize

Jq(x̂k) = 1

n

n
∑

k=1

‖xk − x̂k‖2. (1)

The problem stated above means that we need an approximation xk � x̂k such that

x̂k =
q

∑

i=1

(

eT
i xk

)

ei (2)

so that we attain the minimum for Jq . This approximation assumes that the origin of all
orthonormal ei is the same as that of the coordinate system in which the data is defined. We
assume orthonormality here because (i) orthogonality guarantees linearly independent ei so
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that they form a basis for R
q (ii) normalizing ei maintains notational simplicity in not having

to divide the scalars eT
i xk in (2) by the norm ‖ei‖ which is unity due to our assumption.

We reformulate the approximation

x̂k = θ +
q

∑

i=1

(

eT
i (xk − θ)

)

ei (3)

to assume that the new representation using basis vectors ei has a general origin θ ∈ R
p and

not the origin as in the approximation (2). Hence, the PCA problem may be defined as

argmin
ei ,θ

1

n

n
∑

k=1

‖xk − x̂k‖2 :
x̂k = θ + ∑q

i=1

(

eT
i (xk − θ)

)

ei;

eT
i ej = 0, i �= j ; eT

i ei = 1 ∀ i, j.

(4)

which seeks a set of orthonormal basis vectors ei with a new origin θ which minimizes the
error function in (1) in order to find a low-dimensional approximation WT (xk − θ) ∈ R

q for
any xk ∈ R

p , where

W = [e1 · · · eq ]. (5)

It is now easy to see that (3) becomes

x̂k = θ + WWT (xk − θ). (6)

Hence the displacement vector directed from the approximation x̂k towards xk is xk − x̂k =
(xk − θ) − WWT (xk − θ), which using x̃k = xk − θ can be written concisely as xk − x̂k =
x̃k−WWT x̃k . By setting B = I −WWT for simplicity of notation, we write the displacement
vector as

xk − x̂k = Bx̃k. (7)

4 Review of a Recent Solution

The most recent PCA solution in the framework of approximation error minimization, derived
in [1], is reviewed here. They derive PCA by undertaking a complete decomposition

x̂k = Wzk + ˜Wb (8)

into basis vectors contained in the columns of matrix W of (5) and ˜W = [eq+1 · · · ep] ∈
R

p×p−q such that components of zk ∈ R
q depend on xk , whereas components of b ∈ R

p−q

are constants common for all data points.
By taking the derivative of the error function with respect to b, they find that

b = ˜WTµ (9)

so that the common components are those of the sample mean vector µ. This implies that
by subtracting the sample mean they are no longer obliged to retain the p − q dimensions
corresponding to the columns of ˜W which preserve little information regarding the variation
in the data. The first drawback of this approach is that it couples the process of dimensionality
reduction with mean subtraction although the two will be shown to be independent in our
derivation. By taking the derivative of the error function with respect to zk , they also show
that zk = WTxk . Hence the approximation they are seeking is

x̂k = WWTxk + ˜W ˜WTµ. (10)
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The second drawback of their approach is the requirement of yet another constrained
minimization of the error function before they reach the solution for the optimal columns
of W .

5 Methods of PCA

We have discussed the need for a new derivation of PCA by (i) explaining the lack of proper
justification in the literature for subtracting the mean in a minimum mean square error frame-
work, (ii) reminding its chronic necessity for the benefit of many applications in Sect. 2, and
(iii) reviewing a recent attempt to solve this problem in Sect. 4. Our derivations of the solution
for the problem in (4) are due to two simple forms of the error function Jq of (1) which we
state as follows:

Form 1 : Jq(x̂k) = 1

n

n
∑

k=1

(

xk − x̂k

)T (

xk − x̂k

)

(11)

Form 2 : Jq(x̂k) = Tr

(

1

n

n
∑

k=1

(

xk − x̂k

) (

xk − x̂k

)T

)

(12)

We analyze Form 1 in (11) in Sect. 6 to arrive at a simplified Jq which is exactly the same
as we get by following a different method of analyzing Form 2 in (12) in Sect. 7. These
two methods pursue different paths towards the common error function, viz., the first using
straightforward expansion of the terms in Jq and the second using the property of matrix
trace. The common form of Jq is subsequently treated in Sect. 8 to reveal the rest of the
solution to our original problem.

6 Analysis of Form 1 of Error Function

Using (7), the error function Jq of Form 1 in (11) can be developed as

Jq(B, θ) = 1

n

n
∑

k=1

x̃T
k BT Bx̃k. (13)

The property that B = I − WWT is idempotent and symmetric, i.e.,

B = B2 = BT , (14)

or B is simply an orthogonal projector, may be used to reduce Jq further as

Jq(B, θ) = 1

n

n
∑

k=1

x̃T
k Bx̃k. (15)

Expanding Jq above using x̃k = xk − θ gives

Jq(B, θ) = 1

n

n
∑

k=1

[

xT
k Bxk − 2θT Bxk + θT Bθ

]

(16)
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In order to get the θ which minimizes Jq , we find the partial derivative ∂Jq/∂θ =
−2B

[ 1
n

∑n
k=1 xk − θ

]

and setting it to zero results in

θ = 1

n

n
∑

k=1

xk = µ, (17)

which is as simple as regarding the sample mean of the data points as the new origin. Hence-
forth, we can assume that x̃k is the data point xk from which the sample mean has been
subtracted.

6.1 Simplifying the Error Function

We may analyze the error function in (15) as follows:

Jq(W) = 1

n

n
∑

k=1

x̃T
k

(

I − WWT
)

x̃k

= 1

n

n
∑

k=1

x̃T
k x̃k − 1

n

n
∑

k=1

x̃T
k WWT x̃k

= 1

n

n
∑

k=1

x̃T
k x̃k − Tr

(

WT

[

1

n

n
∑

k=1

x̃k x̃
T
k

]

W

)

.

We have the sample covariance matrix

S = 1

n

n
∑

k=1

x̃k x̃
T
k |θ=µ (18)

so that the term 1
n

∑n
k=1 x̃T

k x̃k |θ=µ equals Tr(S), and we can write

Jq(W) = Tr(S) − Tr
(

WT SW
)

. (19)

7 Analysis of Form 2 of Error Function

We now analyze the Form 2 of the error function Jq by substituting (7) in (12) as

Jq(B, θ) = Tr

(

B

[

1

n

n
∑

k=1

x̃k x̃
T
k

]

BT

)

. (20)

7.1 Finding θ

As in the previous section, we denote the sample mean and sample covariance matrix by µ

and S, respectively, and we may develop the term in (20):
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1

n

n
∑

k=1

x̃k x̃
T
k = 1

n

n
∑

k=1

(xk − θ)(xk − θ)T

= 1

n

n
∑

k=1

[

xkx
T
k − xkθ

T − θxT
k + θθT

]

= S + µµT − µθT − θµT + θθT , (21)

where we have used the sample autocorrelation matrix [4] given by 1
n

∑n
k=1 xkx

T
k = S+µµT .

We get Jq(B) = Tr
(

B
(

S + µµT − µθT − θµT + θθT
)

BT
)

upon substituting (21) in (20).
Using (14) and the cyclic permutation property of trace of matrix products2 we get

Jq(B) = Tr
(

B
(

S + µµT − µθT − θµT + θθT
))

(22)

and using the property of the derivative of trace3 and the chain rule of the derivatives,4 we
find that ∂Jq/∂θ = 2B (−µ + θ) which when equated to zero results in

θ = µ (23)

leading to the same solution of Form 1 in (17).

7.2 Simplifying the Error Function

Having found θ , we can substitute it in (22) to get Jq(B) = Tr (BS). On substitution for B in
terms of W , we may write Jq(W) = Tr (S) − Tr

(

WWT S
)

. Utilizing the cyclic permutation
property of matrix trace again, we get

Jq(W) = Tr (S) − Tr
(

WT SW
)

. (24)

8 Optimal Basis and Minimum Error

Note that we have arrived at the same set of equations in both (19) and (24) of Form 1 and
Form 2, respectively, whereby substituting W as defined in (5) in either of them gives

Jq(ei) = Tr(S) −
q

∑

i=1

eT
i Sei . (25)

8.1 Relation of Variance to Optimal Basis

Let us now find the variance λi of the data projected on the basis vector ei . It is the average
of the square of the difference between projections eT

i xk of the data points and the projection

2 Tr (ϒ��) = Tr (�ϒ�) = Tr (��ϒ).
3∂

(

Tr
(

��T
))/

∂� = �.

4∂(·)/∂u =
[

∂(·)/∂
(

uvT
)]

v.
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eT
i µ of the sample mean, i.e.,

λi = 1

n

n
∑

k=1

(

eT
i xk − eT

i µ
)2

= 1

n

n
∑

k=1

(

eT
i xk − eT

i µ
) (

eT
i xk − eT

i µ
)T

= eT
i

[

1

n

n
∑

k=1

(xk − µ) (xk − µ)T

]

ei

= eT
i Sei . (26)

Thus, the term
∑q

i=1 eT
i Sei in (25) gives the portion of the total variance Tr (S) retained

along the directions of orthonormal ei . Hence, we are looking for vectors ei of the form
λi = eT

i (Sei), which is satisfied if Sei = λiei . Such a relation implies (ei, λi) form an
eigen-pair of S. Note that since there is no unique basis for any nontrivial vector space, any
basis that spans the q-dimensional space generated by the eigenvectors of S are solutions to
ei too. In (25), since

argmin
ei

Jq = argmax
ei

q
∑

i=1

eT
i Sei, (27)

the vectors ei have to be the eigenvectors corresponding to the q largest (‘principal’) eigen-
values of S. This is the classical result of the PCA.

8.2 Relation of Variance to Minimum Approximation Error

It follows from (26) that the term
∑q

i=1 eT
i Sei = ∑q

i=1 λi of (25) is the sum of the q principal
eigenvalues of S; this is the maximum variance that could be retained upon approximation
using any q basis vectors. Also, Tr (S) = ∑r

i=1 λi, r = rank (S) is the total variance in
the data. Substituting these in Jq in (25) gives the difference of the total variance and the
maximum retained variance; the result is the minimum of the eliminated variance. Hence,
for λi ≥ λj , j > i, the minimum mean square approximation error can be expressed as

Jq =
r

∑

i=1

λi

︸ ︷︷ ︸

total variance

−
q

∑

i=1

λi

︸ ︷︷ ︸

retained variance

=
r

∑

i=q+1

λi.

︸ ︷︷ ︸

eliminated variance

(28)

8.3 Comparison of the Reviewed Solution with the Present Work

In order to compare the solution of [1] reviewed in Sect. 4, let us first write the approximation
in (6) as x̂k = WWT xk + Bθ . We know from (17) and (23) that θ = µ and, hence,

x̂k = WWT xk + Bµ. (29)

If ˜W ˜WT = B, we have the approximation according to [1] in (10) of Sect. 4 equivalent to
the approximation in (29).

While the drawbacks of (6) highlighted in Sect. 4 exist, let us outline the difference in
these two approaches: we have demonstrated in the proposed framework that the new origin
θ ∈ R

p of the low dimensional coordinate system should be the mean µ ∈ R
p so that the
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error of the approximation is reduced. But [1] necessitates an orthogonal projection of cer-
tain data-independent components b ∈ R

p−q to µ ∈ R
p to achieve the same objective. The

framework presented in this letter has shown that such a dimensionality reduction coupled
with mean subtraction is unnecessary for deriving PCA.

8.4 Population PCA

For population PCA [10,14], where the samples that form the data are assumed to be real-
izations of a random variable, we have made it easy for the reader to follow our analysis by
just replacing all occurrences of 1

n

∑n
k=1 → E , the expectation operator; and bold faces for

random variables as in xk → x, x̂k → x̂, and x̃k → x̃.

9 Conclusion

Motivated by the need to justify the heuristics of pre-analysis mean centering in PCA and
related questions, we have demonstrated through two distinct methods that the mean sub-
traction becomes part of the solution of the standard PCA problem in an approximation error
minimization framework. We believe that the framework, in which we have compared a
recent solution with ours, is more effective in justifying mean subtraction in PCA. Also, we
have shown that the framework is comprehensive in the sense that the two outcomes of opti-
mal dimensionality reduction, viz. approximation error minimization and retained variance
maximization, are attained here simultaneously.
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